
Numerical Linear Algebra with Applications, Vol. 1(1), 1–1 (1996)

Parallel Adaptive Multigrid Methods in
Plane Linear Elasticity Problems

Peter Bastian, Stefan Lang

Institut für Computeranwendungen III, Universität Stuttgart, Pfaffenwaldring 27, D-70569 Stuttgart,
Federal Republic of Germany (

�
peter,stefan � @ica3.uni-stuttgart.de)

and

Knut Eckstein

Graduiertenkolleg Kontinua und Strömungen, ISD, Universität Stuttgart, D-70569 Stuttgart, Federal
Republic of Germany (eckstein@isd.uni-stuttgart.de)

In this paper we discuss the implementation of parallel multigrid methods on unstructured locally refined meshes
for 2D linear elasticity calculations. The problem of rebalancing the workload of the processors during execution
of the program is discussed in detail and a load balancing algorithm suited for hierarchical meshes is proposed.
For large problems the efficiency per multigrid iteration ranges from 65% on 64 processors in the locally refined
case to 85% on 256 processors in the uniformly refined case. All calculations were carried out on a CRAY T3D
machine.

KEY WORDS multigrid, unstructured grids, adaptive local grid refinement, MIMD
computer, dynamic load balancing, linear elasticity

1. Introduction

The efficient numerical solution of partial differential equations is an important field of
active research. Over the last decades a number of techniques have been developed to
reduce computer time. The first possibility to save time is in the discretization step. Here
adaptive local grid refinement concentrates degrees of freedom in the critical parts of the
solution domain. To that end an a-posteriori error estimator (or indicator) is applied to
a given numerical solution and if the error exceeds a prescribed tolerance a modification
strategy produces a refined mesh based on local quantities computed by the error estimator.

1070–5325/96/010001–01$5.50 Received 15 December 1995
c
�

1996 by John Wiley & Sons, Ltd. Revised 30 May 1996

2 Peter Bastian, Knut Eckstein and Stefan Lang

This procedure is repeated until the required tolerance has been reached. A review of these
techniques is given in [1].

On each of the adaptively generated meshes a numerical solution has to be computed.
Therefore a fast iterative solver is needed that can be stopped when the solution error has
reached the discretization error. For elliptic partial differential equations multigrid methods
are the fastest methods known so far. They have the important property that their conver-
gence rate is independent of the mesh size. The optimality of the method for scalar elliptic
problems on unstructured and locally refined meshes without assumptions on the regularity
of the differential operator has been shown only very recently. An overview can be found
in the paper by YSERENTANT [2]. The multigrid method fits nicely into the framework of
adaptive local grid refinement which has been exploited already in a number of computer
codes like PLTMG, [3], or KASKADE, [4].

Yet another method to save computer time is the use of modern computer architectures,
i. e. parallel computers. But it has to be emphasized that the use of parallel computers will
allow one to solve bigger problems than before only if the methods mentioned above are
implemented in parallel. If non-optimal solvers are used on the parallel machine a large
part of its capacity is wasted to compensate for the gain that could be achieved by using
multigrid on a single processor.

Provide initial grid T0

Assemble equations

Solve #IT∗TIT

TSOL

Estimate discretization error

flag elements for refinement

compute mapping TBAL

migrate elements TMIG

TLB

compute new nested
grid hierarchy TREF

EXIT

interpolate solution

Figure 1. Basic adaptive solution strategy.

Therefore the aim of this paper is to combine adaptive local grid refinement and multi-
grid on parallel computers. This immediately leads to the problem of dynamic load bal-
ancing, since some processors will refine more elements than other processors. Since the
location of refinement is in general not known in advance the load balancing problem
must be solved during run-time. The load balancing problem consists of two parts: First a
mapping of the data (e.g. elements) to the processors must be determined that balances exe-
cution time in the solver. Second the data must be migrated according to this new mapping.
The computation of the optimal mapping is a NP-complete discrete optimization problem

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 3

which must be solved approximately by a heuristic procedure that does not dominate the
execution time of the multigrid solver. Fig. 1 shows an outline of the parallel adaptive
solution strategy.

This paper is organized as follows. In the next section we will describe shortly the equa-
tions of linear elasticity in two space dimensions and their discretization with the Finite-
Element method. Section 3 covers the other components of the adaptive solution algorithm,
especially the multigrid solver. Section 4 gives an overview of the parallelization approach
based on data partitioning. Then section 5 describes in detail the load balancing algorithm
that has been developed. Finally section 6 contains some speedup results for uniform and
adaptive calculations.

2. Mathematical Model and its Discretization

2.1. Variational Formulation

Subject of the computations presented in this paper is the classical planar, first order theory
of elasticity. The restriction to linear material laws is going to be lifted soon, as the routines
allowing for nonlinear material laws are currently under implementation.

The calculation of the displacement response of an elastic body subjected to prescribed
forces and displacements is equivalent to solving the following variational problem:�������
	��
������������������ � �"!#�%$ �&��� �
')(+*-, (2.1)

This expression based on the mechanical axiom of static equilibrium represents the min-
imal energy criterion for the elastic body which covers the domain . . The physical inter-
pretation is such that under the above condition of minimal elastic energy the body enters
the equilibrium state with the sum of the internal forces being equivalent to the sum of the
external forces.

The minimal energy criterion contains three different variables describing the state of
the elastic body: The two dimensional displacement vector � , the deformation tensor � and
the stress tensor � . The vectors � and

$
hold the external forces and the boundary stresses

respectively.
As displacement, deformation and stress components of the elastic body are not in-

dependent of each other, several approaches to solving the variational problem exist. We
choose the so-called ”displacement formulation” which uses the dependencies between the
description variables to eliminate � as well as � .

The linear material law � �/� �102 �3� 02547698 �;:-<>= (2.2)

is employed in the elimination of the stress tensor � where
2

is the Young’s modulus and0 the Poisson number. We choose
2

to

 �#?A@B?C?�? and 0 to ? , D which is a common choice

for steel material.
First order linearization of the kinematic coupling conditions between the displacement� and the deformation � yields �FEHG �I�
�JLK � EK � G �MK � GK � E�N , (2.3)

11/10/2002 23:06 Submission parmech

4 Peter Bastian, Knut Eckstein and Stefan Lang

Short-handing the above to � � � 8 ��: �PO � finally results in�Q� � � 	R�
 O �S�UT O �V�W��� � ��� � �UXUY $ �&��� �P')(+* (2.4)

with the material tensor T containing expressions of
2

and 0 . Z\[is usually being referred
to as the Neumann boundary.

The weak form corresponding to the variational problem (2.4) can be written as�9� 	 �
 O �]��T O_^ �)��� � ��� � ^ ��� � � X Y $`^ �C� (2.5)

where the desired solution � has to satisfy this expression for any valid choice of test
function

^
.

2.2. Discretization

In order to find an approximate solution �ba on a given mesh denoted by c we define the
Finite Element space d a . We choose standard isoparametric triangles and quadrilaterals
with piecewise linear/bilinear shape functions e E which result in 1 at the node

* E and in 0
at all other nodes. Then the discrete problem can be stated as follows: Find � a_f d ahg d a
such that � � 	i�
 O � a ��T O_^ � ��� � � � � ^ �C�j� �UX�Y $k^ ��� l ^ f d a_g d a , (2.6)

In the case of the quadrilateral elements we employ selective reduced integration (SRI)
on the shear components in order to reduce the well known problems this element exhibits
when subjected to bending or volumetric deformation modes.

By expressing the unknown (vector-valued) function �ba in the basis given by e E with
coefficients � E we obtain the linear, symmetric and positive definite system of equationsm � �on (2.7)

that will be solved by the multigrid method. It should be noted however, that the application
of the multigrid method is not restricted to symmetric matrices which is important for the
extension of this work to elastoplastic problems.

A detailed discussion and analysis of the variational problem of plane elasticity and it’s
discretization outlined here can be found in [5] and [6]

3. The adaptive solution algorithm

3.1. Grid refinement

The multigrid method works on a sequence of successively finer meshes. The initial mesh is
intentionally coarse but should be fine enough to resolve important details of the geometry.
The sequence of finer meshes is constructed with the refinement algorithm of BANK that
is also used in the codes PLTMG (see [3]) and KASKADE (see [4]). However, we allow
quadrilateral elements and more refinement rules (see Fig. 2).

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 5

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11)

(12)

(a) regular rules (b) i rregular rules (c) copy rules

Figure 2. Complete set of refinement rules

The refinement algorithm is explained with the help of Fig. 3. The coarsest grid levelprq
is assumed to be generated by some mesh generator and all elements of this level are

defined to be regular elements. Then a refinement rule can be applied to each element
resulting in the generation of new elements on the next finer level. Each refinement rule
is either of type regular, irregular or copy (see Fig. 2 for all possible rules), producing
regular, irregular or copy elements on the next finer level. An irregular or copy element
allows only the application of copy rules, whereas all types of rules can be applied to
regular elements. This strategy generates meshes satisfying a minimum angle criterion
since irregular refinement rules can only be applied once. Note that the refinement is local
in the sense that an element may not be refined at all. The copy elements are only needed for
an efficient implementation of the local multigrid method and do not destroy the optimal
complexity of the method.

The refinement algorithm is responsible for generating a conforming mesh on each level,
i.e. the intersection of two different elements is either empty, a node or an edge. In practice
it will also happen frequently that the error estimator decides to refine irregular elements
or a regular element with irregular neighbour. In that case the irregular refinement is re-
moved and replaced by a regular refinement rule. There exist other well known refinement
strategies e.g. “hanging nodes” or transition elements. The subsequently explained load
balancing strategies are applicable to any refinement method.

Let
p;s

denote the set of elements on level t and u s the set of nodes on level t generated
by the refinement algorithm described so far. Then the mesh c defined byc �wv 4 f Gxszy q p s�{{{{{ 4 is not further refined | (3.8)

is the mesh that defines the Finite-Element space for the discrete solution of our problem.
The nodes of this mesh are given by} � Gxszy q�~ * f u s9� * did not exist in u sR� [i� (3.9)

11/10/2002 23:06 Submission parmech

6 Peter Bastian, Knut Eckstein and Stefan Lang

T0 T1 T2

copy

regularirregular

not stored

Figure 3. Nested local grid refinement

3.2. Local multigrid method

In order to solve the discrete problem m � �on (3.10)

derived from a discretization on the mesh c , a sequence of auxiliary problemsm s � s �Qn s (3.11)

is used.
m s

corresponds to a discretization on the grid level
p s

. In particular when we
define � s � ~ * f u sA� * is corner of a regular element in

p s � @O s � ~ * f u sA� * is connected to a node
*b� f � s � @

(3.12)

we need the stiffness matrix
m s

and load vector
n s

only at the nodes corresponding to the
set
O s

. The additional layer of copy elements in the mesh structure allows us to compute
exactly this part of

m s
.

The main conclusion of the papers [7] and [8] with respect to locally refined meshes
was that it is sufficient to smooth only the unknowns corresponding to the nodes in set

� s
on level t in order to achieve a convergence rate that is independent of the number of

refinement steps and the space dimension for elliptic problems. The number of arithmetical
operations for one iteration of the multigrid method can be shown to be proportional to the
size of the set

}
, i.e. the dimension of the system

m � �Qn .
ALGORITHM 3..1 One iteration of the multiplicative local multigrid method is given by
algorithm mlmg. We only describe the V-cycle since the W-cycle is has no optimal com-
plexity for arbitrary local refinement. Vectors � and

n
contain the current solution and the

load vector. � and
n

live on the nodes
}

.

mlmg (� @ n) ~
(1) � G �Qn � m G � ;

^ G � ?"� on
O G

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 7

(2) for (t ��� � t�� ?A� t � t � �) ~
(3)

^ s �P��� Ys 8 ^ s @ � s : ; on

� s
(4) 6 s � � s � m s ^ s ; on

O s
(5) � sR� [��� 8 = ssR� [:�� 6 s on

O sR� [-� O sn � m sR� [� else
(6)

^ sR� [� ? ; on u s �
(7)

^�q&� m � [q � q ; on u q
(8) for (t � �C� th� � � t � t � �) ~
(9) � � � � ^�sR� [; on

� sR� [\� � s
(10)

^Cs��o^Cs ��= ssi� [^CsR� [; on u s
(11)

^Cs��P� ���s 8 ^Cs @ � s : ; on

� s�
(12) � � �j� ^ G ; on

� G�
The aim of algorithm mlmg is the computation of a correction

^
to the given iterate � by

applying one V-cycle to the problem
m ^j�on � m � . The algorithm starts in line 1 with the

computation of the defect on the finest level
�

(which does not necessarily cover the whole
domain . !). The loop in line 2 goes from top to bottom and applies 0 [pre-smoothing
steps where only the values of

^�s
at the nodes corresponding to

� s
are changed (line 3).

This results in the change of the defect only at nodes in
O�s

(line 4). In order to obtain the
defect on the next coarser level we restrict only to the nodes in

Ohsi� [that are also in
O_s

on the fine mesh. For all other nodes the defect can be computed on the coarser grid level
since the solution � has not been changed yet at those positions (line 5). Like in standard
multigrid we start with a zero correction on the next coarser level in line 6. Line 7 contains
the exact solve on the coarsest level. The loop in line 8 now realizes the upward part of
the V-cycle. It starts with an update of the current iterate in line 9 with the correction at
those nodes that are not changed any further on the higher levels of the grid. Note that each
component of the global vector � is altered only once. Line 10 contains the interpolation
step and line 11 the post-smoothing step. Finally line 12 updates the current iterate at the
remaining nodes not yet corrected at the coarser levels.

As smoothers we use point-block variants of Jacobi, Gauß-Seidel or ILU � (see [9])
iterations, i.e whenever a division by the diagonal element occurs, we multiply with the
inverse of the

 g
 block matrix corresponding to the two unknowns at a node.

3.3. Refinement indicator

The adaptive grid refinement algorithm requires an indicator which decides on whether a
finite element is to be further refined or not. We choose a very simplistic based on the idea
of nodal stress comparison.

With the linear isoparametric triangles and quadrilaterals employed in our calculations
the stress components typically exhibit discontinuities across element borders. In our case
an element will be refined when the relative change in the value of the Von-Mises-stress����� ��� ���� ��� � �A�������� � D� � (3.13)

in any node towards adjacent elements surpasses a given value. The Von-Mises-stress was
chosen as it takes into account all three components of � and as it is invariant of the

11/10/2002 23:06 Submission parmech

8 Peter Bastian, Knut Eckstein and Stefan Lang

coordinate system in use. In order to obtain a relative value the ¡ �;�C� are divided by
the maximum main-stress – which is the largest eigenvalue of the stress tensor – found on
the entire problem domain.

The above indicator was chosen for reasons of simplicity and ease of implementation.
Our primary aim in this context is to demonstrate the usability and scalability of our data
structures, numerical algorithms and general concepts in the context of a parallel adaptive
application from structural mechanics. The indicator is based on practitioners experience
alone and does not claim a solid theoretical basis, yet the numerical results were satisfac-
tory. This is due to the fact that the refinement algorithm presented above strictly avoids
badly shaped elements with large aspect ratios, large differences in size between neigh-
bouring elements and other grid deficiencies that would undoubtly inhibit this indicator.

4. Parallelization Approach

4.1. Grid Partitioning

The parallelization of all components of the adaptive multigrid method is based on a dis-
tribution of the data onto the set of processors. In our method the elements are assigned
uniquely to the processors. This results in horizontal and vertical overlap as shown in Fig.
4.

P1

P2

P3

k

k-1

horizontal vertical

t

Figure 4. Horizontal and vertical overlap in data partitioning

The left part of the Fig. 4 shows the situation on one grid level (intra-grid). For instance
the node in the center is stored in three copies on the three processors ¢ [, ¢ � and ¢�£ . The
right part of Fig. 4 shows the vertical or inter-grid situation. The white triangle 4 on levelt � � posesses four son triangles on level t each assigned to a different processor. Here
the rule applies that for every element assigned to a processor also a copy of the father
element must be stored on that processor including all its nodes. Consequently 4 additional
copies of triangle 4 will exist on level t � � . Obviously the load balancer should avoid this
situation whenever possible.

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 9

4.2. Assembling the stiffness matrix

In the Finite-Element method the sum of all element stiffness matrices yields the global
stiffness matrix

m s
on grid level t . In the parallel version the element stiffness matrices

are only summed per processor to give a processor stiffness matrix
m&¤ s . The same is done

with the right hand side
n s

. Consequently we have the relationsm s��¦¥¤i§C¨ m ¤ s @ n©sª�¦¥¤i§C¨ n ¤ s , (4.14)

Note that
mL¤ s and

n ¤ s can be computed locally without any communication and that load
balancing is optimal if each processor has the same number of elements. We say that vectorn s

is stored inconsistently since at the nodes that are stored on more than one processor each
processor knows only part of the global value. On the other hand if for some vector � s we
have 8 � ¤ s :�E � 8 � s :�E , i.e. each processor knows the global value also in the overlap nodes,
we say that � s is stored consistently. In order to transform an inconsistent vector into a
consistent vector a communication operation over the interface nodes is required.

4.3. Restriction and Prolongation

The concept of inconsistent vectors is very useful for the parallelization of the grid transfer
operators. The restriction operates on the defect � s �«n s � m s � s . Now let us assume
that

m s
and

n s
are stored inconsistently and � s is stored consistently. Together with the

linearity of all the operators involved we have

6 sR� [� s � 6 sR� [h¬­ ¥¤�§C¨ n ¤ s � ¥¤�§C¨ m®¤ s � s�¯° � ¥¤�§C¨ 6 si� [8 n ¤ s � m®¤ s � s :± ²©³ ´µB¶ · � ¥¤�§C¨ � ¤ sR� [@ (4.15)

which means that an inconsistent defect � ¤ s on the fine grid is restricted to an inconsistent
defect � ¤ sR� [on the coarse grid. This does not need any communication as long as the sons
of an element ¸ are mapped to the same processor as ¸ . Under the same assumption a
consistently stored correction

^�si� [can be interpolated without any communication.

4.4. Smoother

For the smoother we either have the possibility of using Point-Jacobi or Block-Jacobi with
inexact inner solvers. In the simple Point-Jacobi case we need

O s �º¹9»½¼C¾ 8 m s : on each
processor which requires one communication at the beginning of the solution cycle sincem s

is stored inconsistently. But then we compute:��¿�À [s � � ¿ s ��Á O � [s ¥¤i§C¨ � ¤ s , (4.16)

The sum corresponds to the fact that the inconsistent defect must be transformed into a
consistent defect since only a consistent correction can be added to the consistently stored
solution.

In the case of a Block-Jacobi smoother we assign also the nodes of the grid uniquely
to the processors. For a node that is stored on more than one processor we define that the

11/10/2002 23:06 Submission parmech

10 Peter Bastian, Knut Eckstein and Stefan Lang

processor with the smallest number is responsible for this node and all other processors
compute a zero correction for it. Now the matrix

O s
is a block diagonal matrix

O s �¹9»Â¼�¾ 8ÄÃ [F[@ ,#,>, @ Ã ¨;¨ : where Ã E½E corresponds to one step of Gauß-Seidel or ILU � for the
unknowns assigned to processor

(
. Now the smoothing iteration is given by� ¿�À [s � � ¿ s ��Á ¥¤�§C¨ ¬­ O � [s ¥¤�§C¨ � ¤ s ¯° @ (4.17)

i.e. we need two communications over the interface nodes per smoothing step.

4.5. Refinement Algorithm

The most delicate part in the parallelization of the refinement algorithm is the “green” clo-
sure, where a conforming mesh has to be constructed from the refinement tags produced
by the error indicator. Usually this step involves an iteration that can be implemented with
optimal complexity on a serial machine. On the parallel machine this approach is not very
useful, therefore we implemented a complete set of refinement rules (see Fig. 2) in the
sense that for each possible pattern of refined edges (8 for triangles, 16 for quadrilaterals)
there is a refinement rule that fits to the given edge pattern. With this approach an iteration
is completely avoided and the conforming mesh can be computed with only one communi-
cation over the interface elements. All these additional elements are considered as irregular
elements and cannot be refined further.

5. Load Balancing

5.1. Goals

The purpose of the load balancing algorithm is to assign the data to the processors in such
a way that execution time is minimal. In this generality it is very hard to solve this prob-
lem (even approximately). Therefore we make the assumption that the computation time
between any two synchronization points is reasonably large compared to communication
time (coarse granularity). This means that in the first place one should assign the data in
such a way that the computation time is equally balanced between the synchronization
points and that minimizing the communication time is only the second goal.

The overall solution algorithm described so far consists of the different parts assembly,
multigrid solver, error estimator and grid refinement. Fortunately it turns out that assigning
an equal number of elements to each processor will balance the work load very well for
all parts of the algorithm, especially in the element assembly phase which can be the most
time consuming part in case of nonlinear problems.

The mapping of all other data objects, e.g. the nodes, is completely determined by the
assignment of the elements. The most time consuming operation in the multigrid solver is
a matrix–vector product. If the mesh consists of either triangles or quadrilaterals it can be
shown that the time needed for a matrix vector product is proportional to the number of
elements plus a term proportional to the number of boundary nodes. As long as the number
of boundary nodes is negligible compared to the number of interior nodes the assignment
of an equal number of elements to each processor will therefore also balance the work load
in the multigrid solver.

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 11

The second goal of the load balancer is now to minimize communication requirements.
The assembly part requires no communication at all therefore we concentrate on the com-
munication in the multigrid solver. Since the processors will be synchronized at least once
on each grid level in the smoother it is tempting to require that the elements of each
grid level should be assigned to all processors in such a way that communication in the
smoother is (approximately) minimized. The assignment of two consecutive grid levels
should, however, be related in order to minimize also the communication in the grid trans-
fers. In the case of local refinement even simple one-dimensional examples show that these
two requirements are contradictory. Therefore the assignment must be done such that a
compromise between low communication in the smoother and low communication in the
grid transfers is achieved.

In the following we propose a clustering strategy based on the multigrid hierarchy that
will achieve this compromise. The outline of the load balancing strategy is as follows:

(i) Combine elements into clusters using the multigrid hierarchy. This step can be done
completely in parallel.

(ii) Transfer all cluster information to the master processor.
(iii) Assign clusters to processors such that each processor has (approximately) the same

number of elements on each grid level and communication on each level is low. This is
done on a single processor.

(iv) Transfer mapping information back to cluster owners.
(v) Redistribute the data structure in parallel.

5.2. Clustering

For the clustering algorithm we require a tree-based (local) refinement strategy as was
described in section 3.1. above. By

p�s � ~ 4 s [@ ,>,#, @ 4 s¿ · � we denote all elements of level t
and by

p��3Å G szy q p;s we denote the set of all elements. Since the refinement is based on
subdividing individual elements we have the father relationship:Æ sÈÇ p s g p s À [@ 8É4 @ 4 � : f Æ sªÊ 4 � is generated by refinement of 4 , (5.18)

If
�

is the highest level then we set
ÆË�ÌÅ\sRÍ G ÆÎs . Since the father of an element is

unique we can express the relation also in a functional form, i.e. � 8Ï4 � : � 4 Ê 8É4 @ 4 � : f Æ .
The sons of an element are defined by

� 8Ï4 : � ~ 4 � f p � 8Ï4 @ 4 � : f Æ � , (5.19)

A simple recursive formula gives us the number of elements in the subtree that has a given
element as its root: Ð 8É4 : �3v � � 8Ï4 : �oÑ� � ÒÓÉÔ §�Õ"Ö ÓÉ×

Ð 8É4 � : else (5.20)

In order to quantify the communication cost (approximately) we also need a neighbour
relation on the elements:

11/10/2002 23:06 Submission parmech

12 Peter Bastian, Knut Eckstein and Stefan Lang

NB
sÈÇ p s g p s @ 8É4 @ 4 � : f NB

s%Ê 4 � is neighbouring element of 4 , (5.21)

The union over all levels gives NB
�QÅ sRØ G NB

s
.

Now we are in a position to define the clusters. In general a clustering is a partitioning
of the set

p
, i.e. T � ~iÙ [@ ,>,>, @ Ù©Ú � @ Ù E Ç p (5.22)

such that xÛ §CÜ Ù �op @ Ù E � Ù G �QÑ Ê (ÞÝ����,
The partitioning defines a mapping Ù � p�ß T from elements to clusters that we will

also denote by Ù : Ù 8É4 : � Ù Ê 4 f Ù . Some additional quantities can be derived from the
partitioning. First we need the lowest and highest level of any element in a cluster:

bot 8 Ù : �oàj»âás ~RÙ � p s Ý��Ñ � @ top 8 Ù : �
à_¼�ãs ~RÙ � p s Ý�oÑ � , (5.23)

We also need the number of elements in a cluster on each level:ä s 8 Ù : � � ~ 4 f p;s � Ù 8É4 : � Ù � � @ ä 8 Ù : � � ~ 4 f p � Ù 8Ï4 : � Ù � � @ (5.24)

where
� m �

denotes the number of elements in set
m

. In the following we require that the
clustering has the following important properties:

(i) ä bot Ö Û × 8 Ù : � � for all clusters Ù f T . The unique 4 f p bot Ö Û × � Ù is called the root
element of the cluster and is denoted by root 8 Ù : .

(ii) For all clusters Ù f T we require: 8�8 bot 8 Ù :�å t�� top 8 Ù :B:;æ 8É4 f Ù � pbs :B:kçè� 8Ï4 : f Ù .
This definition ensures that the elements in a cluster form a subtree of the element tree
structure. Therefore the relation

Æ
implies a relation

Æ Ü
on the cluster set C by8F8É4 @ 4 � : f Æ æ Ù 8É4 : Ý� Ù 8É4 � :�:\ç 8 Ù 8Ï4 : @ Ù 8É4 � :�: f Æ Ü , (5.25)

The neighbour relation NB also implies a neighbour relation NB
Ü

on the clusters via8F8É4 @ 4 � : f NB æ Ù 8É4 : Ý� Ù 8É4 � :�:\ç 8 Ù 8Ï4 : @ Ù 8É4 � :�: f NB
Ü ,

(5.26)

The following algorithm constructs a clustering with the desired properties.

ALGORITHM 5..1 Clustering of an element set. The following algorithm cluster re-
ceives a multigrid hierarchy

p
(with highest level

� 8 p :) as input and delivers a partitioning
into clusters T as output. The parameters

n @ � @êé control the algorithm.
n

is the
nzë9ì ¸iíÏ¸ ^ ¸Rí

since in practice we start partitioning on a level higher than zero if the coarse grids are very
coarse or in the dynamic situation where we do not like to rebalance the coarsest levels.
Parameter � is the desired depth of the clusters and é is the minimal size of the clusters.

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 13

cluster (T @ p @ n @ � @êé) ~T �QÑ ;
for (t �on @ ,>,>, @ � 8 p :)

for (4 f p s) ~
if 8�8 Ð 8Ï4 :Lî é :�æ 8�8Ät � n : àjï9¹ 8 �ª� � : ��� ? :B: ~

create new Ù ; T � T Å ~iÙ � ;
bot 8 Ù : � top 8 Ù : � t ; root 8 Ù : � 4 ;l (� ä E 8 Ù : � ? ; ä 8 Ù : � ? ;� else Ù � Ù 8 � 8É4 :B: ;Ù 8É4 : � Ù ; top 8 Ù : �
à_¼�ã 8 top 8 Ù : @ t : ;ä s 8 Ù : � ä s 8 Ù :b� � ; ä 8 Ù : � ä 8 Ù :�� � ;��

The algorithm proceeds as follows: It runs over all levels from
n

to
�

and over all ele-
ments within each level. If the subtree defined by the current element is large enough and
the level relative to b is a multiple of �ð� � the current element will be the root of a new
cluster else it will be in the cluster of its father element. In the dynamic situation, when the
multigrid structure is already distributed over the processors, algorithm cluster can be
run in parallel. If the parameters

n @ � @êé are not changed within one run then only the com-
putation of

Ð 8Ï4 : requires communication (comparable to a restriction from the finest to the
coarsest mesh). In our implementation the parallel grid refinement algorithm imposes an
additional constraint that excludes some elements from becoming the root of a new cluster,
since this constrained will be removed in a new version of our code we refer to [10] for
details.

5.3. Balancing the Clusters

After the clustering step, the clusters have to be assigned to processors. This assignment
problem is solved on a single processor in our current implementation. The assignment
heuristic is given by the following two algorithms mg assign and assign.

ALGORITHM 5..2 Algorithm mg assign maps a set of clusters T to a set of processorsñ
by repeatedly solving smaller assignment problems with particular subsets of T . As

parameters it receives
n

the baselevel used in the clustering algorithm,
�

the highest level
of the multigrid hierarchy and Ã the minimum number of elements desired per processor.
The number Ã usually depends on the hardware. Algorithm mg assign uses another
algorithmassign that solves the smaller assignment problems.Assign is a modification
of standard graph partitioning algorithms and several variants will be discussed below.

mg assign (T @ ñ @ � @ n @ Ã) ~
for (¢ f ñ @ t �Qn @ ,>,#, @ �) íÏò ë ��ó t @ ¢"ô � ? ;

(1) for (t ��� @ � � ��@ ,>,#, @ n) ~
(2) T s � ~iÙ f T � top 8 Ù : � t � ;

if (T s ���oÑ) continue;
(3) í s � Ò¤i§C¨ íõò ë ��ó t @ ¢Aô � ÒÛ §CÜ ä s 8 Ù : ;
(4) Determine

ñ�� Ç ñ
with

� ñð� � � à_¼�ã 8 ��@ í s�ö Ã : ;
(5) assign(t @ T s @ ñ�� @ íÏò ë �);

11/10/2002 23:06 Submission parmech

14 Peter Bastian, Knut Eckstein and Stefan Lang

(6) for (Ù f T s)
(7) for (i=bot 8 Ù : @ ,>,>, @ top 8 Ù :) íÏò ë ��ó (@ ' 8 Ù : ô � íÏò ë ��ó (@ ' 8 Ù : ô � ä E 8 Ù : ;��

Algorithm mg assign proceeds as follows. It uses a two-dimensional array íõò ë ��ó t @ ¢Aô
to store the number of level- t -elements that have been assigned to processor ¢ . Then it
proceeds from top to bottom (loop in line 1) and selects the clusters with the currently
highest level that has not yet been assigned (line 2). Line 3 computes the number of ele-
ments on this level and line 4 determines the number of processors that will be used for
that level. Lines 3 and 4 implement a coarse grid agglomeration strategy that uses fewer
processor when the grids get coarser (controlled by the parameter Ã). In line 5 algorithm
assign is called to assign the clusters T s to the (sub-) set of processors

ñ÷�
. Since some

level- t -elements have already been assigned in previous iterations algorithm assign gets
also the array íÏò ë � to take this into account. Finally lines 6 and 7 update the íõò ë � array.

We now give a generic version of algorithm assign that is used in algorithm
mg assign above. Assign is a modification of the recursive bisection idea that is able
to take into account that some elements already have been assigned to some processors.

ALGORITHM 5..3 Algorithm assign assigns a given set of clusters T to a given set
of processors

ñ
such that the work on level t of the multigrid hierarchy is balanced. In

order to take into account that the processors are already loaded with some elements on
level t it receives the array íÏò ë � . The output of the algorithm is given by the mapping')ë ¢ ��T ß«ñ

.

assign (t @ T @ ñ @ íõò ë �) ~
(1) if (

ñ5��� ~ ¢ �) ~ l Ù f TM� set
'øë ¢Î8 Ù : � ¢ ; return; �

(2) Divide
ñ

into
ñÎq @ ñ [;

(3) for (
(Î� ?A@>�) í E � Ò¤�§C¨Cù íõò ë ��ó t @ ¢Aô ;

(4) ú � í q � í [�ûÒÛ §CÜ ä s 8 Ù : ;
(5) Determine T q @ T [Ç T @ T q Å T [� T @ T q � T [��Ñ such that

(6)
{{{{{ýü ¨�þ üü ¨Cþ ü À ü ¨

Y
ü ú �3ÿ í q � ÒÛ §CÜ�þ ä s 8 Ù :�� {{{{{ ßÌàj»âá

;

(7) assign(t @ T q @ ñ q @ íÏò ë �);
(8) assign(t @ T [@ ñ [@ íÏò ë �);�

Algorithm assign proceeds as follows. If
ñ

contains only one processor the recursion
ends and all clusters in T are assigned to this processor (line 1). Else the set of processors is
divided into two halves

ñ q
and

ñ [(line 2). Line 3 then computes the load that has already
been assigned to the two processor sets (on level t) and line 4 computes the total load
that is available on level t . Now the cluster set T must be divided into two halves T q andT [such that the elements on level t are equal in the corresponding processor sets

ñ q
andñ [(lines 5 and 6). Note that

ñ q
and

ñ [are not required to contain the same number of
elements. Finally lines 7 and 8 contain the recursive calls that subdivide the new cluster
sets again.

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 15

Several strategies are available to bisect the cluster sets in lines 6 and 7 of the algorithm
above.� Orthogonal coordinate bisection. In this variant each cluster is assigned a coordinate8 � @�� : by taking the center of mass of the root element of the cluster. Then the clusters

are ordered by their � (or �) coordinate. A given position � Û�� Ó (respectively � Û�� Ó now
defines the bisection T q � ~iÙ f T � � 8 Ù : � � Û�� Ó � and T [� ~iÙ f T � � 8 Ù : � � Û�� Ó � (or
alternatively in � direction). The cut position � Û�� Ó is determined such that the expression
in line 6 of algorithm assign is minimized. The bisection directions are chosen in an
alternating fashion.� Inertial bisection. This is a method similar to coordinate bisection but using a rotated
coordinate system derived from the inertial moments. For details see [11] and [12].� Spectral bisection. All subsequent methods do not require any coordinate informa-
tion but use only graph connectivity information. As a graph we consider � s �8 T s @ 2 s : @ 2 s � 8 T s g T s : � NB

Ü
where T s is the cluster subset constructed in algo-

rithm mg assign and NB
Ü

is the cluster neighbourship relation defined in Eq. (5.26).
Note that the neighbourship relation is restricted to the subsets T s . The connectivity
between the sets T�E and T s , (�Ý� t is not considered.
The spectral bisection method then derives the so-called Laplace-matrix � s from the
graph � s as follows: 8	� s : E	
 G ���
 � degree 8 Ù E : (-���� � 8 Ù E @ Ù G : f 2 s? else

,
(5.27)

Matrix � s is symmetric and positive semi-definite. Now each cluster Ù E f T s , � �(� 'øs is assigned a number ��E and the ��E define the vector � � 8 � [@ ,>,>, @ � Ú · :�� .
According to [13] the graph bisection problem can be formulated as:

Minimize [� ��� � s �
under the constraint

Ú ·ÒE y [��E � ?"@ ��E f ~ � �C@#� � , (5.28)

This optimization problem is now solved with � f R Ú · instead of the constrained. If
the graph � s is connected the continuous optimization problem has the solution ��� ¤ Ó �� ' s ¸ � where ¸ � is the eigenvector corresponding to the second smallest eigenvalue of� s . The components of ��� ¤ Ó are now used to define the bisection by setting T q&� ~RÙ E fT � 8 ��� ¤ Ó : E � � Û�� Ó � and T [� ~iÙ ELf T � 8 ��� ¤ Ó : E � � Û�� Ó � for a given � Û�� Ó . The position� Û�� Ó is chosen in order to minimize the expression in line 6 of algorithm assign.� Kernighan-Lin bisection. In this method one starts with a random bisection into T q
and T [that minimizes the expression in line 6 of algorithm assign. Then subsets
of T q and T [are swapped repeatedly until a local minimum of the number of edges
connecting T q and T [is found. Note that each swapping step does not change the
load balance. By using the output of any of the other partitioning schemes as a starting
partitioning instead of the random one an improved method can often been obtained.
For details we refer to [14], [12], [10].� Multi-level bisection. This method tries to apply ideas from multigrid to the solution
of the graph bisection problem. This method is especially useful if the graph to be
partitioned is very large. In the so-called coarsening phase neighbouring nodes of the

11/10/2002 23:06 Submission parmech

16 Peter Bastian, Knut Eckstein and Stefan Lang

given graph are assembled into clusters (since our nodes are already clusters we have
clusters of clusters now). These clusters together with edges defined in the canonical
way form a new coarser graph which is coarsened repeatedly until a given minimal
size is reached. For the coarsest graph a high quality bisection is determined using e.g.
spectral bisection. Then the result interpolated to the next finer graph in the canonical
way. On the finer levels the Kernighan-Lin heuristic is used to improve the interpolated
coarse grid solution. This process is repeated until the finest level is reached. For details
we refer to [12], [15].

All methods except coordinate bisection have been implemented in the load balancing
software CHACO by HENDRICKSON and LELAND, see [12]. CHACO has been adapted to
our code so that it can be used as algorithm assign above, for details see [16].

The load balancing scheme discussed in this section has been designed for the stan-
dard multiplicative multigrid algorithm. For the additive variants, like BPX (see [7]), load
balancing can be done differently since the synchronization behavior is different. For a
solution of the load balancing problem for additive multigrid (including local refinement)
we refer to [10]. Finally we remark that the load balancing scheme can be extended imme-
diately to the three-dimensional situation.

5.4. A simple parallel model

In this section we derive a simple model for parallel efficiency that shows the influence
of the different load balancing schemes. Suppose we have a load balancing scheme

m
and

that parallel efficiency is determined by the following formula:2�� 8 ñ : � p [� p Õ � � Y � ���¨ ��� ���;ñ @ (5.29)

where
p [is the time needed by one processor,

p Õ is the serial part of the algorithm, the
rest

p [� p Õ is perfectly parallelizable and � � are the communication costs. In more detail� � is only that part of communication cost that can be influenced by the load balancing
schemes, e.g. message setup-time would not be part of � � since the number of messages
is almost not influenced by the choice of the load balancing scheme. Then we want to
see how the efficiency is influenced when the interface length is reduced by a better load
balancing scheme � . The efficiency for load balancing scheme � is modeled by2�� 8 ñ : � p [� p Õ � � Y � � �¨ �� !� � �bñ @ (5.30)

where is a factor that describes the improvement in the communication cost. Typically
the values of are in the range of [£ to £� .

After some algebraic manipulations we obtain the following formula that expresses the
(better) efficiency

2"�
in terms of the (worse) efficiency

2#�
:2 � 8 ñ : � 2�� 8 ñ :� � 8 � �$ 9: 8 � � 2�� 8 ñ :�:&% [[À('()+* Y)-, @ (5.31)

where . is the cost of the serial part relative to the communication cost:

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 17

. � p Õ� � , (5.32)

Formula (5.31) says how much the efficiency of load balancing scheme
m

is improved
by shortening the interface length of the partitions. The improvement however depends
also on

2"�
and the factor . . E.g. if

2"�
is already close to one, then the variation of

has not much influence. The same is true when the serial part is not negligible, i.e. when.�� � . Figure 5 shows an example with set to ? ,0/ and . set to ? , ? , / , � , ? , and

 , ? .

It depicts the dependency of the efficiency of the better load-balancing scheme B on the
original efficiency of the worse scheme A. In our case where the efficiency of scheme A is
already very good (about 0.9) the efficiency of B differs only slightly.

0

0.2

0.4

0.6

0.8

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ffi

ci
en

cy
 B

Efficiency A

relative serial part = 0.0
relative serial part = 0.5
relative serial part = 1.0
relative serial part = 2.0

Figure 5. Dependency between efficiency A and B

6. Numerical Results

6.1. Uniformly refined test case

The uniformly refined test case is being evaluated with respect to the influence of the load-
balancing scheme on the efficiency of our solution procedure. Therefore the equations of
linear elasticity with parameters given in section 2 are solved in a domain given by Fig.
6a which is nonsymmetric and not single-connected. By chosing such a domain which
resembles a seal ring and which has mostly curved boundaries we tried to eliminate initial
advantages of specific load balancing schemes. Dirichlet boundary conditions have been
used on the inner side of the ring and von Neumann conditions on the outer side. The
initial mesh consisting of 24 quadrilateral elements is shown in Fig. 6b. Part c depicts the
first refinement stage with 96 elements.

6.1.1. Fixed-size problem In this subsection we examine a problem with fixed size,
i.e. the mesh from Fig. 6b has been refined uniformly 5 times, resulting in a hierarchy with

11/10/2002 23:06 Submission parmech

18 Peter Bastian, Knut Eckstein and Stefan Lang

Γ0

Γ1

Figure 6. a) problem domain b) grid 0 c) grid 1

6 levels and 24576 elements on the finest level. This problem is then solved on 1,4,16 and
64 processors of the CRAY T3D. The parameters of the multigrid method were: V-cycle, 1
pre and post-smoothing steps with Block-Jacobi-Smoother and ILU � y q21 3 as inexact inner
solver. The parameters for the clustering algorithm cluster are set to

nÞ�

, � � � andé � � , i.e. levels 0 and 1 are treated on processor 0.

Table 1 shows the results for various mapping schemes within algorithm assign. The
various methods were: rcb (recursive coordinate bisection), rib (recursive inertial bisec-
tion), ribkl (recursive inertial bisection with Kernighan-Lin optimization), rsbkl (recur-
sive spectral bisection with Kernighan-Lin optimization), mk50 (multi-level bisection with
Kernighan-Lin optimization and a coarse graph size of 50 nodes), mk200 (like mk50, but
coarse graph size was 200 nodes). All methods except rcb were taken from the CHACO

library. The column labeled
2"4 Ó contains the efficiency for one multigrid iteration defined

by
2�4 � 8 ñ : �Mp�4 � 8 � : ö 8 p�4 � 8 ñ : ñ : , where

p�4 � 8 ñ : is the time per iteration on
ñ

proces-
sors. The column labeled

2 Õ �65 gives the efficiency in the multigrid solver for obtaining a
reduction of �#? � 3 in the euclidean norm of the residual, i.e. this number includes also the
convergence rate of the method (numerical efficiency). The column labeled

2 �87 � shows
an upper bound for

2"4 Ó computed as: Total number of nodes on all levels in serial calcu-
lation divided by maximum number of nodes on all levels in one processor in the parallel
calculation. The number

2 �97 � therefore accounts for load imbalance and overlap but not
for communication cost and idle times. The column labeled Min/Max IF shows the min-
imum and maximum number of overlap nodes per partition on the finest level. The col-
umn labeled Min/Max Prod is similar to Min/Max IF but each individual overlap node is
weighted with the distance to the destination processor.� Table 1 shows that the efficiency per iteration,

2:4 Ó , does not vary much with the dif-
ferent load balancing schemes. We explain this with the help of formula (5.31). In the
case of very many unknowns per processor (

ñ �<; @#�2=), the efficiency
2:> Û�? obtained

with simple recursive coordinate bisection is already very good and cannot be improved
much by reducing interface length. E.g. if

2#�
in formula (5.31) is already ? , @ and the

interface length is halved (� ? , /) the efficiency
2 �

will be ? , @A;CB according to this
simple model. In the case of very few unknowns per processor (

ñ � = ;) the serial part
of the algorithm due to the coarse grids is not negligible compared to communication

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 19

cost, i.e. . � � weakens the influence of in formula (5.31).� A detailed look at table 1 reveals practically no correlation of interface length and mea-
sured parallel efficiency

2#4 Ó . E.g. for
ñû�D;

ribkl has much smaller interface length
than rib alone and also

2 �87 � is better for ribkl, but measured efficiency
2#4 Ó is better

for the rib method. An additional view on mapping data reveals that all schemes show-
ing an efficiency of approx. 92% in the case of

ñM�E;
kept the maximum workload on

each level on the same processor. Thus idle times were hidden by computation. This is
not the case when the maximum workload is mapped to different processors on differ-
ent levels. In the latter cases only 87% efficiency are achieved. Furthermore cache usage
may be influenced by the shape of the partitions as shown in [10].� More important than the efficiency of a single iteration step is the performance of the
complete solution process in order to obtain a fixed accuracy. Figure 7 shows the result
of three different load balancing schemes: rcb (a) takes 11 iterations to complete, rib (b)
shows the best parallel efficiency but needs the largest number of iterations, therefore it
achieves the worst numerical efficiency

2 Õ �F5 . The best numerical efficiency is measured
with rsbkl (c) which needs the least number of iterations. In general the more expensive
load balancing algorithms yield a lower iteration count. The variation of the number of
iterations is due to the block Jacobi smoothing where the number, length and position
of the partition interfaces possesses significant influence.

Table 1. Results for uniformly refined, fixed size test case.G
LB # It. H&I6J HLK�M6NOHQP�RTS Min/Max IF Min/Max Prod

1 – 7 – – – – –
4 rcb 11 91.9 58.5 96.6 76 / 266 76 / 266
4 rib 9 91.9 71.5 97.7 84 / 255 89 / 260
4 ribkl 8 86.7 75.9 98.2 66 / 140 66 / 140
4 rsbkl 8 88.3 77.3 98.4 66 / 158 66 / 158
4 mk50 9 92.3 71.8 96.5 76 / 266 76 / 266
4 mk200 8 87.0 76.1 97.0 66 / 134 66 / 134
16 rcb 11 81.6 51.9 88.6 72 / 221 72 / 299
16 rib 13 82.7 44.6 89.2 70 / 212 70 / 323
16 ribkl 9 76.4 59.4 89.9 66 / 164 99 / 362
16 rsbkl 9 78.1 60.7 89.5 66 / 160 66 / 294
16 mk50 10 75.1 52.6 88.8 72 / 221 72 / 299
16 mk200 10 78.8 55.1 89.4 66 / 161 66 / 304
64 rcb 13 57.9 31.2 67.6 62 / 179 63 / 245
64 rib 13 57.6 31.0 69.4 62 / 119 69 / 315
64 ribkl 11 55.9 35.6 68.9 59 / 94 65 / 282
64 rsbkl 11 56.0 35.6 69.1 60 / 116 65 / 390
64 mk50 12 54.0 31.5 67.8 62 / 179 63 / 245
64 mk200 12 54.4 31.7 69.4 60 / 96 63 / 384

6.1.2. Scaled-size problem In this section the same problem as in the previous section
is solved but the problem size per processor remains constant. This means that with a
fourfold increase in the number of processors the multigrid hierarchy is extended by one
level. Each processor is assigned 24576 elements on the finest level leading to a total of
6291456 elements and 12601344 degrees of freedom on the finest level in the case of 256

11/10/2002 23:06 Submission parmech

20 Peter Bastian, Knut Eckstein and Stefan Lang

Figure 7. a) rcb b) rib c) rsbkl

processors. The clustering parameters are set to
n �wD

, � �DU
and é � � , i.e. levels 0,

1 and 2 are always treated on one processor whereas the remaining levels are divided into
1536 clusters distributed among all processors. Experiments with a progressively smaller
number of processors for the coarse grids showed no improvement in the parallel efficiency.

Table 2. Results for uniformly refined, scaled size test caseG
LB # It. H IFJ H KVM6N H P"RWS Min/Max IF Min/Max Prod

1 – 7 – – – – –
4 rcb 9 89.6 69.7 97.7 146 / 538 146 / 538
4 rib 9 89.9 69.9 98.2 146 / 498 146 / 498
4 ribkl 8 92.2 80.6 98.6 130 / 266 130 / 266
4 rsbkl 8 92.3 80.9 97.7 130 / 290 195 / 355
16 rcb 11 87.7 55.9 96.9 290 / 869 290 / 1177
16 rib 11 87.2 55.6 97.2 290 / 820 290 / 1239
16 ribkl 9 88.6 69.0 97.2 258 / 692 378 / 1418
16 rsbkl 10 88.1 61.7 97.2 258 / 629 258 / 1161
64 rcb 12 85.4 49.8 96.0 452 / 1286 483 / 2025
64 rib 11 86.0 54.8 96.5 484 / 903 485 / 2349
64 ribkl 10 86.0 60.2 96.5 451 / 774 455 / 2131
64 rsbkl 10 86.0 60.2 96.7 451 / 969 453 / 3555
256 rcb 12 84.5 49.3 96.1 451 / 1158 451 / 2326
256 rib 12 84.4 49.3 96.5 451 / 1033 451 / 6446
256 ribkl 13 84.8 45.7 96.4 451 / 903 453 / 7058

256 rsbkl 12 84.9 49.5 96.5 451 / 903 455 / 2650

Table 2 shows again
2 4 Ó and

2 Õ �F5 as the most important results. Scaled efficiency per
multigrid iteration reaches 85% on 256 processors due to the fast communication of the
Cray T3D and low surface to volume ratio. For the smaller processor numbers a good
correlation of interface length and efficiency per iteration is visible. For increasing number
of processors the variations in interface length become smaller since the number of clusters
per processor decreases. In the 256 processor case only 6 clusters are assigned to one
processor. Using a smaller cluster depth would lead to an increasing number of clusters

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 21

yielding better partitioning on the one hand but additional inter-grid communication on
the other hand. In practice the best efficiency has been obtained with the above-mentioned
parameters.

6.2. Adaptively refined test case

In order to investigate the parallel performance in the case of adaptive local grid refinement
the problem in Fig. 8 has been solved. The domain with 16 reentrant corners was chosen not
to test the efficiency of the refinement indicator but the efficiency of the parallel multigrid
solver in a hierarchically refined set of grids. Dirichlet boundary conditions have been
applied at Z q and Neumann boundary conditions at Z-[. The refinement is concentrated at
the reentrant corners. A locally refined mesh is shown in Fig. 9. Again a fixed-size and a
scaled size computation are presented.

XYXYXXYXYXXYXYXXYXYXXYXYXXYXYXXYXYX
Γ0 Γ0ZYZZYZZYZZYZ

ZYZZYZZYZ[Y[\[Y[Y[Y[Y[Y[Y[\[Y[Y[Y[Y[Y[Y[[Y[\[Y[Y[Y[Y[Y[Y[\[Y[Y[Y[Y[Y[Y[[Y[\[Y[Y[Y[Y[Y[Y[\[Y[Y[Y[Y[Y[Y[[Y[\[Y[Y[Y[Y[Y[Y[\[Y[Y[Y[Y[Y[Y[

Γ1

Γ1

Γ1 Γ1 Γ1 Γ1

Figure 8. Problem setup for the adaptively refined example.

Figure 9. Adaptively refined mesh.

6.2.3. Fixed-size problem The mesh for the fixed-size calculation contained 23314
nodes (46628 degrees of freedom) and 7 grid levels. Table 3 shows the results for par-

11/10/2002 23:06 Submission parmech

22 Peter Bastian, Knut Eckstein and Stefan Lang

allel and numerical efficiency. In the 64 processor calculation each computing node was
assigned only about 200 elements on the finest level. The decrease in parallel efficiency
compared to the uniformly refined case is due to the following reasons:� In contrast to the uniformly refined case we have no geometric growth in the number of

nodes per level. The number of nodes on level 3,4,5 and 6 were 3282, 8523, 18444 and
17249 in this example. This leads to a worse calculation to communication ratio.� Algorithm mg assign requires that clusters with different top level are balanced sep-
arately (cluster sets T s). This leads to elements on the same grid level being assigned
to processors in several independent steps which leads in turn to higher communication
overhead and idle times.

Table 3. Parallel adaptive problemG
LB # It. HLIFJ HLKVM�NOHLP"RTS Min/Max HIF Min/Max Prod

1 – 16 – – – – –
4 rcb 16 88.6 88.6 97.4 25 / 28 25 / 28
4 rib 18 86.2 76.5 96.2 46 / 46 46 / 46
4 ribkl 18 79.7 70.8 96.2 20 / 20 20 / 20
4 rsbkl 17 76.9 72.3 91.5 22 / 50 22 / 70
16 rcb 20 58.0 46.4 85.5 63 / 131 63 / 140
16 rib 19 55.8 47.0 85.0 13 / 56 13 / 104
16 ribkl 19 53.6 45.1 82.9 6 / 47 6 / 91
16 rsbkl 19 54.5 45.9 81.2 8 / 60 8 / 161
64 rcb 22 24.7 18.0 65.8 30 / 111 32 / 138
64 rib 20 24.1 19.3 61.9 22 / 84 22 / 184
64 ribkl 20 24.5 19.6 63.2 8 / 69 8 / 155
64 rsbkl 20 21.6 17.3 53.3 16 / 81 16 / 238

6.2.4. Scaled-size problem The same problem as in section 6.2.3. is solved but now the
number of nodes per processor was held approximately constant by varying the tolerance in
the error indicator. Since the efficiency results did not depend much on the load balancing
scheme, only rcb was used for this experiment.

Table 4 shows
2"4 Ó and

2 Õ �65 on up to 64 processors. In order to judge the cost of the
load balancing procedure the execution times for the mapping (

p^]_�
), for the load migration

(
p � 4W`) in the last balancing step and the multigrid solution time (

p Õ �65) have been included
in Table 4.

Table 4. Scaled parallel adaptive problemG
Unknowns # It. a KVM�N acbed a P#I6f H IFJ H KVM6N H P�RTS

1 23,314 16 49.9 – – – – –
4 96,538 16 51.2 0.66 1.15 92.4 92.4 97.6
16 299,587 18 49.1 3.57 4.52 80.7 71.7 93.6
64 691,309 19 29.5 3.36 2.50 65.4 55.1 85.4

11/10/2002 23:06 Submission parmech

Parallel Adaptive Multigrid Methods in Plane Linear Elasticity Problems 23

7. Conclusions

In this paper we showed that adaptive multigrid methods can be effectively implemented
on modern parallel computer architectures and applied to linear elasticity calculations. The
efficiencies per multigrid iteration reached 85% on 256 processors of the CRAY T3D for a
uniformly refined test case and 65% on 64 processors for an adaptively refined test case.

The problem of dynamic load balancing has been discussed in detail and a central
scheme with a clustering strategy based on the mesh hierarchy has been proposed. Within
this algorithm standard graph partitioning algorithms are used to partition special subsets
of the clusters. A public domain library (CHACO) has been adapted to our code in order to
compare different partitioning schemes. It has been found that parallel efficiency is only
slightly influenced by the different schemes because of the following reasons:� For large problems computation time is dominating completely, for small problems the

coarse grids in the multigrid process are a non-negligible serial part. In both cases the
influence of partition interface length on efficiency is only weak.� Mapping the maximum workload onto different processors on different levels prohibits
that some of the communication time can be hidden behind computation time.� Cache hit rate and therefore effective computation speed may depend on the shape of
the partitions.

On the other hand it has been found that the number of mg iterations to reach a certain
accuracy may vary greatly with the different load balancing schemes. Obviously the quality
of the block Jacobi smoother depends on the number, shape and position of the partitions,
especially if the elements not isotropic.

The investigation shows that many competing effects are influencing the observed nu-
merical efficiency and it is felt that partition interface length, the standard measure for load
balancing algorithms, is not the most important one. Most of the effects are problem and/or
machine dependent and therefore difficult to consider in an improved balancing scheme.

Further work will include the extension to nonlinear material laws and the construction
of new load balancing schemes that also take the synchronization between multigrid levels
and load migration time into account.

Acknowledgments

The authors would like to thank the Konrad-Zuse-Center Berlin (ZIB) for the possibility of
using their 256 processor CRAY T3D. Also the use of the CHACO load balancing library
is greatly acknowledged.

REFERENCES

1. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, ‘Introduction to adaptive methods for differ-
ential equations’, Acta Numerica, (1995).

2. H. Yserentant, ‘Old and new convergence proofs for multigrid methods’, Acta Numerica,
(1993).

3. R. Bank, PLTMG Users Guide Version 6.0, SIAM, Philadelphia, 1990.
4. P. Deuflhard, P. Leinen, and H. Yserentant, ‘Concepts of an adaptive hierarchical finite element

code’, IMPACT of Computing in Science and Engineering, 1, 3–35, (1989).

11/10/2002 23:06 Submission parmech

24 Peter Bastian, Knut Eckstein and Stefan Lang

5. D. Braess, Finite Elemente, Springer, 1991.
6. T. J. R. Hughes, The Finite Element Method, Prentice Hall, 1987.
7. J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu, ‘Parallel multilevel preconditioners’, Math.

Comp., 55, 1–22, (1990).
8. H. Yserentant, ‘Two preconditioners based on multi-level splitting of finite element spaces’,

Numer. Math., 58, 163–184, (1990).
9. G. Wittum, ‘On the robustness of ilu smoothing’, SIAM J. Sci. Statist. Comput., 10, 699–717,

(1989).
10. P. Bastian, Parallele adaptive Mehrgitterverfahren, Teubner Skripten zur Numerik, Teubner-

Verlag, 1996.
11. B. Nour-Omid, A. Raefsky, and G. Lyzenga, ‘Solving finite-element equations on concurrent

computers’, in Parallel computations and their impact on mechanics, ed., A. K. Noor, 209–227,
American Soc. Mech. Eng., New York, (1986).

12. Hendrickson and R. Leland, ‘The chaco user’s guide version 1.0’, Technical Report SAND93-
2339, Sandia National Laboratory, (October 1993).

13. B. Hendrickson and R. Leland, ‘Multidimensional spectral load balancing’, Technical Report
SAND93-0074, Sandia National Laboratory, (January 1993).

14. B. W. Kernighan and S. Lin, ‘An efficient heuristic procedure for partitioning graphs’, The Bell
System Technical Journal, 49, 291–307, (1970).

15. G. Karypis and V. Kumar, ‘A fast and high quality multilevel scheme for partitioning irregular
graphs’, Technical Report 95-035, University of Minnesota, Department of Computer Science,
(1995).

16. S. Lang, Lastverteilung für paralle adaptive Mehrgitterberechnungen, Master’s thesis, Univer-
sität Erlangen-Nürnberg, IMMD III, 1994.

11/10/2002 23:06 Submission parmech

