
Numerical Computation of
Multiphase Flows in Porous Media

Peter Bastian

Habilitationsschrift

vorgelegt an der Technischen Fakult¨at der
Christian–Albrechts–Universit¨at Kiel

zur Erlangung der Venia legendi im Fachgebiet

Informatik (Wissenschaftliches Rechnen)

ii

Preface

Groundwater is a precious resource that is important for all forms of life on earth.
The quality of groundwater is impaired by leaking disposal dumps and tanks
or accidental release. Cleanup of contaminated sites is very difficult, if at all
possible, and estimated costs amount to hundreds of billions of DM in Germany.
Underground waste repositories currently being planned in many countries have
to be designed in such a way that groundwater quality is not harmed.

In all these problems numerical simulation can help to gain a better process
understanding, to make predictive studies and to ultimately optimize remedia-
tion techniques with respect to cost and efficiency. Clearly, this is a long term
goal and considerable progress is necessary in all aspects of the modeling pro-
cess. The present work is a contribution to the fast numerical solution of the
partial differential equations (PDE) governing multiphase flow in porous me-
dia. A fully–coupled Newton–multigrid procedure has been implemented on
the basis of the general purpose PDE software UG which allows the treatment
of large–scale problems with millions of unknowns in three space dimensions
on contemporary parallel computer architectures.

I am very grateful to G. Wittum for continuously encouraging this (and pre-
vious) work. His unlimited support of UG and the productive atmosphere at
ICA III provided the basis of this work. R. Helmig introduced me to the field of
multiphase flow in porous media. His enthusiasm for the subject was always a
source of inspiration for me and I thank him for the years of excellent collabo-
ration.

I am deeply indebted to my colleagues K. Birken, K. Johannsen, S. Lang,
N. Neuß, H. Rentz–Reichert and C. Wieners who were involved in the develop-
ment of the software package UG. Without the unselfish and cooperative style
of work in our group this work would not have been possible. Special thanks
also to V. Reichenberger who carefully read some versions of the manuscript.

Finally, my personal acknowledgments go to my family for their patience and
support.

Heidelberg, June 1999 P. Bastian

iii

iv Preface

Contents

Preface iii

Notation ix

Introduction 1

1 Modeling Immiscible Fluid Flow in Porous Media 7
1.1 Porous Media . 7

1.1.1 Definitions . 7

1.1.2 Continuum Approach 8
1.1.3 Representative Elementary Volume 10

1.1.4 Heterogeneity and Anisotropy 11

1.2 Single–Phase Fluid Flow and Transport 12

1.2.1 Fluid Mass Conservation 12

1.2.2 Darcy’s Law . 13

1.2.3 Tracer Transport. 14

1.2.4 Miscible Displacement 14

1.3 Microscopic Considerations of Multiphase Systems 16

1.3.1 Capillarity 16
1.3.2 Capillary Pressure 17

1.3.3 Static Phase Distribution . 18

1.4 Multiphase Fluid Flow . 19

1.4.1 Saturation . 19

1.4.2 General Form of the Multiphase Flow Equations 20

1.4.3 Capillary Pressure Curves 21

1.4.4 Relative Permeability Curves. 25

1.4.5 Two–Phase Flow Model . 27
1.4.6 Three–Phase Flow Model 27

1.4.7 Compositional Flow . 28

2 Basic Properties of Multiphase Flow Equations 33
2.1 Phase Pressure–Saturation Formulation 33

2.1.1 Model Equations Revisited 33

2.1.2 Type Classification . 35

2.1.3 Applicability . 36

2.2 Global Pressure Formulation 37

v

vi Contents

2.2.1 Total Velocity . 37
2.2.2 Global Pressure (Homogeneous Case) 38
2.2.3 Complete Set of Equations 40
2.2.4 Global Pressure for Heterogeneous Media 41
2.3 Porous Medium with a Discontinuity 43
2.3.1 Macroscopic Model . 43
2.3.2 Phase Pressure Formulation 44
2.3.3 Global Pressure Formulation 45
2.4 One–dimensional Model Problems 46
2.4.1 One–dimensional Simplified Model 46
2.4.2 Hyperbolic Case . 47
2.4.3 Parabolic Case . 55
2.5 Three–Phase Flow Formulations 58
2.5.1 Phase Pressure–Saturation Formulation 59
2.5.2 Global Pressure–Saturation Formulation 60
2.5.3 Media Discontinuity . 62

3 Fully Implicit Finite Volume Discretization 65
3.1 Introduction . .. 65
3.1.1 Numerical Difficulties in Simulation 65
3.1.2 Overview of Numerical Schemes 66
3.1.3 Approach taken in this Work 69
3.2 Stationary Advection–Diffusion Equation 71
3.3 Phase Pressure–Saturation Formulation (PPS) 77
3.4 Interface Condition Formulation (PPSIC) 81
3.5 Global Pressure with Total Velocity (GPSTV) 83
3.6 Global Pressure with Total Flux (GPSTF) 86
3.7 Implicit Time Discretization 88
3.7.1 One Stepθ-Scheme . 88
3.7.2 Backward Difference Formula 89
3.7.3 Differential Algebraic Equations 89
3.7.4 Global Conservation of Mass 91
3.8 Validation of the Numerical Model 91
3.8.1 Hyperbolic Case . 92
3.8.2 Parabolic Case . 94

4 Solution of Algebraic Equations 99
4.1 Multigrid Mesh Structure 99
4.2 Inexact Newton Method . 100
4.2.1 Algorithm . 100

Contents vii

4.2.2 Linearized Operator forPPS–Scheme 102

4.3 Multigrid Solution of Linear Systems 103

4.3.1 Introduction . .. 103

4.3.2 Standard Multigrid Algorithm. 106

4.3.3 Robustness . 107

4.3.4 Smoothers for Systems . 109

4.3.5 Truncated Restriction . 110

4.3.6 Additional Remarks . 114

5 Parallelization 115
5.1 Parallelization of the Solver 115

5.1.1 Introduction . .. 115

5.1.2 Data Decomposition 116

5.1.3 Parallel Multigrid Algorithm 119

5.2 Load Balancing . 125

5.2.1 Graph Partitioning Problems 126

5.2.2 Application to Mesh–Based Parallel Algorithms 128

5.2.3 Review of Partitioning Methods 132

5.2.4 Multilevel Schemes for Constrainedk-way Graph (Re-) Par-
titioning . 133

6 UG: A Framework for Unstructured Grid Computations 141
6.1 The PDE Solution Process 141

6.2 Aims of the UG Project . 144

6.3 The UG Toolbox . 145

6.3.1 Modular Structure 145

6.3.2 Dynamic Distributed Data 148

6.3.3 Geometry Definition 150

6.3.4 Hierarchical Mesh Data Structure 150

6.3.5 Sparse Matrix–Vector Data Structure 152

6.3.6 Discretization Support 154

6.3.7 Command Line Interface 154

6.4 Object–Oriented Design of Numerical Algorithms 155

6.4.1 Class Hierarchy . 155

6.4.2 Interaction of Time–Stepping Scheme, Nonlinear Solver and
Discretization . 159

6.4.3 Linear Solvers . 161

6.4.4 Configuration from Script File 161

6.5 Related Work and Conclusions 163

viii Contents

7 Numerical Results 165
7.1 Introduction . .. 165
7.1.1 Overview of the Experiments 165
7.1.2 Parameters and Results . 165
7.1.3 Computer Equipment . 166
7.2 Five Spot Waterflooding 166
7.2.1 Homogeneous Permeability Field 167
7.2.2 Geostatistical Permeability Field 168
7.2.3 Discontinuous Coefficient Case 169
7.3 Vertical 2D DNAPL Infiltration 172
7.3.1 Both Fluids at Maximum Saturation 174
7.3.2 Flow Over a Low Permeable Lens 176
7.3.3 Geostatistical Permeability Distribution 183
7.4 VEGAS Experiment . 185
7.5 3D DNAPL Infiltration . 188
7.6 2D Air Sparging . 196
7.7 3D Air Sparging . 198

Conclusion and Future Work 205

Bibliography 207

Index 219

Notation

Scalar values, functions and sets are denoted by normal letters, likepc;Sn;ρ; : : :
etc. Vectors are typeset in boldface symbols like e. g. inx;u whereas tensors are
written in boldface italic letters as inK.

Latin Symbols
A edge set of a graph, p. 126

A Jacobian matrix, system matrix, p. 100

Aαh dual form for flux term, p. 78

Aα vector function for flux term, p. 79

Bh box mesh, secondary mesh, p. 72

bi;bj boxes, control volumes, p. 72

bk
i sub–control volume, p. 75

C volume fraction, p. 14

Cκ
α volume fraction of componentκ in phaseα, p. 29

Ci(n) cluster of vertexn on leveli, p. 134

ci(n) cluster map on leveli, p. 134

Dm molecular diffusion constant, p. 14,[m2
=s]

D hydrodynamic dispersion, p. 14,[m2
=s]

E(i) indices of elements touching vertexvi , p. 71

Eh mesh, set of elements, p. 71

El elements of levell , p. 99

E(p)
l elements of levell stored by processorp, p. 117

ei;ej elements, p. 71

F nonlinear defect, p. 100

f flux term in 1D hyperbolic model problem, p. 47

f (e) father element of elemente, p. 116

fα fractional flow function, p. 35

G graph for partitioning problem, p. 126

G modified gravity vector, p. 35,[m=s2]

g gravity vector, p. 13,[m=s2]

H1
0(Ω) Hilbert space of functions with first order derivatives inL2(Ω)

and vanishing on the boundary, p. 36

H(p)
l maps to degrees of freedom handled by processorp on levell ,

p. 118

H (p)
l subspace corresponding toH(p)

l , p. 118

ix

x Notation

I index set, p. 72
Id index set of non–Dirichlet vertices, p. 72
Iαd index set of non–Dirichlet vertices for phaseα, p. 77

I (p)l maps to all degrees of freedom stored by processorp on level
l , p. 118

I (p)l subspace corresponding toI (p)l , p. 118
J J–Leverett function, p. 42
J finest level in multigrid structure, p. 99
j flux vector, p. 71
K number of elements in a mesh, p. 71
K absolute permeability tensor, p. 13,[m2]

Kα phase permeability tensor, p. 20,[m2]

k number of partitions in graph partitioning, p. 126
krα relative permeability, p. 20
krαh finite element approximation of relative permeability field,

p. 79
L2(Ω) Hilbert space of measurable, square integrable functions onΩ,

p. 72
M number of time steps, p. 88
Mαh dual form for accumulation term, p. 78
Mα vector function for accumulation term, p. 79
m Van Genuchten parameter, p. 23
ml maps elements to processors on levell , p. 116
meas(Ω) length, area or volume of argument depending on dimension,

p. 10,[md]

N number of vertices, p. 71
N vertex set of a graph, p. 126
N0 set of constrained vertices, p. 127
N00 set of free vertices, p. 127
N(i) partition, p. 126
NBl (e) neighboring elements of elementeon levell , p. 116
n Van Genuchten parameter, p. 23
n normal vector, p. 14
nk

i j sub–control volume face normal, p. 75

nk f
i boundary sub–control volume face normal, p. 75

Pl prolongation operator, p. 106
P maps coefficient vector to finite element function, p. 73
P set of processors, p. 116
p single phase pressure, p. 13,[Pa]

Notation xi

p global pressure, p. 38,[Pa]

pc capillary pressure, p. 17,[Pa]

pch finite element approximation ofpc(x) at timet, p. 79,[Pa]

pcmin vector of minimum nodal capillary pressure, p. 82,[Pa]

pd entry pressure, p. 22,[Pa]
pn non–wetting phase pressure, p. 17,[Pa]

pw wetting phase pressure, p. 17,[Pa]

pw coefficient vector for wetting phase pressure, p. 78,[Pa]

pαh finite element approximation of phase pressure, p. 78,[Pa]

Qαh dual form for source/sink term, p. 78
Qα vector function for accumulation term, p. 79
Q permutation matrix, p. 109

Q(p)
l maps to degrees of freedom owned only by processorp on

level l , p. 118

Q (p)
l subspace corresponding toQ(p)

l , p. 118
q;qα source/sink term, p. 13,[s�1]

R individual gas constant, p. 12,[kJ=(kg K)]

Rl restriction operator, p. 106
R real numbers, p. 12
rκ
α interphase mass transfer, p. 30,[kg=(m3 s)]

r flow field in advection–diffusion equation, p. 71
Sn coefficient vector of non–wetting phase saturation, p. 78
Sα saturation of phaseα, p. 20
Sαh finite element approximation of saturation of phaseα, p. 78
S̄α effective saturation, p. 23
Sαr residual saturation, p. 23
SL

w;S
R
w left and right states in Riemann problem, 48

s shock speed, p. 49
s vertex migration cost, p. 126
T temperature, p. 12,[K]

T end of time interval, p. 88,[s]
t time, p. 12,[s]
tn time stepn, p. 88,[s]
U boundary condition for total velocity, p. 41, 46
u single phase Darcy velocity, p. 13,[m=s]

u total velocity, p. 35,[m=s]

uα multiphase Darcy velocity, p. 21,[m=s]

V vertex set, p. 71
V(k) indices of vertices of elementek, p. 71

xii Notation

Vh standard conforming finite element space, p. 72
Vhd finite element space with Dirichlet conditions incorporated,

p. 72
Vαhd finite element space with Dirichlet conditions of phaseα in-

corporated, p. 77

V(p)
l vertices on levell stored by processorp, p. 117

V(p)
l maps to vertical ghost nodes, p. 118

V (p)
l subspace corresponding toV(p)

l , p. 118
vi;vj vertices, p. 71
W total weight of a graph, p. 126
W0 total weight of constrained vertices, p. 127
W00 total weight of free vertices, p. 127
W̄i average cluster weight on leveli, p. 134
Wh test space piecewise constant on boxes, p. 72
Whd test space with Dirichlet conditions incorporated, p. 72
Wαhd test space with Dirichlet conditions of phaseα incorporated,

p. 78
w weights for vertices and edges of a graph, p. 126
X edge separator, p. 126
Xκ

α mass fraction of componentκ in phaseα, p. 29
x;x0; : : : points inRd , p. 10,[md]

xk barycenter of elementek, p. 80
xk

i j barycenter of sub–control volume face, p. 75

xk f
i barycenter of boundary sub–control volume face, p. 75

Greek Symbols
α Van Genuchten parameter, p. 23,[Pa�1]

αT ;αL dispersivity constants, p. 14
Γd;Γn Dirichlet boundary, Neumann boundary, p. 14
Γαd;Γαn Dirichlet and Neumann boundary for phaseα, p. 77
γ void space indicator function, p. 10
γ multigrid parameter, p. 106
γα phase indicator function, p. 19
γk
i j sub–control volume face, p. 75

γk f
i boundary sub–control volume face, p. 75

∆tn length ofn-th time step, p. 88
δ load imbalance factor, p. 126
εκ

lin residual reduction of linear solver in Newton stepκ, p. 101

Notation xiii

εnl residual reduction in nonlinear solver, p. 101

ε0 minimum reduction required in linear solver, p. 102

θ contact angle, p. 16,[rad]

θ parameter in one stepθ–scheme, p. 88

λ Brooks–Corey parameter, p. 24

λ total mobility, p. 35,[(Pa s)�1]

λα phase mobility, p. 21,[(Pa s)�1]

λαh finite element approximation of phase mobility field, p. 79,
[(Pa s)�1]

µ dynamic viscosity, p. 13,[Pa s]

µh finite element approximation of dynamic viscosity field, p. 79,
[Pa s]

ν1, ν2 number of pre– and postsmoothing steps, p. 106

π;π0 partition maps, p. 126, 126

πw p� pn, p. 38

ρ convergence factor of iterative method, p. 104

ρ;ρα density, p. 12,[kg=m3]

ραh finite element approximation of density, p. 79,[kg=m3]

ρκ
α intrinsic mass density of componentκ in phaseα, p. 29,

[kg=m3]

σ surface tension, p. 17,[J=m2]

τ tortuosity, p. 14

Φ porosity, p. 10

Φh finite element approximation of porosity field, p. 79

φ normal flux, p. 13,[kg=(s m2)]

ϕ nodal basis function ofVh, p. 73

ψ basis function ofWh, p. 73

Ω;Ωi domain inR2 or R3, p. 10

Norms, Operators,: : :
∇ divergence operator, p. 12

∇ gradient operator, p. 13

k:k2 Euclidean vector norm, p. 101

Indices
α;β; : : : phase index, p. 19

h mesh size, p. 71

l multigrid level, p. 106

xiv Notation

w;n;g wetting phase, non–wetting phase, gas phase

Exponents
κ component, p. 29
κ iteration index in nonlinear solver, p. 101
µ iteration index in linear solver, p. 104
(p) processor number, p. 117

Introduction

Flow and transport of hazardous substances in the subsurface is of enormous
importance to society. Estimated cleanup costs of contaminated sites in Ger-
many are in the range of 100 to 300 billion DM (Kobus 1996). The present
work is a contribution to the efficient numerical solution of the mathemati-
cal equations governing multiphase flow in the subsurface. A fully–coupled
Newton–multigrid method is applied to various formulations of the two–phase
flow problem with special emphasis on heterogeneous porous media. The ap-
plicability and effectiveness of the methods is shown in numerical experiments
in two and three space dimensions. Moreover, the developed computer code is
able to exploit the capabilities of large–scale parallel computer systems.

Groundwater Contamination
In Germany and many other countries more than half of the population depend
on groundwater as their supply in drinking water (Jahresbericht der Wasser-
wirtschaft 1993). Problems with groundwater quality arise from disposal
dumps, leaking storage tanks and accidental spills of substances used in indus-
try.

Removing such substances from the subsurface is extremely complex and
costly, if at all possible, see Kobus (1996). In order to design effective reme-
diation strategies it is necessary to fully understand the governing physical pro-
cesses of flow and transport in porous media. Mathematical modeling is one
important tool that helps to achieve this goal. Incorporation of more detailed
physics and geometric detail into the mathematical models requires the use of
efficient numerical algorithms and large–scale parallel computers, both are of
major concern in this work.

Among the most toxic and prevalent substances threatening groundwater
quality are so–called nonaqueous phase liquids (NAPLs) such as petroleum
products or chlorinated hydrocarbons. These volatile chemicals have low solu-
bility in water and are to be considered as separate phases in the subsurface.

Fig. 1 illustrates the qualitative flow behavior of different NAPLs in the sub-
surface. In case A a light NAPL (LNAPL) with density smaller than water is
released. It migrates downward through the unsaturated zone until it reaches the
water table where it continues to spread horizontally. Typically, these substances
contain volatile components which are then transported in the air phase. If the
supply of LNAPL stops, a certain amount of it remains immobile in the soil at
residual saturation as shown in case B.

The flow of a dense NAPL (DNAPL) being heavier than water is shown in
case C. Its flow behavior in the unsaturated zone is similar but due to its greater
density it migrates downward also through the saturated zone. Due to capillary

1

2 Introduction

water
table

groundwater flow direction

solution

clay lense

low
er

aq
uif

er
bo

un
da

ry

saturated
zone

unsaturated
zone

Case A: large
LNAPL spill Case B: small

LNAPL spill

Case C: DNAPL spill

low perm
ea

ble
zo

ne

DNAPL pool

volatilization

lateral spreading

residual saturation

Figure 1: Qualitative behavior of NAPLs in the subsurface, after Helmig (1997).

effects heterogeneities in the soil (differences in grain size and therefore pore
width) play an extremely important rôle in multiphase flows. Regions of lower
permeability (smaller pores) are not penetrated by the fluid until a critical fluid
saturation has accumulated. The size of these regions may vary from centimeters
leading to an irregular lateral spreading of the NAPL to (many) meters with the
formation of DNAPL pools.

NAPLs pose a long term threat to groundwater quality. The initial infiltration
may happen in hours or days while the solution process may go on for years.
Very small concentrations of NAPL on the order of 10[µg=l] make the water
unusable for drinking water supply.

Depending on the situation different in–situ remediation strategies are possi-
ble, cf. Kobus (1996):

� Hydraulic schemes: extraction of contaminant in phase and/or solution by
means of flushing and pumping. This so–called “pump and treat” strategy
may be inadequate for hydrophobic substances due to capillary effects. It
is very effective (and standard) for soluble contaminants.

� Degradation of contaminant by chemical reaction and/or microbiological
decay.

� Soil air venting for volatile substances, can be enhanced thermally by use
of steam.

Introduction 3

� Air sparging for volatile substances in the saturated zone.

� Remobilization of (immobile) contaminant by lowering surface tension
and/or viscosity ratio through supply of heat or chemicals (surfactants).
Must be used with care since contaminant may move further downward.

From the large number of physical processes mentioned in this list it is evi-
dent that mathematical modeling of remediation processes can be very compli-
cated. In the simplest example of two phase immiscible flow the mathemati-
cal model consists of two coupled nonlinear time–dependent partial differential
equations. Since the detailed geometry of a natural porous medium is impos-
sible to determine its complicated structure is effectively characterized by sev-
eral parameters in the mathematical equations. It is the fundamental problem
of all porous medium flow models to determine these parameters. Moreover,
due to the heterogeneity of the porous medium on different length scales these
effective parameters are also scale–dependent. Several techniques have been
proposed to address this problem, we mention stochastic modeling (Kinzelbach
and Schäfer 1992), upscaling (Ewing 1997) and parameter identification (Wat-
son et al. 1994).

So far we concentrated on groundwater remediation problems as our moti-
vation for the consideration of multiphase fluid flow in porous media. In addi-
tion there are other important applications for these models such as oil reservoir
exploitation (historically the dominant application) and security assessment of
underground waste repositories. The latter application is often complicated by
the existence of fractures in hard rock, cf. (Helmig 1997).

Scientific Computing
The construction of a computer code that is able to simulate the processes de-
scribed above involves different tasks from a variety of disciplines. The tasks
are now subsumed under the evolving field of “Scientific Computing” in order
to emphasize that multidisciplinary cooperation is the key to a successful simu-
lation of these complex physical phenomena.

The first step in the modeling process is the derivation of the conceptual
model. The conceptual model consists of a verbal description of the relevant
physical processes, e. g. the number of phases and components, which compo-
nents are present in which phase, existence of fractures and the like. Since all
subsequent steps depend on the conceptual model it has to be considered very
carefully.

In the next step a mathematical model describing the physical processes in
a quantitative way is derived. It usually involves coupled systems of nonlinear
time–dependent partial differential equations. In Chapter 1 we will review the
mathematical models for single– and multiphase flow in porous media. Subse-
quently, mathematical analysis addresses questions of existence, uniqueness and
regularity of solutions of the mathematical model.

4 Introduction

Since a solution of the mathematical model in closed form is seldom possible
a discrete numerical model suitable for computer solution is now sought (see
Chapter 3). The numerical model consists of a large set of (non–) linear alge-
braic equations to be solved per time–step. The convergence of its solution to the
solution of the (continuous) mathematical model is the fundamental question in
numerical analysis. The actual determination of the discrete solution (see Chap-
ter 4) may require enormous computational resources which are only available
from large–scale parallel computers. The complete specification of the numeri-
cal model includes the geometric description of the domain and a computational
mesh. From a practical point of view this may be the most time–consuming
process especially since it requires human interaction.

A variety of techniques have been developed to speed up the solution of the
numerical model. Multigrid methods (Hackbusch 1985), adaptive local mesh
refinement (Eriksson et al. 1995) and parallelization (Smith et al. 1996) are im-
portant developments in this respect. However, the introduction of these tech-
niques lead to an enormous increase in the complexity of numerical software
and software design for scientific computing applications has recently received
much attention in the scientific community.

The increasing complexity of PDE software lead to the development of
“ tools” that allow the incorporation of different problems and solution schemes
into a standardized environment. To mention but a few we refer to Diffpack
(Bruaset and Langtangen 1997), PETSc (Balay et al. 1997) and UG (Bastian
et al. 1997), which is the basis of this work. Finally, the interpretation of the re-
sults obtained by large–scale simulations requires a powerful visualization tool.
The sheer amount of data often exceeds the capabilities of conventional visual-
ization programs and new techniques are also required in this area, cf. Rumpf
et al. (1997).

The total modeling process is now complete and numerical results can be
compared with experimental measurements. Often it is then necessary to do
more iterations of the modeling cycle and to improve upon conceptual, mathe-
matical and numerical model in order to match experimental results with suffi-
cient accuracy.

In order to handle the complexity of the total modeling process a “divide and
conquer” approach has been often applied in the past. The extraction of sim-
plified “model problems” and their detailed investigation certainly was a very
successful approach. However, as the solution of the individual subproblems
is more understood their interaction becomes more important. It can very well
happen that problems encountered in later stages of the modeling process can
be circumvented by a different choice in an earlier stage. In order to illustrate
this rather general remark we mention an example. In Chapter 2, a number of
different formulations of the two–phase flow equations will be discussed in de-
tail. It is very important to recognize the limitations and advantages of each
formulation, e. g. the phase pressure formulations lead to difficulties in the non-
linear solver if both fluids are present at residual saturation in the domain. It is

Introduction 5

of no use to try to improve the nonlinear solver, instead one should use a global
pressure formulation in this case. In the case of a porous medium with a discon-
tinuity the formulation with interface conditions leads to more accurate results
and produces algebraic systems that are easier to solve (see Subs. 7.3.2).

Objective and Structure of this Work
This book starts with a discussion of various mathematical models of subsurface
flow and the underlying concepts in Chapter 1.

Then the basic properties of the two–phase flow model for homogeneous and
heterogeneous porous media are addressed in Chapter 2. Their extension to
three–phase flow models is discussed briefly.

Chapter 3 concentrates on the discretization of the two–phase flow equations.
A vertex centered finite volume scheme with upwind mobility weighting has
been selected due to its monotone behavior and applicability to unstructured
multi–element type meshes in two and three space dimensions. Time discretiza-
tion is fully implicit.

Chapter 4 then treats the solution of the resulting (non–) linear algebraic equa-
tions. Special emphasis is put on the construction of a multigrid method for the
linear systems arising from a fully–coupled Newton procedure. Step length con-
trol and nested iteration are used to ensure global convergence of the Newton
method.

A data–parallel implementation and load balancing is discussed in Chapter 5
while the concepts of the PDE software toolbox UG are contained in Chapter 6.

Extensive numerical results for realistic problems are then presented in Chap-
ter 7 in order to assess the quality of the numerical solutions obtained and
to illustrate the excellent convergence behavior of the (non–) linear iterative
schemes.

6 Introduction

1

Modeling Immiscible Fluid Flow in
Porous Media

This chapter provides an introduction to the models used in porous medium sim-
ulations. We begin with a definition of porous media, their basic properties and
a motivation of macroscopic flow models. The subsequent sections are devoted
to the development of models for single–phase flow and transport, multiphase
flow and multiphase/multicomponent flows.

1.1 Porous Media
This subsection introduces the basic characteristics of porous media. Of special
importance is the consideration of different length scales.

1.1.1 DEFINITIONS

A porous medium is a body composed of a persistent solid part, called solid
matrix, and the remaining void space(or pore space) that can be filled with one
or more fluids (e. g. water, oil and gas). Typical examples of a porous medium
are soil, sand, cemented sandstone, karstic limestone, foam rubber, bread, lungs
or kidneys.

A phaseis defined in (Bear and Bachmat 1991) as a chemically homogeneous
portion of a system under consideration that is separated from other such por-
tions by a definite physical boundary. In the case of a single–phase systemthe
void space of the porous medium is filled by a single fluid (e. g. water) or by
several fluids completely misciblewith each other (e. g. fresh water and salt wa-
ter). In a multiphase systemthe void space is filled by two or more fluids that
are immisciblewith each other, i. e. they maintain a distinct boundary between
them (e. g. water and oil). There may only be one gaseous phase since gases are
always completely miscible. Formally the solid matrix of the porous medium
can also be considered as a phase called the solid phase. Fig. 1.1 shows a two–
dimensional cross section of a porous medium filled with water (single–phase
system, left) or filled with water and oil (two–phase system, right).

Bear and Bachmat (1991) define a componentto be part of a phase that is
composed of an identifiable homogeneous chemical species or of an assembly
of species (ions, molecules). The number of components needed to describe a
phase is given by the conceptual model, i. e. it depends on the physical processes
to be modeled. The example of fresh and salt water given above is described by
a single–phase two component system.

7

8 1. Modeling Immiscible Fluid Flow in Porous Media

solid matrix water oil (or air)

Figure 1.1: Schematic drawing of a porous medium filled with one or two fluids.

In order to derive mathematical models for fluid flow in porous media some
restrictions are placed upon the geometry of the porous medium (Corey 1994,
p. 1):

(P1) The void space of the porous medium is interconnected.

(P2) The dimensions of the void space must be large compared to the mean
free path length1 of the fluid molecules.

(P3) The dimensions of the void space must be small enough so that the fluid
flow is controlled by adhesive forces at fluid–solid interfaces and cohesive
forces at fluid–fluid interfaces (multiphase systems).

The first assumption (P1) is obvious since no flow can take place in a discon-
nected void space. The second property (P2) will enable us to replace the fluid
molecules in the void space by a hypothetical continuum (see next chapter). Fi-
nally, property (P3) excludes cases like a network of pipes from the definition
of a porous medium.

1.1.2 CONTINUUM APPROACH

The important feature in modeling porous media flow is the consideration of
different length scales. Fig. 1.2 shows a cross section through a porous medium
consisting of different types of sands on three length scales.

In Fig. 1.2a the cross section is on the order of 10 meters wide. This scale is
called the macroscopic scale. There we can identify several types of sand with
different average grain sizes. A larger scale than the macroscopic scale is often
called regional scale but is not considered here, see Helmig (1997).

If we zoom in to a scale of about 10�3m as shown in Fig. 1.2b we arrive at the
microscopic scalewhere individual sand grains and pore channels are visible.

1The average distance a molecule travels between successive collisions with other molecules.
Mean free path of air at standard temperature is about 6 �10�8m.

1.1. Porous Media 9

(a) macroscopic scale (b) microscopic scale (c) molecular scale
~10-9m~10-3m~10m

Figure 1.2: Different scales in a porous medium.

In the figure we see the transition zone from a fine sand to a coarser sand. The
void space is supposed to be filled with water.

Magnifying further into the water–filled void space one would finally see in-
dividual water molecules as shown in Fig. 1.2c. The larger black circles are
oxygen atoms, the smaller white circles are the hydrogen atoms. This scale of
about 10�9m will be referred to as the molecular scale.

It is important to note that the behavior of the flow is influenced by effects on
all these different length scales. Fluid properties like viscosity, density, binary
diffusion coefficient and miscibility are determined on the molecular scale by
the individual properties of the molecules. On the microscopic scale the con-
figuration of the void space influences the flow behavior through properties like
the tortuosity of the flow channels or the pore size distribution, whereas on the
macroscopic scale the large scale inhomogeneities play a rôle.

In classical continuum mechanics, see e. g. (Chung 1996), the individual
molecules on the molecular scale are replaced by a hypothetical continuum on
the microscopic scale. Quantities like mass (density) or velocity are now con-
sidered to be (piecewise) continuous functions in space and time. The contin-
uum approach is a valid approximation if the mean free path length of the fluid
molecules is much smaller than the physical domain of interest. This is ensured
by property (P2) from the last subsection.

Accordingly, the flow of a single newtonian fluid in the void space of a porous
medium is described on the microscopic level by the Navier–Stokes system of
equations (cf. (Chung 1996)) with appropriate boundary conditions. However,
the void space configuration is usually not known in such detail to make this
description feasible. Moreover, a numerical simulation on that level is beyond
the capabilities of todays computers and methods.

In order to derive a mathematical model on the macroscopic level another
continuum is considered. Each point in the continuum on the macroscopic level
is assigned average values over elementary volumesof quantities on the micro-

10 1. Modeling Immiscible Fluid Flow in Porous Media

x

x0

Ω0(x0)

d

Ω

Figure 1.3: Illustration of the averaging volume.

scopic level. This process leads to macroscopic equations that do not need an
exact description of the microscopic configuration. Only measurable statistical
properties of the porous medium and the fluids are required.

1.1.3 REPRESENTATIVE ELEMENTARY VOLUME

The averaging process used for passing from the microscopic to the macroscopic
level is illustrated for the porosity, a simple geometric property of the porous
medium.

The porous medium is supposed to fill the domain Ω with volume meas(Ω).
Let Ω0(x0)�Ω be a subdomain of Ω centered at the point x0 on the macroscopic
level as shown in Fig. 1.3.
Further we define the void space indicator function on the microscopic level:

γ(x) =
�

1 x 2 void space
0 x 2 solid matrix

8x 2Ω: (1.1)

Then the porosity Φ(x0) at position x0 with respect to the averaging volume
Ω0(x0) is defined as

Φ(x0) =
1

meas(Ω0(x0))

Z

Ω0(x0)

γ(x)dx : (1.2)

The macroscopic quantity porosity is obtained by averaging over the micro-
scopic void space indicator function. If we plot the value of Φ(x0) at a fixed
position x0 for different diameters d of the averaging volume Ω0(x0) we ob-
serve a behavior as shown in Fig. 1.4. For very small averaging volumes the
discontinuity of γ produces large variations in Φ, then at diameter l the average
stabilizes and for averaging volumes with diameter larger than L the large scale
inhomogeneities of the porous medium destabilize the average again, cf. (Bear
and Bachmat 1991; Helmig 1997).

The averaging volume Ω0(x0) is called a representative elementary volume
(REV) if such length scales l and L as in Fig. 1.4 can be identified where the

1.1. Porous Media 11

Φ(x0)

1.0

0.0
diameter of
averaging volumel L

large scale
inhomogeneities

homogeneous
medium

Figure 1.4: Porosity Φ for different sizes of averaging volumes.

value of the averaged quantity does not depend on the size of the averaging
volume. In that case we can choose the averaging volume anywhere in the range

l � diam(Ω0(x0))� L : (1.3)

If a REV cannot be identified for the porous medium at hand the macroscopic
theories of fluid flow in porous media cannot be applied (Hassanizadeh and Gray
1979a).

The following table with typical values of porosity is taken from (Corey
1994):

Consolidated sandstones 0:1–0:3
Uniform spheres with minimal porosity packing 0:26
Uniform spheres with normal packing 0:35
Unconsolidated sands with normal packing 0:39–0:41
Soils with structure 0:45–0:55

1.1.4 HETEROGENEITY AND ANISOTROPY

A porous medium is said to be homogeneous with respect to a macroscopic
(averaged) quantity if that parameter has the same value throughout the domain.
Otherwise it is called heterogeneous. For example the porous medium shown in
Fig. 1.5a has a different porosity in the parts with large and small sand grains
and is therefore heterogeneous with respect to porosity.

Macroscopic tensorial quantities can also vary with direction, in that case the
porous medium is called anisotropic with respect to that quantity. Otherwise
it is called isotropic. As an example consider Fig. 1.5b. It is obvious that the
porous medium is more resistive to fluid flow in the y-direction than in the x-
direction. The corresponding macroscopic quantity called permeability will be
anisotropic. Note that a similar effect as in Fig. 1.5b can also be achieved with
the grain distribution shown in Fig. 1.5c.

12 1. Modeling Immiscible Fluid Flow in Porous Media

(a) (b) (c)

Figure 1.5: Porous media illustrating the concepts of heterogeneity and
anisotropy.

1.2 Single–Phase Fluid Flow and Transport
In this subsection we consider macroscopic equations for flow and transport in
porous media when the void space is filled with a single fluid, e. g. water, or
several completely miscible fluids.

1.2.1 FLUID MASS CONSERVATION

Suppose that the porous medium fills the domain Ω� R
3 , then the macroscopic

fluid mass conservation is expressed by the partial differential equation

∂(Φρ)
∂t

+ ∇ � fρug= ρq in Ω: (1.4)

In its integral form this equation states that the rate of change of fluid mass in an
arbitrary control volume V � Ω is equal to the net flow over the surface ∂V and
the contribution of sources or sinks within V . The quantities in Eq. (1.4) have
the following meaning.
Φ(x) Porosity of the porous medium as defined in Eq. (1.2). It is a func-

tion of position in the case of heterogeneous media. In general it
could depend on the fluid pressure (introduced below) or on time
(e. g. swelling of clay) but these effects are not considered here.

ρ(x; t) Density of the fluid given in [kg=m3]. In this work density is either
constant when the fluid is incompressible or we assume an equation
of state for ideal gases where density is connected to fluid pressure p
(see below):

p = ρRT: (1.5)

Here R is the individual gas constant and T the temperature in [K],
cf. (Helmig 1997). Note that the time derivative in Eq. 1.4 vanishes
when the density is constant.

1.2. Single–Phase Fluid Flow and Transport 13

u(x; t) Macroscopic apparent velocity in [m=s]. This velocity is obtained
by a macroscopic observer. On the microscopic level the flow takes
only place through the pore channels of the porous medium where an
average velocity of u=Φ is observed.

q(x; t) Specific source/sink term with dimensions [s�1].

1.2.2 DARCY’ S LAW

By using local averaging techniques, see e. g. (Whitaker 1986a), or homogeniza-
tion, see (Hornung 1997), it can be shown that under appropriate assumptions
(see below) the momentum conservation of the Navier–Stokes equation reduces
to the Darcy–Law on the macroscopic level which is given by

u =�
K
µ
(∇ p�ρg) : (1.6)

This relation was discovered experimentally for the one–dimensional case by
H. Darcy in 1856. It is basically a consequence of property (P3) of the porous
medium. The new quantities in Eq. (1.6) have the following meaning.
p(x; t) Fluid pressure in [Pa] = [N=m2]. This will be the unknown function

to be determined by the flow model.
g Gravity vector pointing in the direction of gravity with size g (grav-

itational acceleration). Dimension is [m=s2]. When the z–coordinate
points upward we have g = (0;0;�9:81)T .

K(x) Symmetric tensor of absolute permeability with dimensions [m2]. It
is a parameter of the solid matrix only and may depend on position
in the case of a heterogeneous porous medium. Furthermore K may
be anisotropic if the porous medium has a preferred flow direction as
explained in subsection 1.1.4.

µ(x; t) Dynamic viscosity of the fluid given in [Pa s]. In the applications
considered here µ is either constant or a function of pressure.

Darcy’s Law is valid for the slow flow (inertial effects can be neglected) of
a Newtonian fluid through a porous medium with rigid solid matrix. No slip
boundary conditions are assumed at the fluid–solid boundary on the microscopic
level. For details we refer to (Bear 1972; Whitaker 1986a; Whitaker 1986b;
Hassanizadeh and Gray 1979a; Hassanizadeh and Gray 1979b; Hassanizadeh
and Gray 1980).

Inserting Eq. (1.6) into Eq. (1.4) yields a single equation for the fluid pressure
p,

∂(Φρ)
∂t

� ∇ �
�

ρ
K
µ
(∇ p�ρg)

�
= ρq in Ω (1.7)

with initial and boundary conditions

p(x;0) = p0(x) in Ω; (1.8a)

p(x; t) = pd(x; t) on Γd; ρu �n = φ(x; t) on Γn: (1.8b)

14 1. Modeling Immiscible Fluid Flow in Porous Media

In the case of a compressible fluid Eq. (1.7) is of parabolic type, in the in-
compressible case it is of elliptic type (then the initial condition (1.8a) is not
necessary).

1.2.3 TRACER TRANSPORT

We now consider the flow of two fluids F and T which are completely miscible.
We assume that the amount of fluid T contained in the mixture has no influence
on the flow of the mixture, hence the name tracer.

The volume fraction C(x; t) of fluid T is defined as

C(x; t) =
volume of T in REV

volume of mixture in REV
(1.9)

Further we assume that T and F have the same density ρ. The conservation of
mass for fluid T is then modeled by the equation

∂(ΦρC)

∂t
+ ∇ � fρuC�D∇ Cg= ρqT in Ω (1.10)

together with appropriate initial and boundary conditions.

The velocity u is given by Eq.(1.7) and D is the tensor of hydrodynamic dis-
persion. It is composed of two terms describing molecular diffusion and me-
chanical dispersion (see (Scheidegger 1961; Bear 1979)):

D = (Φ=τ)DmI| {z }
mol. diff.

+αTkukI+
αL�αT

kuk
uuT

| {z }
mech. dispersion

: (1.11)

Here Dm denotes the molecular diffusion constant and τ the tortuosity of the
porous medium which is the average ratio of distance traveled in the micro-
scopic pores of the medium to the net macroscopic distance traveled. The fac-
tors αL and αT are the parameters of longitudinal and transversal dispersivity.
Mechanical dispersion models the spreading of the tracer on the macroscopic
level due to the random structure of the porous medium and depends on the size
and direction of the flow velocity. After (Allen et al. 1992) we mention three
effects illustrated schematically in Fig. 1.6. The non–uniform velocity profile
due to the no–slip boundary condition (a) leads to a longitudinal spreading of
the tracer. The stream splitting shown in (b) leads to a transversal spreading.
Similarly the tortuosity effect illustrated in (c) leads to a longitudinal spreading.

1.2.4 MISCIBLE DISPLACEMENT

We consider again the flow of two completely miscible fluids F and T in a
porous medium filling the domain Ω. In contrast to the last subsection, however,

1.2. Single–Phase Fluid Flow and Transport 15

(a) (b) (c)

Figure 1.6: Illustration of mechanical dispersion: (a) Taylor diffusion, (b) stream
splitting and (c) tortuosity effect.

the flow of the mixture depends on its composition. The dependence is through
density ρ and viscosity µ depending on concentration and possibly on pressure:

ρ = ρ(p;C) density of mixture; (1.12a)

µ = µ(p;C) viscosity of mixture: (1.12b)

Furthermore we denote the density of the fluid T by ρT (p). The pressure p of
the mixture and concentration C of fluid T are now described by two coupled,
in general nonlinear, equations

∂(Φρ(p;C))

∂t
� ∇ �

�
ρ(p;C)

µ(p;C)
K(∇ p�ρ(p;C)g)

�
= ρ(p;C)q; (1.13a)

∂(ΦρT (p)C)

∂t
+ ∇ � fρT (p)uC�D∇ Cg= ρT (p)qT (1.13b)

and appropriate boundary and initial conditions.
The first equation, the pressure equation, is coupled to the second via ρ and

µ. The second equation, called the concentration equation, is coupled to the
first via pressure p and velocity u (containing pressure). Note that a nonlinear
coupling of the equations also exists through the dispersion tensor D depending
on u.

Eqs. (1.13) describe for example the miscible flow of fresh and salt water.
There the coupling is via the density and the viscosity can be taken constant.
Other applications are the miscible displacement of water with certain hydro-
carbons. There the dependence of density on pressure and concentration can
usually be neglected since the coupling through viscosity is dominant. In that
case the equations reduce to

�∇ �
�

K
µ(p;C)

(∇ p�ρg)
�

= ρq; (1.14a)

∂(ΦρC)

∂t
+ ∇ � fρuC�D∇ Cg= ρqT : (1.14b)

16 1. Modeling Immiscible Fluid Flow in Porous Media

θ

w

NAPL

θ
w

w

g
g

θ

(a) (b)

Figure 1.7: Curved fluid–fluid interface due to capillarity in a capillary tube (a)
and in a porous medium (b).

The numerical solution of these equations has been studied extensively, see
e. g. (Ewing and Wheeler 1980; Ewing 1983).

1.3 Microscopic Considerations of Multiphase Sys-
tems

Single–phase flow is governed by pressure forces arising from pressure differ-
ences within the reservoir and the exterior gravitational force. In multiphase
flows the sharp interfaces between fluid phases on the microscopic level give
rise to a capillary force that plays an important rôle in these flows.

1.3.1 CAPILLARITY

Fig. 1.7 shows the interface between two phases in more detail. Part (a) shows a
capillary tube in water, i. e. a water–air interface. Part (b) shows a water–NAPL
interface in a pore channel between two sand grains. On the molecular level
adhesive forces are attracting fluid molecules to the solid and cohesive forces
are attracting molecules of one fluid to each other. At the fluid–fluid interface
these forces are not balanced leading to the curved form of the interface (see
below).

Wettability. The magnitude of the adhesive forces is decreasing rapidly with
distance to the wall. The interaction with the cohesive forces leads to a spe-
cific contact angle θ between the solid surface and the fluid–fluid interface that
depends on the properties of the fluids. The fluid for which θ < 90Æ is called
the wetting phase fluid, the other fluid is called the non–wetting phase fluid. In
both cases of Fig. 1.7 water is the wetting phase. In the case of three immiscible
fluids each fluid is either wetting or non–wetting with respect to the other flu-
ids. E. g. in a water–NAPL–gas system water is typically wetting with respect

1.3. Microscopic Considerations of Multiphase Systems 17

w

n
r

θ

θ
R

(a)

θ1
θ2

r1

r2

(b)

Figure 1.8: Capillary pressure in a tube (a), principal radii of curvature (b).

to both other fluids and NAPL is non–wetting with respect to water and wetting
with respect to gas. NAPL is then called the intermediate wetting phase.

Surface Tension. The cohesive forces are not balanced at a fluid–fluid inter-
face. Molecules of the wetting phase fluid at the interface experience a net
attraction towards the interior of the wetting phase fluid body. This results in
the curved form of the interface. In order to move molecules from the interior
of the wetting phase to the interface and therefore to enlarge its area work has to
be done. The ratio of the amount of work ∆W necessary to enlarge the area of
the interface by ∆A is called surface tension

σ =
∆W
∆A

�
J

m2

�
: (1.15)

1.3.2 CAPILLARY PRESSURE

The curved interface between a wetting phase w and a non–wetting phase n is
maintained by a discontinuity in microscopic pressure of each phase. The height
of the jump is called capillary pressure pc:

pc = pn� pw � 0: (1.16)

The pressure pn in the non–wetting phase is larger than the pressure pw in
the wetting phase at the interface (the interface is approached from within the
corresponding phase). In order to derive a relation for the capillary pressure we
consider a tube with radius diameter 2R (R not too large) that is filled with a
wetting phase and a non–wetting phase as shown in Fig. 1.8a.

The curved interface has spherical shape with radius r in this case (Bear and
Bachmat 1991, p. 335). The radii r and R are related by R = r cosθ. Now
imagine an infinitesimal increase of the radius r by dr. The work required to

18 1. Modeling Immiscible Fluid Flow in Porous Media

sand water air

(a) (b) (c)

Figure 1.9: Air and water distribution for various amounts of water present.
Pendular situation (a), funicular situation (b) and insular air (c).

increase the area of the interface is given by (1.15):

∆W = σ∆A = σ(A(r+dr)�A(r))

= r

�
1
2
�

θ
π

�
8πrdr+O(dr2):

(1.17)

This work is done by capillary pressure which is assumed to be uniform over
the entire interface:

∆W = Fdr = pcA(r)dr = pc

�
1
2
�

θ
π

�
4πr2dr: (1.18)

Equating these two expressions yields an expression for capillary pressure:

pc =
2σcosθ

R
: (1.19)

Surface tension and contact angles are fluid properties whereas R is a parameter
of the porous medium. According to (1.19) capillary pressure increases with
decreasing pore size diameter.

Similar arguments relate capillary pressure at a point of the interface to
surface tension and the principal radii of curvature at this point (also called
Laplace’s equation):

pc = σ
�

1
r1

+
1
r2

�
: (1.20)

The principal radii of curvature are shown in Fig. 1.8b.

1.3.3 STATIC PHASE DISTRIBUTION

In this subsection we consider the microscopic spatial distribution of the phases
in a two–phase water–air system at rest for various amounts of fluid present in
the porous medium (which is assumed to consist of sand grains).

We begin with the situation shown in Fig. 1.9a when only a small amount of
water is present in the porous medium. In that case so–called pendular rings

1.4. Multiphase Fluid Flow 19

solid phase

phase (w)

phase (n)

phase (g)

Figure 1.10: Three–phase system.

form around the points of contact of the grains. The pendular rings are dis-
connected except for a very thin film of water (a few tens of molecules) on the
surface of the solid grains. No flow of water is possible in that situation. The
water is in the smallest pores leading to a large value of capillary pressure ac-
cording to formula (1.19).

As the amount of water is increased the pendular rings grow until a connected
water phase is established and a flow of water is possible. This is the funicular
situation shown in Fig. 1.9b.

If the amount of water is increased further the air phase becomes discon-
nected leading to insulated air droplets in the largest pores of the porous medium
(meaning small capillary pressure). Although no flow is possible in situations
(a) and (c) of Fig. 1.9 the amount of water, respectively air can be reduced fur-
ther by phase transitions, i. e. vaporization and condensation.

1.4 Multiphase Fluid Flow
In this subsection we give the macroscopic mathematical model describing mul-
tiphase fluid flow in porous media. Each discontinuous phase from the micro-
scopic level is replaced by a continuum on the macroscopic level. We suppose
that the void space contains m fluid phases either denoted by greek symbols
α;β; : : : or latin symbols w;n;g; : : : if we want to indicate the wetting phase,
non–wetting (NAPL) phase or gaseous phase.

1.4.1 SATURATION

Fig. 1.10 shows a porous medium filled with three fluids (a water phase, a NAPL
phase and a gaseous phase). Similar to the void space indicator function we
define the phase indicator function

γα(x; t) =
�

1 x 2 phase α at time t
0 else

8x 2 Ω: (1.21)

20 1. Modeling Immiscible Fluid Flow in Porous Media

Note that the spatial phase distribution now changes with time. For an REV
Ω0(x0) centered at x0 we define the saturation Sα(x; t) of a phase α as

Sα(x; t) =
volume of phase α in REV

volume of void space in REV
=

R
Ω0(x0)

γα(x; t)dx

R
Ω0(x0)

γ(x; t)dx
: (1.22)

Similar remarks about the selection of the REV apply as in the case of the poros-
ity Φ. From the definition of the saturation we obtain immediately

∑
α

Sα(x; t) = 1; 0� Sα(x; t)� 1: (1.23)

1.4.2 GENERAL FORM OF THE MULTIPHASE FLOW EQUA-
TIONS

Conservation of Mass. Suppose that the porous medium fills the domain Ω�
R

3 . Conservation of mass for each phase α is stated by

∂(ΦραSα)

∂t
+ ∇ � fραuαg= ραqα: (1.24)

Each phase has its own density ρα , saturation Sα , velocity uα and source term
qα . Due to the algebraic constraint (1.23) only m� 1 saturation variables are
independent of each other.

Extension of Darcy’s Law. As in the single–phase case it can be shown by
volume averaging or homogenization techniques that the macroscopic phase ve-
locity can be expressed in terms of the macroscopic phase pressure as

uα =�
Kα
µα

(∇ pα�ραg) : (1.25)

In addition to the assumptions in the single–phase case it has been assumed that
the momentum transfer between phases is negligible. The phase permeability
Kα , however, depends on the saturation of phase α and can be further decom-
posed into

Kα = krα(Sα)K; (1.26)

i. e. a scalar non–dimensional factor krα called relative permeability and the ab-
solute permeability K which is independent of the fluid. Relation (1.26) is due
to (Muskat et al. 1937) and is supported by experimental data, see e. g. (Schei-
degger 1974). Theoretical derivations, e. g. in (Whitaker 1986b), suggest that
(1.26) may be more complicated in general.

The relative permeability krα models the fact that the flow paths of fluid α are
blocked by the presence of the other phases. It can be considered as a scaling
factor and obeys the constraint

0� krα(Sα)� 1: (1.27)

1.4. Multiphase Fluid Flow 21

Typical shapes of the relative permeability curves will be given in a separate
subsection below. Inserting (1.26) into (1.25) we obtain the final form of Darcy’s
Law for multiphase systems that will be used throughout this book:

uα =�
krα
µα

K (∇ pα �ραg) : (1.28)

The quantity λα = krα=µα is often referred to as mobility.

Macroscopic Capillary Pressure. In Subs. 1.3.2 it has been shown that the
pressure on the microscopic level has a jump discontinuity when passing from
one fluid phase to another. The height of the jump is the capillary pressure. This
fact is reflected by a macroscopic capillary pressure on the macroscopic level

pcβα(x; t) = pβ(x; t)� pα(x; t) 8β 6= α: (1.29)

The macroscopic capillary pressure pcβα will be a function of the phase dis-
tribution at point x and time t:

pcβα(x; t) = f (S1(x; t); : : : ;Sm(x; t)) : (1.30)

Below we will give some examples of capillary–pressure saturation relation-
ships based on the discussion in Sect. 1.3.

From (1.29) and (1.30) it is evident that only one phase pressure variable
can be chosen independently and only m�1 capillary pressure–saturation rela-
tionships are needed to define the remaining phase pressures. The selection of
independent and dependent variables depends on the problem at hand and many
examples will be given throughout the text. Before describing specific two– and
three–phase models typical shapes of relative permeability and capillary pres-
sure functions will be given.

1.4.3 CAPILLARY PRESSURE CURVES

General Shape. Let us consider a two–phase system with a wetting phase w
and a non–wetting phase n. In this case we need a single capillary pressure
function pc = pn � pw. Initially we assume that the porous medium is filled
completely by the wetting phase fluid. When the porous medium is now drained
from the bottom with the n-phase coming in from top it is clear from the dis-
cussion in Subs. 1.3.3 that the water retreats to smaller and smaller pores with
smaller and smaller radii. According to relation (1.19) the capillary pressure
at the microscopic fluid–fluid interfaces increases with decreasing pore radius.
The (averaged) macroscopic capillary pressure therefore increases with decreas-
ing wetting phase saturation. In general, macroscopic capillary pressure also de-
pends on temperature and fluid composition due to changes in surface tension,
but we consider in this work only a dependence pc = pc(Sw) in the two–phase
case.

22 1. Modeling Immiscible Fluid Flow in Porous Media

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

ca
pi

lla
ry

 p
re

ss
ur

e

saturation w

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

ca
pi

lla
ry

 p
re

ss
ur

e

saturation w

Figure 1.11: Typical shapes of a capillary pressure–saturation function for a
poorly graded (left) and a well graded (right) porous medium during drainage.

(a) drainage (b) imbition

wetting

non-wetting

Figure 1.12: Ink bottle effect explaining hysteresis in capillary pressure–
saturation relationships.

Fig. 1.11 shows two typical capillary pressure–saturation relationships for a
porous medium with a highly uniform pore size distribution (left) and a highly
non–uniform pore size distribution (right). Both functions are for a drainage
cycle.

Entry Pressure. Looking in more detail at Fig. 1.11 we see that at Sw = 1
capillary pressure increases rapidly to a value pd without a noticeable decrease
in wetting phase saturation. The value pd is called entry pressure and it is the
critical pressure that must be applied for the non–wetting phase to enter the
largest pores of the porous medium. A correct treatment of the entry pressure is
especially important for heterogeneous porous media.

Hysteresis. The curves in Fig. 1.11 are only valid for a drainage cycle. If the
porous medium is subsequently filled again (imbition) the capillary pressure–
saturation function will be different. In general the pc(S) relation depends on
the complete history of drainage and imbition cycles.

One reason for hysteresis is the ink bottle effect illustrated in Fig. 1.12 (after
Bear and Bachmat (1991)). Because of the widening and narrowing of the pore
channels the same radius, and therefore capillary pressure, occurs for different

1.4. Multiphase Fluid Flow 23

elevations. For the same capillary pressure the wetting phase saturation is al-
ways higher during drainage than during imbition. For other effects resulting in
hysteresis we refer to (Bear and Bachmat 1991; Corey 1994; Helmig 1997).

Residual Saturation. As the reservoir is drained, wetting phase saturation de-
creases and capillary pressure increases. Finally, the pendular water saturation is
reached. The corresponding wetting phase saturation (usually greater than zero)
is called wetting phase residual saturation Swr. The wetting phase saturation
cannot be reduced below residual saturation by pure displacement, however, it
can be reduced by phase transition, in this case vaporization. As the residual sat-
uration is approached a large increase in capillary pressure produces practically
no decrease in wetting phase saturation. It is this large derivative of the capillary
pressure function that will require special care in the numerical solution. The
curves in Fig. 1.11 are plotted for a residual saturation Swr = 0:1.

On the other hand also the non–wetting phase might have a residual saturation
Snr greater than zero as motivated in Subs. 1.3.3 by the insular air droplets. With
the residual saturations one can define the effective saturations S̄α :

S̄α =
Sα�Sαr

1�∑
β

Sβr
: (1.31)

Obviously we have

∑
α

S̄α = 1; 0� S̄α � 1: (1.32)

In addition, the residual saturation may depend on position in the case of
heterogeneous porous media.

Van Genuchten Capillary Pressure Function. In general there are two pos-
sibilities how to obtain capillary pressure–saturation relationships. The first
method is direct measurement, for measurement methods we refer to (Corey
1994). The second method is to derive the functional relationship between capil-
lary pressure and saturation from theoretical considerations. Usually these mod-
els contain several parameters that are fitted to experimental data.

Here we list the model of Van Genuchten (1980) derived for two–phase
water–gas systems. It is written in terms of the effective saturation defined above
as

pc(Sw) =
1
α

�
S̄
� 1

m
w �1

� 1
n

: (1.33)

The parameter m is often chosen as m = 1� 1
n and therefore only two free

parameters n and α remain to be fitted. Typical values of n are in the range
2 : : :5, the α parameter is related to the entry pressure. Fig. 1.13 shows the Van
Genuchten function for different values of n and fixed α.

24 1. Modeling Immiscible Fluid Flow in Porous Media

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

saturation w

Van Genuchten Capillary Pressure

alpha = 0.33

n=2
n=3
n=4
n=5

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
saturation w

Brooks-Corey Capillary Pressure

entry pressure = 2.0entry pressure = 2.0

lambda = 0.8
lambda = 1.5

lambda = 3
lambda = 4

Figure 1.13: Van Genuchten and Brooks–Corey capillary pressure functions for
different parameters.

Brooks–Corey Capillary Pressure Function. Another model for two–phase
systems is given by Brooks and Corey (1964)

pc(Sw) = pdS̄
� 1

λ
w : (1.34)

with two parameters pd and λ. pd is the entry pressure of the porous medium
and λ is related to the pore size distribution. A material with a single grain
size has a large λ value and a material which is highly non–uniform has a small
value of λ, see also Corey (1994). Typical values of λ are in the range 0:2 : : :3:0.
Fig. 1.13 shows the Brooks–Corey function for different values of λ and fixed
pd .

Parker Capillary Pressure Function. As an example for three–phase capillary
pressure functions we consider the model of Parker et al. (1987). It assumes a
wetting phase w, an intermediate wetting phase n and a non–wetting phase g. In
the three–phase case we need two capillary pressure functions which we choose
as pcnw = pn � pw and pcgn = pg � pn. It is assumed that the function pcnw

depends only on Sw and pcgn depends only on Sw +Sn = 1�Sg in the following
way:

pcnw(Sw) =
1

αβnw

h�
S̄w
� n

1�n �1
i 1

n
; (1.35a)

pcgn(Sg) =
1

αβgn

h�
1� S̄g

� n
1�n �1

i 1
n
: (1.35b)

This model is based on the two–phase model of Van Genuchten with the same
parameters α and n. The new parameters βnw and βgn are related to the surface
tension of the fluid–fluid interfaces:

βgn =
σgw

σgn
; βnw =

σgw

σnw
: (1.36)

1.4. Multiphase Fluid Flow 25

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

saturation w

Van Genuchten Relative Permeability

epsilon=1/2, gamma=1/3

krw, n=4
krn, n=4
krw, n=2
krn, n=2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

saturation w

Brooks-Corey Relative Permeability

krw, lambda=2
krn, lambda=2
krw, lambda=4
krn, lambda=4

Figure 1.14: Van Genuchten and Brooks–Corey relative permeability functions
for different parameters and residual saturations Swr = Snr = 0:1.

1.4.4 RELATIVE PERMEABILITY CURVES

The phase or effective permeability Kα has been defined above as Kα = krαK. In
this subsection we review several approaches to define the relative permeability
krα . Again there are the two approaches of measurement (see Corey (1994))
and analytical derivation. The analytical approaches use a connection between
the capillary pressure–saturation relationship and relative permeability, see Bear
and Bachmat (1991) or Helmig (1997). In the two–phase case this leads to the
well known functions of Van Genuchten and Brooks–Corey given below.

Van Genuchten Relative Permeability. The Van Genuchten relative perme-
ability functions for a two–phase system with wetting phase w and non–wetting
phase n are written in terms of the residual saturation as

krw(Sw) = S̄ε
w

1�
�

1� S̄
n

n�1
w

� n�1
n

!2

; (1.37a)

krn(Sn) = S̄γ
n

�
1�
�
1� S̄n

� n
n�1
� 2(n�1)

n
(1.37b)

with the form parameters ε and γ that are typically chosen as ε = 1=2 and γ=
1=3, see Helmig (1997). The parameter n is the same as in the corresponding
capillary pressure function of Van Genuchten, i. e. Eq. (1.33). In (1.37) we
already used the fact that m = 1� 1

n .

Fig 1.14 shows an example for the relative permeability after Van Genuchten.
krw rises slowly for small saturations Sw because the small pores are filled first
by the wetting phase fluid. When Sw comes close to the maximum saturation krw

is very steep since now the large pores are filled. For krn we have the opposite
situation: The large pores are filled first for small Sn and finally the small pores
when Sn is large. Consequently krn rises faster than krw for small arguments and
slower for large arguments. Relative permeability functions also show hysteresis
but this effect is considered to be very small, cf. Corey (1994).

26 1. Modeling Immiscible Fluid Flow in Porous Media

Brooks–Corey Relative Permeability. The Brooks–Corey model for relative
permeability in a two–phase system is given by the formulas

krw(Sw) = S̄
2+3λ

λ
w ; (1.38a)

krn(Sn) = S̄2
n

�
1�
�
1� S̄n

� 2+λ
λ

�
: (1.38b)

The parameter λ is the same as in the capillary pressure function of Brooks–
Corey given by Eq. (1.34). Fig 1.14 shows an example for the relative perme-
ability after Brooks–Corey.

Stone Relative Permeability. As an example of relative permeability–
saturation relationships for a three–phase system we consider the model of Stone
after Aziz and Settari (1979). Three–phase relative permeabilities are very dif-
ficult to measure therefore it has been tried to derive three–phase relative per-
meabilities from two–phase relative permeabilities. We assume that the three–
phase system consist of a wetting phase w, a non–wetting phase g and an inter-
mediate wetting phase n. For simplicity it is further assumed that krw and krg

depend only on Sw, respectively Sg regardless of the distribution of the other
two phases. For the intermediate wetting phase n this is not possible since in a
two–phase system n�w phase n fills the large pores and in a system g�n phase
n fills the small pores, cf. Bear and Bachmat (1991). Therefore we must have
krn = krn(Sw;Sn). Using residual saturations the model of Stone defines krn as
follows:

krn(Sw;Sn) =
S̄nkrnw(Sw)krng(Sn)

(1� S̄w)(S̄w + S̄n)
; (1.39a)

krnw(Sw) =
�
1� S̄w

� 1
2
�

1� S̄
n

n�1
w

� 2(n�1)
n

; (1.39b)

krng(Sn) = S̄
1
2
n

1�
�

1� S̄
n

n�1
n

� n�1
n

!2

: (1.39c)

As one can see krnw considers n to be the non–wetting phase in a n�w sys-
tem and krng treats phase n as the wetting phase in a g� n system. The Van
Genuchten model with ε = γ= 1=2 is used for these two–phase systems. The
other two relative permeabilities are defined in correspondence:

krw(Sw) = S̄
1
2
w

1�
�

1� S̄
n

n�1
w

� n�1
n

!2

; (1.40a)

krg(Sg) = S̄
1
2
g

�
1�
�
1� S̄g

� n
n�1
� 2(n�1)

n
: (1.40b)

For other definitions of three–phase relative permeabilities we refer to Helmig
(1997).

1.4. Multiphase Fluid Flow 27

1.4.5 TWO–PHASE FLOW MODEL

We are now in a position to state the complete two–phase flow model. Let the
domain Ω� R

3 and time interval T = (0;T) be given. The two–phase problem
for phases α = w;n in Ω�T then reads

∂(ΦραSα)

∂t
=�∇ � fραuαg+ραqα; (1.41a)

uα =�
krα
µα

K (∇ pα�ραg) ; (1.41b)

Sw +Sn = 1; (1.41c)

pn� pw = pc(Sw) (1.41d)

with initial and boundary conditions

Sα(x;0) = Sα0(x); pα(x;0) = pα0(x) x 2Ω; (1.42a)

Sα(x; t) = Sαd(x; t) on ΓS
αd ; pα(x; t) = pαd(x; t) on Γp

αd ; (1.42b)

ραuα �n = φα(x; t) on Γαn: (1.42c)

The boundary conditions (1.42b,1.42c) must be compatible with the alge-
braic constraints (1.41c,1.41d). Only two variables out of Sw;Sn; pw and pn can
be chosen as independent unknowns. In the next chapter the advantages and
disadvantages of different formulations will be discussed.

In the case of unsaturated groundwater flow the non–wetting (gaseous) phase
can be assumed to be at atmospheric pressure, i. e. pn = const. The wetting
phase pressure can then be computed via the capillary pressure function

pw = pn� pc(Sw): (1.43)

Setting Ψ=�pc(Sw) and assuming incompressibility of the w–phase we ob-
tain from conservation of mass and Darcy’s law for phase w a single equation
for Ψ,

�
�

p�1
c

�0
(�Ψ)

∂Ψ
∂t
� ∇ �

�
krw(p�1

c (�Ψ))

Φµw
K (∇Ψ �ρwg)

�
= qw=Φ; (1.44)

which is basically Richard’s equation from (Richards 1931). This equation is
only listed for completeness here and will not be considered further in this work.

1.4.6 THREE–PHASE FLOW MODEL

In the three–phase case two capillary pressure–saturation functions are required.
If we choose, as in the model of Parker, pcnw = pn � pw and pcgn = pg� pn

the capillary pressure between the water and gas phases is given by pg� pw =
pcnw+ pcgn. However, if the n–phase is not present in the system, i. e. Sn = 0, one

28 1. Modeling Immiscible Fluid Flow in Porous Media

would like to use directly a two–phase capillary pressure function for the water–
gas system pcgw = pg� pw. This situation typically arises in the simulation of a
contamination process where the n–phase is initially absent. Following Forsyth
(1991) we blend between the two– and the full three–phase case in the following
way:

pn� pw = βpcnw(Sw)+(1�β)pcnw(1); (1.45a)

pg� pn = βpcgn(Sg)+(1�β)(pcgw(Sw)� pcnw(1)); (1.45b)

where

β = min(1;Sn=S�n): (1.46)

This definition of β assumes that Snr = 0. S�n is a small parameter, e. g. Forsyth
and Shao (1991) use S�n = 0:1. The constant term pcnw(1) in (1.45a) is required
in order to represent the entry pressure for the n–phase correctly when Sn = 0
and Sw near 1. Consequently the term pcnw(1) must be subtracted in the second
equation.
The complete three–phase flow model for phases α = w;n;g in Ω�T now reads

∂(ΦραSα)

∂t
=�∇ � fραuαg+ραqα; (1.47a)

uα =�
krα
µα

K (∇ pα�ραg) ; (1.47b)

Sw +Sn +Sg = 1; (1.47c)

pn� pw = βpcnw(Sw)+(1�β)pcnw(1); (1.47d)

pg� pn = βpcgn(Sg)+(1�β)(pcgw(Sw)� pcnw(1)) (1.47e)

with β = min(1;Sn=S�n) from above and the initial and boundary conditions

Sα(x;0) = Sα0(x); pα(x;0) = pα0(x) x 2 Ω; (1.48a)

Sα(x; t) = Sαd(x; t) on ΓS
αd ; pα(x; t) = pαd(x; t) on Γp

αd ; (1.48b)

ραuα �n = φα(x; t) on Γαn: (1.48c)

Similar to the two–phase case the boundary and initial conditions must be
compatible with the algebraic constraints. For the selection of appropriate for-
mulations, i. e. primary and dependent variables we refer to the next chapter.

1.4.7 COMPOSITIONAL FLOW

In compositional flows each phase consists of several components. The compo-
nents (molecular species) are transported within phases and exchanged across
phase boundaries (interphase mass transfer). As examples we mention the dis-
solution of methane in oil or the vaporization (solution) of volatile components

1.4. Multiphase Fluid Flow 29

of a NAPL into the gaseous (aqueous) phase. This subsection develops the equa-
tions to describe such phenomena in the isothermal case under the assumption
of local thermodynamic equilibrium. We assume the general case of m phases
and k components.

Component Representation. There are several ways to describe the compo-
nents within a phase. In Subs. 1.2.3 we already used the volume fraction C in
the single–phase case. For a component κ in a phase α it reads

Cκ
α(x; t) =

volume of component κ in phase α in REV
volume of phase α in REV

: (1.49)

Similarly we can define the mass fraction Xκ
α of component κ in phase α:

Xκ
α (x; t) =

mass of component κ in phase α in REV
mass of phase α in REV

: (1.50)

Defining the intrinsic mass density of component κ in phase α by

ρκ
α(x; t) =

mass of component κ in phase α in REV
volume of component κ in phase α in REV

(1.51)

the mass and volume fractions are connected by

ραXκ
α = ρκ

αCκ
α; (1.52)

where ρα is the density of phase α.
From the definitions above we immediately have

k

∑
κ=1

Xκ
α = 1;

k

∑
κ=1

Cκ
α = 1; 8α = 1; : : : ;m; (1.53)

which gives together with (1.52) the relation

ρα =
k

∑
κ=1

Cκ
αρκ

α: (1.54)

Component Mass Balance. Each component κ is transported with its own ve-
locity uκ

α within phase α. Following Allen et al. (1992) we define the barycen-
tric phase velocity as the mass weighted average of all component velocities:

uα =
k

∑
κ=1

Xκ
α uκ

α : (1.55)

The deviation of a component’s velocity to the mean velocity is then given by

wκ
α = uκ

α�uα : (1.56)

30 1. Modeling Immiscible Fluid Flow in Porous Media

Note that the mean velocity is constructed such that

k

∑
κ=1

Xκ
α wκ

α = 0: (1.57)

Now we can state the equation for conservation of mass for each component
κ in a phase α as

∂(ΦSαCκ
αρκ

α)

∂t
+ ∇ � fρκ

αCκ
αuκ

αg= rκ
α; (1.58)

where rκ
α is a source/sink term that models the exchange of mass of component κ

with the other phases. Using (1.52) and (1.56) we can rewrite the mass balance
as

∂(ΦSαραXκ
α)

∂t
+ ∇ � fραXκ

α uα + jκ
αg= rκ

α: (1.59)

The quantity jκ
α = ραXκ

α wκ
α , which is the flux produced by the deviation from

mean velocity, can be modeled as a diffusive flux analogous to dispersion in
single–phase systems:

jκ
α =�Dκ;α

pm ∇ Xκ
α : (1.60)

However, the approaches for the hydrodynamic dispersion tensor Dκ;α
pm in a mul-

tiphase/multicomponent system are even more controversial than in the single–
phase case, cf. Helmig (1997, p. 117) or Allen et al. (1992, p. 52). Often the
term jκ

α is simply neglected, see e. g. Peaceman (1977).
For the mean phase velocity it is assumed that the extended multiphase Darcy

law

uα =�
krα
µα

K (∇ pα �ραg) (1.61)

can be used.
Furthermore we assume that components are only exchanged between phases

and no intraphase chemical reactions are taking place. This results in the con-
straint

m

∑
α=1

rκ
α = 0; κ = 1; : : : ;k; (1.62)

for the reaction terms. If the component mass balance (1.59) is summed over all
phases the reaction terms cancel out and we obtain the final form (with jκ

α = 0):

m

∑
α=1

∂(ΦSαραXκ
α)

∂t
+

m

∑
α=1

∇ � fραXκ
α uαg= 0: (1.63)

1.4. Multiphase Fluid Flow 31

Phase Partitioning. To complete the set of equations we shall restrict our-
selves to the isothermal setting and local thermodynamic equilibrium. This
means that the flow is slow enough that the partitioning of a component κ across
the phases can be determined by equilibrium thermodynamic considerations.
Without going into details this yields algebraic expressions of the form

Xκ
α

Xκ
β
= Zκαβ(T; pα; pβ;X

κ
α ;X

κ
β) (1.64)

for each β 6= α. Given one mass fraction Xκ
α the mass fractions of component κ

in all other phases can be computed. For a more detailed treatment of thermo-
dynamics we refer to (Allen et al. 1992; Falta 1992; Helmig 1997).

Complete Model. We now show that the equations given are enough to deter-
mine all unknown functions. Assuming m phases and k components we have the
following unknowns:

Symbol Description Count
Xκ

α mass fractions km
Sα phase saturations m
pα phase pressures m
uα mean phase velocities m

(k+3)m
These unknown functions are determined by the following relations:

Relation Count
component mass balance summed over phases (1.63) k
multiphase Darcy law (1.61) m
capillary pressure–saturation relations m�1

∑m
α=1 Sα = 1 1

∑k
κ=1 Xκ

α = 1; 8α m
thermodynamic constraints (1.64) k(m�1)

(k+3)m
Note that the number of partial differential equations equals the number of

components in the system. All other unknowns are determined by algebraic re-
lations. The particular case of three phases and three components is treated in
Forsyth and Shao (1991) and Helmig (1997), non–isothermal flows are consid-
ered in Falta (1992) and Helmig (1997). A simplified model with three phases
and mass transfer only between the gaseous phase and the oil phase is known as
black oil model. In the black oil model only the oil phase contains two compo-
nents, cf. (Peaceman 1977).

Bibliographic Comments
The respective chapters in the books by Allen et al. (1992), Aziz and Settari
(1979), Peaceman (1977) and the article by Allen (1985) can be read as an in-

32 1. Modeling Immiscible Fluid Flow in Porous Media

troduction to the field. Bear and Bachmat (1991) and the series of articles by
Hassanizadeh and Gray (1979a) and Whitaker (1986a) give a theoretical foun-
dation of the macroscopic single and multiphase flow equations. The books by
Corey (1994) and Helmig (1997) give a thorough discussion of the relative per-
meability and capillary pressure relationships. Compositional flow equations
are discussed by Peaceman (1977), Allen et al. (1992) and Helmig (1997). The
book edited by Hornung (1997) gives an up–to–date overview of the field of
homogenization.

2

Basic Properties of Multiphase
Flow Equations

The basic mathematical models for multiphase flow in porous media consist
of a set of partial differential equations along with a set of algebraic relations.
Typically there are a number of different possibilities to select a set of indepen-
dent variables with which the remaining unknowns can be eliminated (depen-
dent variables). This results in different mathematical formulations for the same
model. The properties of each mathematical formulation depend on the individ-
ual problem setup. Moreover, there exist mathematical formulations using new
(artificial) unknowns that have favorable mathematical properties. The selection
of the proper formulation can strongly influence the behavior of the numerical
simulation and is therefore of primary importance.

In this chapter we will almost exclusively consider two–phase immiscible
flow. Formulations with primitive variables (i. e. using independent variables
present in the mathematical model) and those with artificial variables will be
discussed. Of special importance is the treatment of porous media with a discon-
tinuity of media properties like absolute permeability and porosity. The analysis
of one–dimensional model problems for both the hyperbolic and the degener-
ate parabolic case will provide some insight into the complex solution behavior
of the two–phase flow model. At the end of the chapter the extension to the
three–phase model will be touched briefly. For an introduction to different for-
mulations of the multiphase flow equations see also the books by Peaceman
(1977), Chavent and Jaffré (1978), Aziz and Settari (1979) and Helmig (1997).

2.1 Phase Pressure–Saturation Formulation
In this subsection we devise two formulations of the two–phase flow model
given in Eqs. 1.41 which are based on “primitive variables” , i. e. variables al-
ready present in the model. The type of the resulting system of partial differen-
tial equations is determined and its applicability is discussed.

2.1.1 MODEL EQUATIONS REVISITED

The model 1.41 consists of two partial differential equations and two algebraic
relations for the determination of the four unknowns pw; pn;Sw and Sn. In a
pressure–saturation formulation one of the pressures and one of the saturations
are eliminated using the algebraic constraints.

33

34 2. Basic Properties of Multiphase Flow Equations

By substituting

Sw = 1�Sn; pn = pw + pc(1�Sn) (2.1)

we obtain the (pw;Sn)–formulation:

∂(Φρw(1�Sn))

∂t
=�∇ � fρwuwg+ρwqw; (2.2a)

uw =�
krw(1�Sn)

µw
K (∇ pw�ρwg) ; (2.2b)

∂(ΦρnSn)

∂t
=�∇ � fρnung+ρnqn; (2.2c)

un =�
krn(Sn)

µn
K (∇ pw + ∇ pc(1�Sn)�ρng) : (2.2d)

As initial and boundary conditions we may specify

Sn(x;0) = Sn0(x); pw(x;0) = pw0(x) x 2 Ω; (2.3a)

Sn(x; t) = Snd(x; t) on ΓS
nd ; pw(x; t) = pwd(x; t) on Γp

wd; (2.3b)

ραuα �n = φα(x; t) on Γαn: (2.3c)

If both fluids are incompressible no initial condition for pw is required and in
order to make pw uniquely determined the Dirichlet boundary Γp

wd should be of
positive measure.

Similarly we obtain the (pn;Sw)–formulation by substituting

Sn = 1�Sw; pw = pn� pc(Sw) (2.4)

which yields

∂(Φρn(1�Sw))

∂t
=�∇ � fρnung+ρnqn; (2.5a)

un =�
krn(1�Sw)

µn
K (∇ pn�ρng) ; (2.5b)

∂(ΦρwSw)

∂t
=�∇ � fρwuwg+ρwqw; (2.5c)

uw =�
krw(Sw)

µw
K (∇ pn� ∇ pc(Sw)�ρwg) : (2.5d)

with initial and boundary conditions given by

Sw(x;0) = Sw0(x); pn(x;0) = pn0(x) x 2 Ω; (2.6a)

Sw(x; t) = Swd(x; t) on ΓS
wd; pn(x; t) = pnd(x; t) on Γp

nd ; (2.6b)

ραuα �n = φα(x; t) on Γαn: (2.6c)

2.1. Phase Pressure–Saturation Formulation 35

A comparison of (2.3) and (2.6) shows that flux type boundary conditions
can be specified for both phases in each of the formulations whereas Dirichlet
boundary conditions can only be specified (of course) for those variables present
in the equations. Note also the structural similarity in both formulations: A code
implementing (2.2) can also solve (2.5) by redefining krw;krn; pc and renaming
the variables. More intricate differences between the two formulations will be
pointed out below.

2.1.2 TYPE CLASSIFICATION

At first sight both (2.2) and (2.5) look like a system of parabolic partial differ-
ential equations. A reformulation reveals, however, that this is not the case. In
what follows we restrict ourselves to the incompressible case ρα = const, Φ in-
dependent of time and pα . A generalization to the compressible case is given in
Subs. (2.2).

Considering first the (pw;Sn)–formulation we obtain by adding ρ�1
w (2.2a) and

ρ�1
n (2.2c) the relation

∇ �u = qw +qn (2.7)

where we introduced the total velocity

u = uw +un: (2.8)

From (2.2b) and (2.2d) the total velocity can be written as

u =�λK (∇ pw + fn∇ pc�G) (2.9)

where we introduced the following abbreviations:

λα = krα=µα phase mobility; (2.10a)

λ = λw +λn total mobility; (2.10b)

fα = λα=λ fractional flow; (2.10c)

G =
λwρw +λnρn

λ
g modified gravity: (2.10d)

A set of equations that is equivalent to (2.2a-d) is then given by

�∇ � fλK∇ pwg= qw +qn� ∇ �
�

λnp0cK∇ Sn +λKG
	
; (2.11a)

Φ
∂Sn

∂t
+ ∇ �

�
λn(Sn)K(ρng� ∇ pw)+λnp0cK∇ Sn

	
= qn: (2.11b)

Eq. (2.11a) comes from inserting (2.9) into (2.7) and (2.11b) comes from
inserting (2.2d) into (2.2c). Eq. (2.11a) is of elliptic type with respect to the
pressure pw. The type of the second equation (2.11b) is either nonlinear hyper-
bolic if p0c � 0 or degenerate parabolic if capillary pressure is not neglected. The

36 2. Basic Properties of Multiphase Flow Equations

diffusion term is degenerate since λn(Sn = 0) = 0. Allowing compressibility of
at least one of the fluids would formally turn (2.11a) into a parabolic equation.
Since compressibility is typically very small it is still “nearly” elliptic (singu-
larly perturbed).

A similar derivation for the (pn;Sw)–formulation yields

�∇ � fλK∇ png= qw +qn� ∇ �
�

λw p0cK∇ Sw +λKG
	
; (2.12a)

Φ
∂Sw

∂t
+ ∇ �

�
λw(Sw)K(ρwg� ∇ pn)+λwp0cK∇ Sw

	
= qw: (2.12b)

2.1.3 APPLICABILITY

In order to judge the applicability of both pressure–saturation formulations we
consider a weak formulation of the pressure equations (2.11a) and (2.12a).
Assuming homogeneous Dirichlet boundary conditions for both pressures and
given a saturation Sn or Sw the left hand side of either (2.11a) or (2.12a) defines
a H1

0 (Ω)–elliptic bilinear form in the usual way, see (Brenner and Scott 1994)
for details. The parameter λ in the bilinear form depends on saturation but is
bounded from above and below. In order to get a uniquely determined pressure
in H1

0 (Ω) via the Lax–Milgram theorem the linear functionals given by the right
hand sides of (2.11a) and (2.12a)

Fn(v) =
Z

Ω

qw +qn +(λnp0cK∇ Sn +λKG) � ∇ vdx; (2.13a)

Fw(v) =
Z

Ω

qw +qn +(λw p0cK∇ Sw +λKG) � ∇ vdx (2.13b)

must be bounded for all v2H1
0 (Ω) and any given saturation which is sufficiently

smooth.
Recalling typical shapes of capillary pressure–saturation relationships from

Subs. 1.4.3 difficulties can be expected near S̄w = 1 or S̄w = 0 where p0c can
be unbounded. These difficulties are partly compensated by the factor λα . In
particular we can observe the following:

S̄n ! 1 λw p0c ! 0 for VG, BC; (2.14a)

S̄w ! 1 λnp0c ! 0 for VG, BC; (2.14b)

S̄w ! 1 λw p0c < ∞ for BC, not for VG: (2.14c)

From that we conclude that the (pw;Sn)–formulation should be used if S̄n is
bounded away from 1 and the (pn;Sw)–formulation is applicable when S̄w is
bounded away from 1. This holds for both Van Genuchten (VG) and Brooks–
Corey (BC) constitutive relations. In the case of Brooks–Corey constitutive rela-
tions we see from (2.14a,c) that the (pn;Sw)–formulation requires no restriction
on the range of Sw. However, λw p0c might become very large leading to difficul-
ties in the nonlinear solution process.

2.2. Global Pressure Formulation 37

The argument presented above serves only as a demonstration of the difficul-
ties with phase pressure–saturation formulations. In particular we did not con-
sider at all the properties of the saturation equation. Existence of a weak solution
of the system (1.41) with Dirichlet and mixed boundary conditions is shown in
(Kroener and Luckhaus 1984). They also assume that S̄w is bounded away from
0. The next section will provide a formulation that avoids the difficulties asso-
ciated with the formulations of this subsection. Also most theoretical results for
solutions of the two–phase flow problem are based on that formulation.

Finally, we note that (pw; pn) is also a possible pair of primary unknowns,
called a pressure–pressure formulation. This formulation requires computa-
tion of the saturation via inversion of the capillary pressure function Sw =
p�1

c (pn � pw), which excludes the purely hyperbolic case. Numerically one
can also expect difficulties when p0c is very small. A regularization approach in
this case corresponds to artificially adding capillary diffusion to the system. For
these reasons we will not consider this formulation in this work.

2.2 Global Pressure Formulation
The global pressure formulation (sometimes also called fractional flow formu-
lation) avoids some of the difficulties associated with the phase pressure formu-
lations introduced in the last section. It is discussed in detail in (Chavent and
Jaffré 1978). Parts of the presentation follow the paper Ewing et al. (1995).

2.2.1 TOTAL VELOCITY

The total velocity has already been introduced in Subs. 2.1.2. Here we will con-
sider the balance equation for total fluid mass in the general case of compressible
fluids. Expanding the time derivatives in (1.41a) gives�

ρwSw
∂Φ
∂t

+ΦSw
∂ρw

∂t
+Φρw

∂Sw

∂t

�
+ ∇ � fρwuwg= ρwqw; (2.15a)�

ρnSn
∂Φ
∂t

+ΦSn
∂ρn

∂t
+Φρn

∂Sn

∂t

�
+ ∇ � fρnung= ρnqn: (2.15b)

In order to eliminate the time derivative of the saturations we divide both equa-
tions by density, add them and use Sw +Sn = 1:�

∂Φ
∂t

+Φ
�

Sw

ρw

∂ρw

∂t
+

Sn

ρn

∂ρn

∂t

��
+ ∑

α=w;n
ρ�1

α ∇ � fραuαg= qw +qn: (2.16)

Applying the product rule to the divergence gives an equation containing the
total velocity u = uw +un:

∂Φ
∂t

+ ∑
α=w;n

ρ�1
α

�
ΦSα

∂ρα
∂t

+ ∇ρ α �uα

�
+ ∇ �u = qw +qn: (2.17)

38 2. Basic Properties of Multiphase Flow Equations

The first two terms containing Φ and ρα vanish in the incompressible case and
we obtain (2.7) again.

Using the extended Darcy–Law (1.41b) and the capillary pressure–saturation
relation (1.41d) we can express the total velocity in terms of the non–wetting
phase pressure pn

u =�λK (∇ pn� fw∇ pc�G) (2.18)

with the abbreviations introduced in (2.10).
The phase velocities uα can be written in terms of the total velocity without

referring to the phase pressures using the following observation

λnuw�λwun = λwλnK (∇ pc +(ρw�ρn)g) : (2.19)

Exploiting the definition u = uw +un the phase velocities are obtained by:

uw = fwu+
λnλw

λ
K (∇ pc +(ρw�ρn)g) ; (2.20a)

un = fnu�
λwλn

λ
K (∇ pc +(ρw�ρn)g) : (2.20b)

Note that either λw or λn is zero for extreme values of saturation.

2.2.2 GLOBAL PRESSURE (HOMOGENEOUS CASE)
Relation (2.18) would look similar to Darcy’s Law if we could find some scalar
function p(x; t;Sw(x; t)) such that

∇ p(x; t;Sw(x; t)) = ∇ pn(x; t)� fw(Sw(x; t))∇ pc(Sw(x; t)): (2.21)

In this case (2.18) turns into

u =�λK (∇ p�G) : (2.22)

Such a function p will be called global pressure. When (2.22) is inserted into
(2.17) we obtain an equation for p with a muchweaker coupling to the saturation
(only via λ and G). Moreover, the use of uw or un based on u weakens also the
influence of capillary pressure in the saturation equation.

Eq. (2.21) requires that we can write fw∇ pc as the gradient of some scalar
function πw. A necessary condition for this is the interchangeability of partial
derivatives, i. e.:

∂
∂xi

�
fw

∂pc

∂x j

�
=

∂
∂x j

�
fw

∂pc

∂xi

�
; i 6= j: (2.23)

This is in general only possible if fw and pc are functions of saturation only1:

fw = fw (Sw(x; t)); pc = pc (Sw(x; t)): (2.24)

1Two generalizations will be given below

2.2. Global Pressure Formulation 39

Following (Chavent and Jaffré 1978) we define

πw(S) =

SZ

S0

fw(ξ)p0c(ξ)dξ+π0 (2.25)

with S0;π0 some constants to be chosen, and set

p(x; t;Sw(x; t)) = pn(x; t)�πw(Sw(x; t)): (2.26)

It can be verified that a global pressure defined in this way obeys (2.21).
We now show how the global pressure is related to the phase pressures. To

that end we have to fix the constants S0;π0. Let Snr be the non–wetting phase
residual saturation and set

S0 = 1�Snr; π0 = pc(1�Snr); (2.27)

i. e.

πw(S) =

SZ

1�Snr

fw(ξ)p0c(ξ)dξ+ pc(1�Snr): (2.28)

Note that this integral is well defined for any S 2 [Swr;1�Snr]. For the global
pressure we then get for any Sw:

p(x; t;Sw) = pn�
SwZ

1�Snr

fw p0cdξ� pc(1�Snr)

= pn +

1�SnrZ

Sw

fw p0cdξ� pc(1�Snr)

� pn

(2.29)

since fw � 0; p0c < 0 and pc(1�Snr)� 0.
Using pn� pw = pc(Sw) we obtain for the wetting phase pressure:

p(x; t;Sw) = pn�πw = pw + pc(Sw)�πw

= pw +

SwZ

1�Snr

p0c(ξ)dξ+ pc(1�Snr)�
SwZ

1�Snr

fw p0cdξ� pc(1�Snr)

= pw +

SwZ

1�Snr

(1� fw)p0cdξ = pw�
1�SnrZ

Sw

fn p0cdξ

� pw

(2.30)

40 2. Basic Properties of Multiphase Flow Equations

pw

Swr 1-Snr

p

pn
pn=p+pc(1-Snr)

pw=p

Sw

Figure 2.1: Qualitative behavior of global pressure and phase pressures.

since fnp0c � 0. The last two inequalities show that we have

pw � p� pn (2.31)

for any Sw. If we assume that p is a well behaved function (see discussion below)
we get the following extreme cases:

Sw = 1�Snr : pw = p; pn = p+ pc(1�Snr) (2.32a)

Sw = Swr : pw =�∞; pn = p+ pc(1�Snr)+

SwrZ

1�Snr

fw p0cdξ

(2.32b)

Fig. 2.1 shows the situation graphically.

2.2.3 COMPLETE SET OF EQUATIONS

We are now able to formulate the complete set of equations for the global
pressure–saturation formulation with the unknown functions (p;Sw):

∇ �u = qw +qn�
∂Φ
∂t
� ∑

α=w;n
ρ�1

α

�
ΦSα

∂ρα
∂t

+ ∇ρ α �uα

�
; (2.33a)

u =�λK (∇ p�G) ; (2.33b)

uw = fwu+λn fwK (∇ pc +(ρw�ρn)g) ; (2.33c)

un = fnu�λn fwK (∇ pc +(ρw�ρn)g) ; (2.33d)

∂(ΦρwSw)

∂t
= ρwqw� ∇ � fρwuwg (2.33e)

with the abbreviations introduced in (2.10). In order to avoid any explicit evalu-
ation of the phase pressures pα in the compressible case we evaluate ρα = ρα(p)

2.2. Global Pressure Formulation 41

and Φ= Φ(p). This is justified since both quantities vary only slowly with pres-
sure and we have p � pα due to the discussion above, cf. Chavent and Jaffré
(1978). The boundary conditions are now given in terms of the global pressure
and total velocity:

Sw(x;0) = Sw0(x); p(x;0) = p0(x) x 2Ω; (2.34a)

Sw(x; t) = Swd(x; t) on ΓS
wd ; p(x; t) = pd(x; t) on Γp

d ; (2.34b)

ρwuw �n = φw(x; t) on Γwn; u �n =U(x; t) on Γn: (2.34c)

It should be noted that global pressure and total velocity are mathematical con-
structs, which makes it difficult to measure the boundary conditions in an exper-
iment. See (Chen et al. 1994) for a discussion of the incorporation of various
boundary conditions.

The formulation (2.33) results in a weaker coupling of pressure and satura-
tion equation. Assuming incompressibility and inserting (2.33b) into (2.33a) we
obtain for the pressure equation:

�∇ � fλK∇ pg= qw +qn� ∇ � fλKGg (2.35)

in contrast to (2.11a) and (2.12a). The right hand side now always produces a
bounded linear functional for any given Sw and we have p 2 H1

0 (Ω) (assuming
Dirichlet boundary conditions). Having p one can compute the phase pressures
via (2.29) and (2.30), i. e.:

pα = p+ “correctionα” (2.36)

where the correction is in general not in a Sobolev space. From (2.20a) and
(2.20b) we see that both phase velocities are well defined since λnλwp0c is
bounded. This results in a reduction of the nonlinearity (with respect to cap-
illary pressure) of the saturation equation.

Most theoretical results concerning the existence of a solution to the incom-
pressible two–phase flow problem are based on the global pressure formula-
tion. Chavent and Jaffré (1978) show the existence of a solution to certain
variational formulations of the incompressible version of (2.33) in the nonde-
generate (λw fn p0c � η > 0) and degenerate case. Uniqueness has been shown
only in the case of a complete decoupling of pressure and saturation equation
(cf. (Chavent and Jaffré 1978)). The solutions of degenerate parabolic equations
have very low regularity. (Yotov 1997) points out that Sw 2 L∞(0;T ;L1(Ω)) and
∂Sw
∂t 2 L2(0;T ;H�1(Ω)). The existence of classical solutions locally in time for

the incompressible, elliptic–hyperbolic (pc � 0) two–phase flow problem has
been shown by Schroll and Tveito (1997).

2.2.4 GLOBAL PRESSURE FOR HETEROGENEOUS MEDIA

Subs. 2.2.2 introduced a global pressure function for the case where relative
permeability and capillary pressure functions are the same throughout the do-
main. This subsection introduces a global pressure function in the case where
the capillary pressure function varies with position in a special way.

42 2. Basic Properties of Multiphase Flow Equations

Due to changes in pore diameter the capillary pressure function will vary with
porosity and/or absolute permeability. (Leverett 1941) modeled this dependence
in the following form

pc(Sw(x; t);x) = pCM(x)J(Sw(x; t)) (2.37)

where J is a normalized capillary pressure function (“J–Leverett function”) and
pCM(x) = σ

p
Φ(x)=k(x) is a scaling factor depending on porosity and absolute

permeability. In this subsection we will extend the global pressure formulation
to a capillary pressure function of this form with the additional assumption that
pCM depends smoothly on x. This derivation follows Chavent and Jaffré (1978)

The idea is to find a global pressure function p such that

∇ p = ∇ pn� fw∇ pc +d(Sw(x; t);x) (2.38)

with an easily computable “correction” function d (compare with the original
relation (2.21)). We then can replace (2.22) by

u =�λK (∇ p�d(Sw(x; t);x)�G): (2.39)

In order to derive d for the special case (2.37) we obtain from (2.25):

πw(S;x) = pCM(x)

0
@ SZ

1�Snr

fw(ξ)J0(ξ)dξ+ J(1�Snr)

1
A
: (2.40)

With p = pn�πw we get

∇ p = ∇ pn� ∇π w

= ∇ pn� ∇ pCM

0
@ SZ

1�Snr

fw(ξ)J0(ξ)dξ+ J(1�Snr)

1
A

� pCM∇

0
@ SZ

1�Snr

fw(ξ)J0(ξ)dξ+ J(1�Snr)

1
A

= ∇ pn� ∇ pCM

0
@ fw(Sw)J(Sw)�

SwZ

1�Snr

f 0wJdξ

1
A

� pCM fw∇ J

= ∇ pn� fw∇ pc + ∇ pCM

0
@ SwZ

1�Snr

f 0wJdξ

1
A
:

(2.41)

Comparison with (2.38) shows that we have

d(Sw(x; t);x) = ∇ pCM(x)

0
@ Sw(x;t)Z

1�Snr

f 0wJdξ

1
A
: (2.42)

2.3. Porous Medium with a Discontinuity 43

ΩI ΩII

coarse fine

Γ

(a)

pc

Sw
1

Sw*

pd

pd

Sw
IISw

I

(b)

pc
pc

I

II

II

I

Figure 2.2: A porous medium with a discontinuity.

Note that we can handle the case of Brooks–Corey capillary pressure functions
where J(1�Snr) 6= 0. In a numerical formulation the integral in the expression
for d should be handled analytically.

2.3 Porous Medium with a Discontinuity
In this section we consider a porous medium consisting of a coarse sand in one
part of the domain and a fine sand in another part of the domain. On the macro-
scopic scale this is modeled by a discontinuity of porous medium properties at
the interface Γ separating the two subdomains.

2.3.1 MACROSCOPIC MODEL

To fix notation ΩI is occupied by the coarse material and ΩII is occupied by the
fine material (see Fig. 2.2a). The absolute permeability K(x) = k(x)I (assumed
to be isotropic) will undergo a jump discontinuity

k(x) =
�

kI x 2 ΩI

kII x 2 ΩII (2.43)

at the interface Γ. Similarly the porosity may vary from ΦI in ΩI to ΦII in
ΩII. According to Subs. 2.2.4 there will also be different capillary pressure–
saturation relationships in the two subdomains reflecting the change in pore size
diameter. Fig. 2.2b shows two typical curves using the Brooks–Corey model.

When the porous medium is initially fully–saturated with water a non–wetting
fluid approaching the interface from the coarse sand region ΩI will only enter
the fine sand region ΩII if capillary pressure is large enough for the smaller pores
in ΩII to be penetrated. This minimum pressure is called threshold pressure or
non–wetting phase entry pressure, cf. (Bear 1972), and is expressed by pd in
the Brooks–Corey model. Note that pII

d > pI
d in Fig. 2.2b. This explains the

44 2. Basic Properties of Multiphase Flow Equations

ΩI

ΩII

DNAPL spillwater saturated

Figure 2.3: Pooling of a DNAPL over a fine sand lens.

“pooling” of a dense nonaqueous phase liquid (DNAPL) over a fine sand lens as
shown in Fig. 2.3.

Consider now the situation where both fluids are present at each side of the
interface. Let SI

w < S�w (see Fig. 2.2b) be the wetting phase saturation at a point
of the interface when approached from ΩI and SII

w the corresponding saturation
when approached from ΩII. From continuity of capillary pressure, (Bear 1972,
p. 452), we have pI

c(S
I
w) = pII

c (S
II
w) and consequently the wetting phase satura-

tion is discontinuous across the interface Γ.
In the next two subsections we develop the mathematical models for porous

media with a discontinuity using first a phase pressure formulation and then the
global pressure formulation.

2.3.2 PHASE PRESSURE FORMULATION

We consider a single discontinuity as shown in Fig. 2.2a. The porous medium is
initially fully saturated with the wetting phase and we assume that the wetting
phase stays always mobile on both sides of the interface. Therefore it is appro-
priate to choose the (pw;Sn)–formulation in both subdomains. Each of the two
second–order equations will require two conditions at the interface.

Since no mass is lost/produced at the interface we have that

ρwuw �n and ρnun �n are continuous across Γ; (2.44)

where n is the vector normal to Γ pointing in direction of ΩII.
By analyzing a one–dimensional flow without gravity van Duijn et al. (1995)

derived a condition for the wetting phase saturation at the interface which they
call the extended capillary pressure condition:

SII
n =

(
0 SI

n < 1�S�w
1�
�

pII
c

��1 �
pI

c(1�SI
n)
�

SI
n � 1�S�w

(2.45)

where SI
n and SII

n are the non–wetting phase saturations at a point on Γ when
approached from ΩI and ΩII respectively. S�w is the threshold saturation given

2.3. Porous Medium with a Discontinuity 45

by pI
c(S

�
w) = pII

c (1). In the case of SI
n < 1� S�w we have SII

n = 0 in ΩII and the
non–wetting phase does not exist there. Consequently capillary pressure, which
is pn� pw, is undefined in ΩII and need not be continuous across Γ.

Finally, we need a condition for pw at the interface which is:

pw is continuous across Γ: (2.46)

This follows from the fact that we assumed a mobile wetting phase on both sides
of the interface, cf. also (de Neef and Molenaar 1997) where this formulation
has been used for theoretical and numerical analysis.

2.3.3 GLOBAL PRESSURE FORMULATION

We now want to formulate the conditions at the interface when the global pres-
sure formulation with p and Sw as unknowns is used.

In each of the two subdomains ΩI and ΩII the capillary pressure–saturation
relationship is fixed and the equations (2.33) are valid. The interface conditions
on Γ will be derived from the (pw;Sn)–formulation above.

For the flux continuity we obtain in the incompressible case from (2.44) that

uw �n and u �n are continuous across Γ: (2.47)

In the compressible case we have that ρw(pw) is continuous across Γ since pw

is continuous. For the non–wetting phase flux we have that it is either zero
if SI

n < 1� S�w or that pn and therefore ρn(pn) is continuous if the n–phase is
mobile on both sides of the interface. This shows that (2.47) also extends to the
compressible case.

The interface condition for Sn from (2.45) is simply rewritten here in terms of
Sw:

SII
w =

(
1 SI

w > S�w�
pII

c

��1 �
pI

c(S
I
w)
�

SI
w � S�w

(2.48)

The interface condition for global pressure requires more attention. Since
global pressure involves the saturation it will also be discontinuous at the inter-
face in general.

Note that we have the following two equivalent representations of global pres-
sure p from (2.30):

p = pn�
SwZ

1

fw(ξ)p0c(ξ)dξ� pc(1) = pw +

SwZ

1

fn(ξ)p0c(ξ)dξ (2.49)

which holds in ΩI for pI
c and in ΩII for pII

c . We consider the following two
cases:

46 2. Basic Properties of Multiphase Flow Equations

Case I: SI
w > S�w, SII

w = 1. Let us first consider the case where the critical sat-

uration is not yet reached and ΩII contains only water. Then we have that pw is
continuous over the interface but pn is not defined in ΩII. Consequently we use
the second representation from (2.49) for the interface condition:

pII = pI �

SI
wZ

1

f I
n(ξ)(pI

c)
0(ξ)dξ (2.50)

for any point on Γ. Note that p is the same on both sides if SI
w = 1.

Case II: SI
w � S�w, pI

c(S
I
w) = pII

c (S
II
w). If the critical saturation is reached we

can use the continuity of pn (which is now defined on both sides) for the interface
condition:

pII = pI +

SI
wZ

1

f I
w(ξ)(pI

c)
0(ξ)dξ�

SII
wZ

1

f II
w (ξ)(pII

c)
0(ξ)dξ+ pI

c(1)� pII
c (1): (2.51)

Note that for SI
w = S�w case I and II yield the same jump in global pressure. In

case II we could also have used the continuity of pw for intermediate saturation
values. However, if water saturation becomes very small in ΩI the formulation
using pn behaves better.

2.4 One–dimensional Model Problems
In order to get some insight into the complex behavior of the two–phase flow
model it is very helpful to consider one–dimensional model problems. Under
additional simplifying assumptions we will derive analytical solutions for the
purely hyperbolic case and a case with degenerate capillary diffusion.

2.4.1 ONE–DIMENSIONAL SIMPLIFIED MODEL

In the case of two incompressible fluids, zero sources and zero gravity the pres-
sure equation of the global pressure formulation (2.33) in one space dimension
reduces to

∂u
∂x

= 0; (2.52a)

u =�λK
∂p
∂x

; (2.52b)

in the domain Ω = (0;L) with boundary conditions

u(0; t) =U � 0; p(L; t) = P: (2.53)

From (2.52a) together with the boundary condition for u we obtain

u(x; t) =U; (2.54)

2.4. One–dimensional Model Problems 47

i. e. the total velocity u is constant in space and time. For the global pressure p
we obtain

p(x; t) = P+U

LZ

x

1
λ(Sw(ξ; t))K(ξ)

dξ (2.55)

for a given saturation Sw(x; t). In the case of constant λ (i. e. µw = µn, krw =
1� krn) and K pressure depends linearly on x.

For the saturation equation we now consider the purely hyperbolic case with
vanishing capillary pressure and the degenerate parabolic case.

2.4.2 HYPERBOLIC CASE

In the case of zero capillary pressure we obtain for the saturation equation

∂Sw

∂t
+

U
Φ

∂
∂x

fw(Sw) = 0 (2.56)

where U and Φ are constant. The following boundary and initial conditions are
imposed:

Sw(0; t) = S; Sw(x;0) = Sw0(x): (2.57)

Eq. (2.56) is of nonlinear hyperbolic type and is called “Buckley–Leverett equa-
tion” . In order to ease writing we set

f (Sw) =
U
Φ

fw(Sw) (2.58)

which transforms (2.56) into the standard form

∂Sw

∂t
+

∂
∂x

f (Sw) = 0 (2.59)

The solution of this equation is very well understood, we refer to (Renardy
and Rogers 1993), (LeVeque 1992) and (Helmig 1997) for a detailed discussion.
We only recapitulate the most important facts here without proofs and show
applications to different fractional flow functions.

The most prominent feature of hyperbolic conservation laws is that they al-
low discontinuous solutions called “shocks” . Such a solution does not satisfy the
differential equation in the classical sense at all points. Therefore the notion of
a generalized (“weak”) solution is introduced that involves some integral form
of (2.59). Unfortunately the weak solution need not be unique and one requires
additional conditions that select the correct physical solution from all possible
weak solutions. Typically, this is done either by the method of “vanishing vis-
cosity” or by stating so–called “entropy conditions” .

48 2. Basic Properties of Multiphase Flow Equations

The numerical solution of hyperbolic conservation laws inherits the mathe-
matical difficulties mentioned above. Methods have been developed which ac-
curately represent shocks and that converge to the correct physical solution with-
out spurious oscillations. These questions will be considered in a later chapter.

We will compute exact solutions of (2.56) for the so–called Riemann problem.
It solves (2.56) in an unbounded domain Ω = R with a single discontinuity at
x = 0 as initial condition:

Sw0(x) =

�
SL

w x� 0
SR

w x > 0
; SL

w > SR
w: (2.60)

SL
w is called left state and SR

w is called right state. Since we assume U � 0 (see
above) and SL

w > SR
w the non–wetting phase is displaced by the wetting phase.

From the definition of the fractional flow function we obtain

f (Sw) =
U
Φ

fw(Sw) =
U
Φ

krw(Sw)

krw(Sw)+
µw
µn

krn(1�Sw)
: (2.61)

The form of the solution is governed by the shape of the relative permeability
functions and the viscosity ratio. An important quantity is the frontal mobility
ratio defined as

M =
krα(saturation of displacing fluid behind the front)
krβ(saturation of displaced fluid ahead of the front)

�
µβ

µα
; (2.62)

where α is the displacing fluid and β is the fluid being displaced.

Linear Relative Permeability. We now consider linear relative permeabilities
with variable viscosity ratio, i. e. we have

krw(Sw) = Sw; krn(Sw) = 1�Sw (2.63)

and the corresponding flow function

fw(Sw) =
Sw

Sw + µw
µn
(1�Sw)

: (2.64)

Fig. 2.4 shows fw and its derivative for different viscosity ratios µn=µw.
The method of characteristics applied to the Riemann problem for (2.59)

states that we have

Sw(x; t) = S0 (2.65)

for all points along the straight line

(x; t) 2
�
(x̂; t̂)jx̂ = t̂ � f 0(S0)+ x0

	
(2.66)

2.4. One–dimensional Model Problems 49

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Saturation w

Fractional Flow w (Linear Rel. Perm.)

mun/muw=10
mun/muw=2

mun/muw=1.0
mun/muw=0.5
mun/muw=0.1

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

Saturation w

Derivative of Fractional Flow w (Linear Rel. Perm.)

mun/muw=10
mun/muw=2
mun/muw=1

mun/muw=0.5
mun/muw=0.1

Figure 2.4: Fractional flow function fw (left) and its derivative (right) for linear
relative permeabilities and various viscosity ratios µn=µw.

with S0 = Sw0(x0), x0 2 Ω. Looking at the graph of f we can identify the fol-
lowing three situations, see (Renardy and Rogers 1993) for details.
Case I, µn > µw: From Fig. 2.4 we see that f 0(SL

w) < f 0(SR
w) in this case. The

solution is continuous for all t > 0 and is given by

Sw(x; t) =

8<
:

SL
w x=t � f 0(SL

w)

(f 0)�1(x=t) f 0(SL
w)< x=t < f 0(SR

w)

SR
w x=t > f 0(SR

w)

: (2.67)

This solution is called a rarefaction wave.
Case II, µn = µw: We have f 0(SL

w) = f 0(SR
w) = U=Φ. Eq. (2.59) is linear in this

case and the initial discontinuity is transported through the domain with speed
s =U=Φ:

Sw(x; t) =

�
SL

w x� st
SR

w x > st
(2.68)

Case II, µn < µw: We have f 0(SL
w) > f 0(SR

w) and obtain a shock solution as in
case II but with the shock speed s given by the Rankine–Hugoniot condition

s =
f (SL

w)� f (SR
w)

SL
w�SR

w
: (2.69)

The shock obeys the Lax shock criterion which states that all characteristics
must enter the shock (in addition to the Rankine–Hugoniot condition). The Lax
shock criterion is the entropy condition in this case. Fig. 2.5 shows the charac-
teristic curves for the three different cases discussed above.

Fig. 2.6 shows solution plots for each of the three cases discussed above. The
parameters have been set to U = 3 �10�7[m=s] and Φ= 1=5. The top plot shows

50 2. Basic Properties of Multiphase Flow Equations

x=0 x=0 x=0

Case I Case II Case III

Figure 2.5: Characteristic curves for the three different cases with linear relative
permeabilities

the case µn=µw = 2 with SL
w = 1 and SR

w = 0. The solution is continuous but not
continuously differentiable. The middle plot shows the linear case µn=µw = 1
and the bottom plot shows the case µn=µw = 0:5. Here the left state has been
changed to SL

w = 0:9 in order to show dependence of the shock speed accord-
ing to (2.69). A comparison of the three plots shows the fast movement of the
“ front tip” for the rarefaction wave. A typical viscosity ratio for water and oil is
µn=µw = 20.

S–Shaped Fractional Flow Function. In the case of linear relative permeabili-
ties the function f 0 is either monotonely decreasing or monotonely increasing (or
constant in the linear case). This results in either a rarefaction wave or a shock
solution. For typical relative permeabilities used in two–phase flow models, like
Brooks–Corey or Van Genuchten functions, we obtain an S–shaped fractional
flow function as shown in Fig. 2.7. The resulting solution may have a shock or
a rarefaction wave or a combination of both. The case of S–shaped fractional
flow functions is treated extensively in (LeVeque 1992) and (Helmig 1997).

We consider a Riemann problem (see Eq. (2.60)) with left and right states
SL

w > SR
w. The value where the derivative of the fractional flow function fw is

maximal is called inflection point SI
w. The solution is obtained by considering

the following cases.

Case I, SR
w < SL

w � SI
w: In that range we have f 0w(S

L
w) > f 0w(S

R
w) as in case III of

the last subsection. Therefore we obtain a shock solution

Sw(x; t) =

�
SL

w x� st
SR

w x > st
(2.70)

with the shock speed s given by the Rankine–Hugoniot condition as before:

s =
f (SL

w)� f (SR
w)

SL
w�SR

w
=

U
Φ

fw(SL
w)� fw(SR

w)

SL
w�SR

w
: (2.71)

2.4. One–dimensional Model Problems 51

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Linear Relative Permeabilities (mun/muw=2)

250 days
500 days
750 days

1000 days

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Linear Relative Permeabilities (mun/muw=1)

500 days
1000 days
1500 days

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Linear Relative Permeabilities (mun/muw=0.5)

500 days
1000 days
1500 days

Figure 2.6: Solutions of the Buckley–Leverett problem with linear relative per-
meability and µn=µw = 2;1;0:5 (from top).

52 2. Basic Properties of Multiphase Flow Equations

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Saturation w

Fractional Flow w (BC, lambda=2)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Saturation w

Derivative Fw (BC, lambda=2)

Figure 2.7: Fractional flow function fw (left) and its derivative (right) for
Brooks–Corey relative permeabilities (λ = 2, µn=µw = 1).

Case II, SI
w � SR

w < SL
w: Now we have f 0w(S

L
w)< f 0w(S

R
w) and obtain a rarefaction

wave solution:

Sw(x; t) =

8<
:

SL
w x=t � f 0(SL

w)

(f 0)�1(x=t) f 0(SL
w)< x=t < f 0(SR

w)

SR
w x=t > f 0(SR

w)

: (2.72)

For the remaining two cases we define the tangential point saturation ST
w such

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Saturation w

Fractional Flow Function

Sw
I

Sw
R Sw

T
Sw

L

left state (case IV)

tangential point

inflection point

right state

Figure 2.8: Tangential point construction.

2.4. One–dimensional Model Problems 53

that

f 0w(S
T
w) =

fw(ST
w)� fw(SR

w)

ST
w�SR

w
: (2.73)

Fig. 2.8 shows the construction of the tangential point graphically.

Case III, SR
w < SI

w < SL
w � ST

w: This case is an extension of case I (shock solu-

tion) since we still have f 0w(S
L
w)> f 0w(S

R
w) by construction. It is, however, more

difficult to show that all characteristics enter the shock.

Case IV, SR
w < SI

w < ST
w < SL

w: The left state is above the tangential point. We
obtain a rarefaction wave from the left state to the tangential point and a shock
dropping from the tangential point to the right state:

Sw(x; t) =

8<
:

SL
w x=t � f 0(SL

w)

(f 0)�1(x=t) f 0(SL
w)< x=t < f 0(ST

w)

SR
w x=t > f 0(ST

w)

: (2.74)

Note that the shock speed s = f 0(ST
w) is given by (2.73) and fulfills the Rankine–

Hugoniot condition. In fact, (2.73) is constructed in a unique way such that
f 0 is invertible for the rarefaction wave, the shock speed satisfies the Rankine–
Hugoniot condition and the characteristics for x=t > f 0(ST

w) enter the shock from
below.

Fig. 2.9 shows solution plots for different relative permeabilities and viscosity
ratios. The total velocity was U = 3 � 10�7m=s, the porosity has been set to
Φ = 1=5, the left and right states were SL

w = 1, SR
w = 0. The top plot shows

quadratic relative permeabilities (krw = S2
w, krn = (1� Sw)

2) with a viscosity
ratio of 1, the tangential point is ST

w =
p

2=2 in this case. The middle and the
bottom plot show Brooks–Corey relative permeabilities with a viscosity ratio
µn=µw of 1 (middle) and 100 (bottom). Note that the gradient near x = 0 is much
larger in this case.

The plots illustrate a problem encountered in the water–flooding technique
(secondary recovery) of oil reservoir exploitation: If a more viscous fluid (oil)
is displaced by a less viscous fluid (water) the efficiency of the process drops
dramatically. In the case of unit viscosity ratio 25% oil remain in the reservoir,
whereas 65% oil remain in the reservoir for the high viscosity ratio case.

Moreover, in the multidimensional case the position of the shock front is un-
stable if the frontal mobility ratio M given by (2.62) is greater than one, see (Bear
1972), (Glimm et al. 1981) and (Glimm et al. 1983) for details. This ultimately
leads to the formation of “fi ngers” of water extending into the oil. For a treat-
ment of the fingering phenomenon from a hydrologists perspective cf. Kueper
and Frind (1988). Note that the frontal mobility ratio is (much) smaller than the
viscosity ratio since ST

w (the shock height) decreases with increasing viscosity
ratio. For the bottom plot in Fig. 2.9 the frontal mobility ratio is M = 1:595.

54 2. Basic Properties of Multiphase Flow Equations

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Quadratic Relative Permeabilities, mun/muw=1

500 days
1000 days
1500 days

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Brooks-Corey, lambda=2, mun/muw=1

500 days
1000 days
1500 days

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Brooks-Corey, lambda=2, mun/muw=100

250 days
500 days
750 days

Figure 2.9: Solutions of the Buckley–Leverett problem with quadratic and
Brooks–Corey relative permeabilities (see text for details).

2.4. One–dimensional Model Problems 55

2.4.3 PARABOLIC CASE

We now consider the case when capillary forces are present. This case is
much more difficult to analyze, even for a one–dimensional model situation.
McWhorter and Sunada (1990) gave a quasi–analytical solution for realistic
constitutive relations (e. g. Brooks–Corey functions). The discussion here will
closely follow this paper.

We restrict ourselves to a “counter–current” fl ow situation where the total
velocity vanishes, this is achieved by setting U = 0 in (2.53). From the global
pressure formulation (2.33e) we then obtain for the saturation Sw:

Φ
∂Sw

∂t
+

∂
∂x

�
λn fw p0cK

∂Sw

∂x

�
= 0 (2.75)

(no sources, no gravity). By defining the diffusion coefficient

D(Sw(x; t)) =�
λwλn

λw +λn
K p0c (2.76)

and the flux function

qw(x; t) =�D(Sw(x; t))
∂Sw

∂x
(2.77)

we can rewrite (2.75) as the system

Φ
∂Sw

∂t
=�

∂
∂x

qw(x; t); (2.78a)

qw(x; t) =�D(Sw(x; t))
∂Sw

∂x
(2.78b)

The diffusion coefficient D vanishes for extreme values of saturation Sw = 0,
Sw = 1 and is called “doubly degenerate” . Eq. (2.78) is solved in the upper right
half plane Ω = f(x; t)jx; t > 0g with initial conditions

Sw(x;0) = S∞; x > 0 (2.79)

and boundary conditions

qw(0; t) = At�
1
2 ; Sw(0; t) = S0; Sw(∞; t) = S∞; t > 0 (2.80)

where A > 0 is a constant. A cannot be chosen independently from S0 and S∞, a
corresponding relation will be derived below but for the time being it is conve-
nient to consider A as an independent parameter.

Using the ansatz

Sw(x; t) = S(λ(x; t)) = S(xt�
1
2) (2.81)

56 2. Basic Properties of Multiphase Flow Equations

with λ(x; t) = xt�
1
2 , Eq. (2.78) can be transformed into an ordinary differential

equation in the variable λ. Solutions of type (2.81) are called self similar. The
transformed equation reads

λΦ
2

d
dλ

S(λ) =
d

dλ
q(λ); (2.82a)

q(λ) =�D(S(λ))
d

dλ
S(λ); (2.82b)

where S and q are now functions of the independent variable λ. The boundary
conditions are transformed into

S(0) = S0; S(∞) = S∞; q(0) = A: (2.83)

The boundary condition for q(0) follows from q(λ(x; t)) = qw(x; t)t
1
2 .

S∞

S0

λ=0 λ*

S

λ S∞ S0

λ=0

λ*

S

λ

Figure 2.10: S(λ) and its inverse function.

S(λ) will be a monotonically decreasing function, a typical shape is shown in
Fig. 2.10. Moreover, the solution is characterized by a free boundary, i. e. S(λ)=
0 for all λ � λ�. We can therefore also write λ as a function of the independent
variable S. This has the advantage that the domain of definition of the function
λ(S) is known a priori to be [S∞;S0] and that the position of the free boundary
λ� = λ(S∞) is a result of the computation.

Considering λ as a function of the independent variable S we define a new
flux function q̃ depending on saturation:

q̃(S) = q(λ(S)): (2.84)

By differentiation we obtain

dq̃
dS

(ξ) =
dq
dλ

(λ(ξ))
dλ
dS

(ξ),
dq
dλ

(λ(ξ)) =
dq̃
dS

(ξ)
dS
dλ

(λ(ξ)): (2.85)

Inserting this into (2.82a) we obtain

λ(ξ) =
2
Φ

dq̃
dS

(ξ); (2.86)

2.4. One–dimensional Model Problems 57

i. e. given q̃(S) we obtain λ(S) through integration. We now seek an equation
for q̃.

Using dS
dλ (λ(ξ)) =

�
dλ
dS (ξ)

��1
and (2.82b) yields

dλ
dS

(ξ) =�
D(ξ)
q̃(ξ)

: (2.87)

Differentiating (2.86) and combination with the last equality gives an equation
of second order for q̃:

d2q̃
dS2 (ξ) =�

Φ
2

D(ξ)
q̃(ξ)

: (2.88)

The boundary conditions for (2.88) are

q̃(S0) = q(λ(S0)) = q(0) = A; q̃(S∞) = q(λ(S∞)) = q(λ�) = 0: (2.89)

In addition we obtain from (2.86)

dq̃
dS

(S0) =
Φ
2

λ(S0) = 0: (2.90)

The boundary conditions are not independent of each other. We now relate
the constant A > 0 in the flux boundary condition to the Dirichlet values S0 and
S∞. Going back to the original equation

Φ
∂Sw

∂t
+

∂qw

∂x
= 0 (2.91)

in (x; t) coordinates we obtain by integration

Φ
∂
∂t

∞Z

0

Sw(x; t)dx+qw(∞; t)�qw(0) = 0 (2.92)

for any t > 0 with the known fluxes qw(∞; t)= 0, qw(0)=At�
1
2 . Using Sw(x; t)=

S(xt�
1
2) we obtain by substitution

∞Z

0

Sw(x; t)dx = t
1
2

∞Z

0

S(xt�
1
2)t�

1
2 dx = t

1
2

λ(∞;t)=∞Z

λ(0;t)=0

S(ξ)dξ: (2.93)

Note that the integral is now independent of t. Combining this with (2.92) yields
the desired relation

A =
Φ
2

∞Z

0

S(ξ)dξ: (2.94)

58 2. Basic Properties of Multiphase Flow Equations

Since the area under both graphs of Fig. 2.10 is equal we can rewrite this as

A =
Φ
2

∞Z

0

S(ξ)dξ =
Φ
2

S0Z

S∞

λ(η)dη

=
Φ
2

S0Z

S∞

ηZ

S0

dλ
dS

(ξ)dξdη

=�
Φ
2

S0Z

S∞

ηZ

S0

D(ξ)
q̃(ξ)

dξdη:

(2.95)

Integrating (2.88) twice and using the boundary conditions as well as the ex-
pression for A we obtain

q̃(S) =
Φ
2

SZ

S∞

S0Z

η

D(ξ)
q̃(ξ)

dξdη: (2.96)

Finally, using integration by parts, this is transformed into

q̃(S) =
Φ
2

SZ

S∞

(min(ξ;S)�S∞)D(ξ)
q̃(ξ)

dξ (2.97)

which is an integral equation for q̃(S). This integral equation is solved numeri-
cally by discretizing the interval [S∞;S0] and using a fixed point iteration. From
the discrete approximation q̃h one can obtain an approximation λh by integrating
(2.86) numerically. Finally one obtains Sw(x; t) from that by using the similarity
transformation. Since the determination of the solution involves the numerical
solution of an integral equation it is called “quasi–analytic” . However, the fixed
point iteration for solving (2.97) converges rapidly and the computation of λ as
a function of S gives a precise value for the free boundary and has no problems
in representing the large gradients of S(λ) near the free boundary.

As an illustration Fig. 2.11 shows the solution Sw(x; t) of Eq. (2.78) for realis-
tic values of the governing parameters: Φ = 0:3, K = 1 �10�10[m2], µn=µw = 1,
S0 = 1, S∞ = 0, Brooks–Corey functions with λ = 2 and pd = 5000[Pa]. Note
that the distance of the free boundary from the origin doubles with a four-fold
increase of time.

2.5 Three–Phase Flow Formulations
In this subsection we extend the formulations given above to the three phase
flow model of Subs. 1.4.6.

2.5. Three–Phase Flow Formulations 59

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 S
at

ur
at

io
n

w

x [m]

Counter Current Flow (Brooks-Corey)

1000 s
2000 s
4000 s
8000 s

16000 s

Figure 2.11: Solution of the doubly degenerate parabolic problem.

2.5.1 PHASE PRESSURE–SATURATION FORMULATION

Any of the phase pressures plus two of the saturations can be used as a set of
primary variables. For contamination problems the assumption of a continu-
ous water phase is justified making a (pw;Sn;Sg)–formulation appropriate. It
consists of the balance laws

∂(Φρw(1�Sn�Sg))

∂t
=�∇ � fρwuwg+ρwqw; (2.98a)

∂(ΦρnSn)

∂t
=�∇ � fρnung+ρnqn; (2.98b)

∂(ΦρgSg)

∂t
=�∇ � fρgugg+ρgqg (2.98c)

and the phase velocities

uw =�
krw(1�Sn�Sg)

µw
K (∇ pw�ρwg) ; (2.99a)

un =�
krn(1�Sn�Sg;Sn)

µn
K (∇ pw + ∇ pcnw(1�Sn�Sg)�ρng) ; (2.99b)

ug =�
krg(Sg)

µg
K (∇ pw + ∇ pcnw(1�Sn�Sg)+ ∇ pcgn(1�Sg)�ρgg) ;

(2.99c)

where we assumed krw = krw(Sw), krn = krn(Sw;Sn), krg = krg(Sg) and pcnw =
pcnw(Sw), pcgn = pcgn(Sg). The blending of capillary pressure curves as in (1.47)
can also be used.

60 2. Basic Properties of Multiphase Flow Equations

The boundary and initial conditions are given by

Sn(x;0) = Sn0(x);Sg(x;0) = Sn0(x); pw(x;0) = pw0(x) x 2Ω; (2.100a)

Sα(x; t) = Sαd(x; t) on ΓS
αd , α = n;g ; pw(x; t) = pwd(x; t) on Γp

wd ; (2.100b)

ραuα �n = φα(x; t) on Γαn: (2.100c)

As in the two–phase case we see that a formulation based on pα does not
allow Sα ! 0. For the pw–formulation above this means that the n-g (Sw = 0), n
(Sw +Sg = 0) and g (Sw +Sn = 0) subsystems are excluded.

The type classification of the equations is given in the subsection on the global
pressure formulation.

2.5.2 GLOBAL PRESSURE–SATURATION FORMULATION

The global pressure formulation can also be extended to the three–phase case.
The presentation closely follows Chavent and Jaffré (1978). As in the case of
two phases a total velocity

u = uw +un +ug (2.101)

can be defined and the same derivation as in Subs. 2.2.1 leads to

∂Φ
∂t

+ ∑
α=w;n;g

ρ�1
α

�
ΦSα

∂ρα
∂t

+ ∇ρ α �uα

�
+ ∇ �u = qw +qn +qg: (2.102)

From the definition of the phase velocities uα we immediately obtain the fol-
lowing expression for the total velocity in terms of pn and the capillary pres-
sures:

u =�λK

�
∇ pn� fw∇ pcnw + fg∇ pcgn�∑

α
fαραg

�
: (2.103)

The phase velocities can be expressed without using the phase pressures. With

ξwn = λwλnK (∇ pcnw +(ρw�ρn)g) ; (2.104a)

ξng = λnλgK (∇ pcgn +(ρn�ρg)g) ; (2.104b)

ξwg = λwλgK (∇ pcnw + ∇ pcgn(ρw�ρg)g) (2.104c)

we have

uw = fwu+λ�1 (ξwn + ξwg) ; (2.105a)

un = fnu+λ�1 (ξng� ξwn) ; (2.105b)

ug = fgu+λ�1 (ξwg� ξng) : (2.105c)

Note the structural similarity with the two–phase case. Again the singularities
of capillary pressure derivatives are compensated by appropriate mobilities.

2.5. Three–Phase Flow Formulations 61

We now seek a global pressure p(pn(x; t);Sw(x; t);Sg(x; t)) such that

∇ p = ∇ pn� fw∇ pcnw + fg∇ pcgn (2.106)

where we will assume the general case that pcnw and pcgn may both depend on
Sw(x; t) and Sg(x; t). Moreover, we assume that fα depend only on the satu-
rations Sw;Sg and not on position. Obviously it is the difficult part to find a
function π(Sw(x; t);Sg(x; t)) such that

∇π =� fw∇ pcnw + fg∇ pcgn: (2.107)

The requirement of interchangeability of partial derivatives

∂
∂xi

�
∂π
∂x j

�
=

∂
∂x j

�
∂π
∂xi

�
; i 6= j; (2.108)

leads to

∂
∂Sg

�
∂π
∂Sw

�
=

∂
∂Sw

�
∂π
∂Sg

�
; (2.109)

which in turn leads to

∂ fg

∂Sg

∂pcgn

∂Sw
�

∂ fw

∂Sg

∂pcnw

∂Sw
=

∂ fg

∂Sw

∂pcgn

∂Sg
�

∂ fw

∂Sw

∂pcnw

∂Sg
: (2.110)

Eq. (2.110) is called the total differential condition in (Chavent and Jaffré 1978).
It states that the relative permeabilities and the capillary pressure functions can-
not be chosen independently of each other in the three–phase global pressure
formulation. This may be a severe restriction of this formulation. Chavent and
Jaffré (1978) give a numerical procedure for constructing relative permeabilities
and capillary pressure functions from given ones that fulfill (2.110).

The function π is then defined by

π(sw;Sg) =

SwZ

1

�
� fw(ξ;0)

∂pcnw

∂Sw
(ξ;0)+ fg(ξ;0)

∂pcgn

∂Sw
(ξ;0)

�
dξ

+

SgZ

0

�
� fw(Sw;ξ)

∂pcnw

∂Swg
(Sw;ξ)+ fg(Sw;ξ)

∂pcgn

∂Sg
(Sw;ξ)

�
dξ

(2.111)

A tedious calculation shows that p = pn + π fulfills (2.106) when (2.110) is
satisfied. Thus we can write the total velocity as

u =�λK

�
∇ p�∑

α
fαραg

�
: (2.112)

62 2. Basic Properties of Multiphase Flow Equations

ΩI
IIΩ

pcnw(Sw)I I

pcgn(Sw+Sn)
I I I

pcnw(Sw)II II

pcgn(Sw+Sn)II II II

Figure 2.12: Three–phase capillary pressure functions at a porous medium dis-
continuity.

Insertion of (2.112) into (2.102) gives an elliptic equation for p if the fluids
are incompressible or a parabolic equation if at least one of the fluids is com-
pressible. The remaining equations for the two saturations are given by

∂(ΦρwSw)

∂t
=�∇ � fρwuwg+ρwqw; (2.113a)

∂(ΦρnSg)

∂t
=�∇ � fρgugg+ρgqg; (2.113b)

with uw;ug given by (2.105a,2.105c). If capillary pressure effects are neglected
(2.113a,2.113b) is a first order system of conservation laws. It turns out that the
hyperbolicity of that system depends on the shape of the relative permeabilities.
Chavent and Jaffré (1978) found that the system is not hyperbolic for all values
of Sw;Sg when the often used relative permeabilities of (Stone 1973) are used.
The modified relative permeability functions of Chavent and Jaffré (1978) sat-
isfying (2.110) results in a hyperbolic system for the two saturation variables
when capillary pressure is neglected.

Boundary and initial conditions for the three–phase global pressure formula-
tion are a straightforward extension from the two–phase case.

2.5.3 MEDIA DISCONTINUITY

As in the two–phase case we consider a porous medium that is composed of
two subdomains ΩI and ΩII where different sets of capillary pressure–saturation
relationships are valid. This situation and the notation is shown in Fig. 2.12.

We assume for simplicity the capillary pressure functions of Parker et al.
(1987) given by (1.35) where pcnw = pcnw(Sw), pcgn = pcgn(Sw + Sn) and
pcnw; pcgn 2 [0;∞). Moreover, we restrict our interest to the phase pressure for-
mulation of Subs. 2.5.1. In that case we get from the continuity of pcnw the
relation

pI
cnw(S

I
w) = pII

cnw(S
II
w) (2.114)

from which SII
w can be obtained for a given SI

w. The continuity of pcgn leads to

pI
cgn(S

I
w +SI

n) = pII
cgn(S

II
w +SII

n) (2.115)

2.5. Three–Phase Flow Formulations 63

where SII
w is already fixed and SI

w, SI
n are assumed known. Since pII

cgn is strictly
decreasing and SII

n � 0 the following condition is required to hold for the capil-
lary pressure functions:

pII
cgn

��
pII

cnw

��1
(pI

cnw(S
I
w))
�
� pI

cgn(S
I
w +SI

n); 8SI
w;S

I
n: (2.116)

If this relation holds then (2.115) yields the saturation SII
n . The remaining con-

ditions at the interface are the continuity of normal fluxes ραuα �n and the con-
tinuity of pw if a mobile wetting phase is always assumed on both sides of the
interface.

64 2. Basic Properties of Multiphase Flow Equations

3

Fully Implicit Finite Volume
Discretization

3.1 Introduction

3.1.1 NUMERICAL DIFFICULTIES IN SIMULATION

The numerical solution of the coupled nonlinear two–phase flow system (1.41)
in its various formulations is a formidable task. For the problems arising in the
simulation of hydrocarbon recovery processes, Ewing (1983) gives an excellent
overview. Four major numerical difficulties are identified in that paper which
are listed in the following.

Transport-dominated parabolic problems. In reservoir simulation transport is
often the dominating physical process. The saturation equation (2.33e) is almost
hyperbolic. Centered differences or standard Galerkin finite element methods
applied to the first order terms are second order accurate but yield oscillatory
numerical approximations if the solution is not smooth enough. Upwind sta-
bilizations lead to monotone numerical solutions but the approximation is only
first order accurate, sharp fronts tend to be smeared out and the numerical solu-
tion is sensitive to grid orientation. This difficulty has lead to the development
of various types of “characteristic methods” .

Time–stepping procedures. The multiphase flow equations are coupled sys-
tems of nonlinear, time–dependent partial differential equations. Various de-
grees of implicitness in the discretization and coupling in the nonlinear solver
are possible with the different methods. Stability and robustness on the one hand
must be balanced with accuracy and computational efficiency on the other hand.
With fully implicit, fully coupled methods large systems of nonlinear algebraic
equations have to be solved.

Accurate fluid velocities. The coupling of the pressure equation (2.33a) and
(2.33b) to the saturation equation (2.33c,2.33e) is only through the total velocity
u. While the pressure p may vary considerably, the total velocity is a relatively
smooth function. Computing p via a standard conforming finite element method
and evaluating the velocity (2.33b) through numerical differentiation results in
a velocity u that is less accurate. The effect is pronounced with the presence of
abrupt changes in permeability or viscosity. The mixed finite element method
directly approximates u and is able to produce a better approximation (especially
of the flux u �n), cf. Durlofsky (1994) for a numerical comparison.

65

66 3. Fully Implicit Finite Volume Discretization

Viscous fingering. This is more a modeling issue. The phenomenon of vis-
cous fingering comes from instabilities on the microscopic level which are not
modeled by the macroscopic equations. However, the macroscopic equations
are unstable when the frontal mobility ratio is greater than one. Numerical so-
lutions exhibit finger–like phenomena (even with homogeneous parameters) but
these are triggered by numerical errors, depend on the mesh and do not model
the underlying physics. The macroscopic effects of viscous fingering could be
included in the model by a varying (anisotropic) permeability field and longitu-
dinal dispersion effects (at least in miscible displacement). More generally the
problem of representing effects from a smaller scale in a model on a larger scale
is termed “upscaling” .

For the simulation of infiltration and remediation problems two additional diffi-
culties can be mentioned.

Degenerate parabolic problems. Infiltration and remediation problems are of-
ten simulated on a smaller scale, e. g. the VEGAS experimental facility de-
scribed in Kobus (1996) has a size of 15 by 10 by 7 [m3], and counter–current
flow situations exist where the total velocity is small. In these cases capillary
pressure is important, which adds a degenerate diffusion term to the saturation
equation. Numerical methods must be able to accurately follow the resulting
free boundary.

Media discontinuities, entry pressure effects. It has been shown in Sect. 2.3
that, under certain conditions, the saturation is discontinuous at a medium dis-
continuity and that infiltration of a low permeable lens is only possible if a
certain critical saturation is reached. A numerical simulation must accurately
represent this condition. There are many numerical methods that would allow
an immediate penetration of such a lens as has been demonstrated in Helmig
(1997).

3.1.2 OVERVIEW OF NUMERICAL SCHEMES

The first numerical simulator for incompressible two–phase flow in porous me-
dia has been described by Douglas Jr., Peaceman, and Rachford Jr. (1959) about
40 years ago. Since then many different methods have been devised. In the in-
compressible case the pressure equation is elliptic and a fully explicit treatment
is not possible, cf. (Peaceman 1977). Therefore any numerical method for the
multiphase flow problem has to solve systems of algebraic equations but various
degrees of implicitness and coupling are possible.

Many of the newer numerical schemes for the two–phase flow problem focus
on the accurate and efficient treatment of the advection dominated saturation
equation. Typically these methods use the global pressure formulation which
naturally leads to a sequential solution process: From a given saturation at time
level tn the pressure p at time tn is computed from (2.33a,b) (incompressible
case) which is a linear equation in p with coefficients depending on saturation.

3.1. Introduction 67

Then saturation at time level tn+1 is computed with a frozen velocity field. If no
iteration of this procedure within a time step is performed a time step restriction
must be obeyed. If the saturation equation is treated with an explicit method the
whole time–stepping procedure is named IMPES for Implicit pressure explicit
saturation.

If the saturation equation is assumed to be advection–dominated then standard
methods of finite difference, element or volume type do not perform well. They
either show nonphysical oscillations or numerical diffusion and grid orientation
sensitivity. Due to the nonlinearity of the fractional flow function (self sharpen-
ing effect: velocity behind the shock is greater than in front of the shock) it is
not so much the spatial truncation error but the temporal truncation error of the
backward Euler scheme that causes the smearing of fronts. The use of higher
order time discretizations such as Crank–Nicolson or BDF(2) results in severe
time step restrictions due to lack of stability.

More successful methods therefore attempt to treat spatial and temporal
derivatives in combination. This can be done e. g. by canceling temporal trun-
cation errors with spatial truncation errors as in the Taylor–Galerkin method of
Donea (1984) or by considering the characteristics of the hyperbolic part. The
methods of the last class, so–called characteristic methods, have gained a lot of
interest in the last 15 years and two methods will be treated in more detail now.

The modified method of characteristics (MMOC) has been introduced by
Douglas Jr. and Russel (1982) for a scalar, linear advection–diffusion equa-
tion in one space dimension. The main idea is to interpret temporal derivative
and advective part c(x)∂u=∂t +b(x)∂u=∂x together as a directional derivative in
the characteristic direction τ(x) = (b(x); c(x))T , which is then discretized by
a backward difference quotient. The value at the “ foot” of the characteristic
is interpolated from solution at the preceding time level. The diffusive part is
treated implicitly with standard methods. The resulting error estimate contains
a term k∂2u=∂τ2k instead of k∂2u=∂t2k which is much smaller in the advection–
dominated case. The method has been extended to miscible displacement (lin-
ear advection term!) in two space dimensions by Russel (1985). It is shown
that very large time steps (Courant number significantly greater than one) can
be taken with very good accuracy. The drawbacks are the difficulty of handling
boundary conditions that are not of Dirichlet type and its inability to conserve
mass. The latter problem has been overcome (for a special case) in Douglas Jr.
et al. (1997) where the method is extended to the incompressible two–phase
flow problem. It is shown in that paper that the mass balance error of the stan-
dard MMOC is considerable even on very fine meshes. In the nonlinear case the
non–conservativeness results in a wrong approximation of the front position. It
should also be noted that MMOC for nonlinear hyperbolic problems cannot use
the long time steps possible in the linear case. A proposition to overcome that
problem is made in Espedal and Ewing (1987).

The Eulerian–Lagrangian localized adjoint method (ELLAM) has been intro-
duced in Celia et al. (1990) and provides a framework where many characteristic

68 3. Fully Implicit Finite Volume Discretization

methods can be derived from. The main improvement is that the resulting meth-
ods are locally mass conservative and that all types of boundary conditions can
be treated. Another advantage is that advective and diffusive part are treated in
combination and not separately via an operator splitting approach. The idea of
the method is to use a weighted residual formulation of the equation in space–
time and to choose the weight functions such that they have local support and
solve the homogeneous adjoint equations in the interior of each space–time el-
ement exactly. Treatment of all types of boundary conditions is possible but is
relatively complicated already in one space dimension. Multi–dimensional for-
mulations are mentioned in Celia (1994) and Binning and Celia (1994). The
method has been applied to transport of nuclear waste contamination in Ewing
et al. (1994). Its application to multiphase flow is outlined in Ewing (1991) and
mentioned in Binning and Celia (1994) but no numerical results were presented.

A certain disadvantage of both the MMOC and the ELLAM method is that
they are primarily designed for linear hyperbolic problems. There are methods,
however, that directly use the knowledge about the nonlinear hyperbolic conser-
vation law (cf. Subs 2.4.2).

In the front tracking method, see Glimm et al. (1983) and Risebro and Tveito
(1991), the solution is, in one space dimension, represented by a piecewise con-
stant function and the coefficient functions are replaced by piecewise linears.
The Riemann problems at each discontinuity can be solved analytically (cf. Subs
2.4.2) and shock collisions have to be resolved. The multi–dimensional exten-
sion follows a tensor product approach. Capillary diffusion, if present, is in-
cluded via operator splitting. An improved operator splitting that allows large
time steps has recently been introduced by Hvistendahl Karlsen et al. (1997).
Another nonlinear characteristic method for two–phase flow has been devel-
oped by Mulder and Meyling (1993) where it is combined with local mesh re-
finement. A disadvantage of these methods is that they generally do not conserve
mass.

The aim of the methods discussed so far is to allow large time steps (Courant
number significantly greater than one) while maintaining good accuracy. In or-
der to facilitate that a fair amount of work is necessary per time step, at least
in the nonlinear case (recomputation of weight functions in ELLAM, Riemann
solver and shock collision resolution in front tracking and nonlinear character-
istic methods). Another well known approach to solve nonlinear conservation
laws is to use higher order explicit finite volume schemes, cf. (LeVeque 1992),
which have a Courant number limitation but can be quickly evaluated. For two–
phase flow without capillary pressure such a method is presented in Helmig
and Huber (1996), capillary pressure has been included explicitly in Durlofsky
(1993). Dawson (1991) analyses a higher order Godunov method combined
with a mixed finite element method for the diffusive part for a one–dimensional
scalar model problem.

All methods that focus on the solution of the advection–dominated saturation
equation rely on a decoupling of pressure and saturation equation. For “difficult

3.1. Introduction 69

nonlinearities” this may result in a severe time step restriction, see Ewing (1983)
or Gundersen and Langtangen (1997), although a detailed comparison does not
seem to be available. The amount of coupling between pressure and saturation
equation heavily depends on the formulation that is used, it is certainly much
weaker in the global pressure formulation. On the other hand it is generally
agreed upon that spatial variability of the permeability, porosity and constitutive
relations (especially capillary pressure) makes a problem “more difficult” .

With respect to robustness, i. e. the ability to solve a wide range of problems,
a fully implicit and fully coupled treatment of the governing equations is most
reliable. In that case an implicit time discretization is applied (e. g. backward
Euler) where all spatial derivatives are evaluated at the new time level. The
resulting system of nonlinear algebraic equations is then solved with a (quasi–)
Newton method.

The fully implicit/fully coupled approach has been combined with virtually
all discretization methods. Many different variants exist to incorporate the nec-
essary upstream weighting into the standard methods. In the conforming finite
element method higher order test functions, e. g. quadratic or cubic polynomi-
als, are used, see Heinrich et al. (1977). Applications to two–phase as well
as multi–component non–isothermal flow can be found in Helmig (1997) and
Emmert (1997). Further possibilities are the streamline diffusion method of
Brooks and Hughes (1982) and the control–volume finite element approach of
Forsyth (1991). The latter method conserves mass locally and is applied to
three–phase/three component flow in Forsyth and Shao (1991).

Finite volume methods (sometimes called “ integrated finite differences” in
the groundwater literature) are also very popular due to their mass conservation
and monotonicity properties. The method is used in the cell centered form on
structured meshes already in Peaceman (1977) and on unstructured meshes in
the widely used TOUGH2 simulator of Pruess (1991). A good overview and
a theoretical treatment of various methods for a model problem has been given
recently in Michev (1996).

A rather new development is the use of the mixed finite element method
in combination with fully implicit/fully coupled techniques in Dawson et al.
(1997).

For a detailed comparison of several fully implicit methods and other tech-
niques we refer to Helmig (1997).

3.1.3 APPROACH TAKEN IN THIS WORK

Domain of Application. In this work we are interested in the simulation of
infiltration and remediation problems on scales that are small in comparison to
those in oil reservoir simulation. Also, countercurrent flow and flow over low
permeability lenses is important in this type of application. Capillary diffusion
is important in these cases. Especially the treatment of entry pressure effects

70 3. Fully Implicit Finite Volume Discretization

at media discontinuities is necessary to accurately simulate the phenomena of
lateral spreading and entrapment of DNAPL.

Furthermore, compressible fluids, e. g. water–gas systems are of interest in
the simulation of enhanced remediation processes such as soil vapor extraction
or in the security assessment of underground waste repositories. Although these
particular applications require more sophisticated models (compositional, non–
isothermal, fractured, : : :) a method that can simulate water–gas systems is
certainly a necessary requirement.

Finally, practical application of subsurface models requires the ability to han-
dle very complex geometries. One should not at all underestimate this point but
rather include it in the decision process for the numerical method.

Numerical Requirements. The properties of stability and consistency are, of
course, of fundamental importance for any numerical simulation. Additionally,
a simulation software that is used in an engineering environment must be robust
in the sense that it is stable, accurate and computationally efficient for a wide
range of problems. This certainly requires a compromise and there may be better
methods for special cases.

Furthermore, we require that the method conserves mass locally in order to
get correct shock positions and to be able to follow small concentrations.

The monotonicity property (nonoscillating solutions) is also of primary im-
portance since the governing nonlinearities are only defined for saturation values
between zero and one. This property becomes even more important in composi-
tional flows.

Complex geometries can be handled in different ways. Ultimately, we believe
that only unstructured meshes are able to handle the needs in this direction since
they can be generated fully automatically from CAD input.

Outline of Solution Procedure. The numerical requirements lead to the selec-
tion of a rather “ traditional” scheme. In space a vertex centered finite volume
method with upstream weighting of mobilities is used. For the time discretiza-
tion either backward Euler, Crank–Nicolson or BDF(2) are used. The time–
stepping strategy is fully implicit/fully coupled for a maximum of robustness.
This method conserves mass locally (BDF(2) with restrictions), it can be used
on fully unstructured, multi–element type meshes and produces monotone solu-
tions even on highly distorted meshes.

The approach outlined so far is applied either to a phase pressure–saturation
formulation or to the global pressure formulation. Media discontinuities are
handled either by the fully upwinding procedure as in Helmig and Huber (1998)
or by an incorporation of the interface conditions into the discretization as in
de Neef and Molenaar (1997).

The fully implicit discretization produces a large system of nonlinear alge-
braic equations to be solved per time step. The fully coupled solution procedure
uses an inexact Newton method for its solution. The inexactness of the Newton

3.2. Stationary Advection–Diffusion Equation 71

method refers to an inexact solution of the linear systems within the Newton
method. Global convergence is achieved by an appropriate line search proce-
dure. The quadratic convergence of the Newton method enables one to solve the
nonlinear systems very accurately which is necessary to ensure local conserva-
tion of mass.

A main objective of this work is to show that the linear systems arising within
the Newton method can be solved efficiently with a multigrid method. A further
reduction in computation time is achieved by a data parallel implementation of
the simulator following the ideas of Bastian (1996).

The implementation of the simulator is based on the PDE software toolbox
UG described in Bastian et al. (1997). Specifically, the parallelization is mostly
hidden in the general purpose UG library and is not specific to the two–phase
flow simulator.

3.2 Stationary Advection–Diffusion Equation
In this section we describe the vertex centered finite volume method for a sta-
tionary linear advection–diffusion equation on general unstructured meshes and
introduce the necessary notation along the way.

The equation for concentration C is given by

∇ � j = q in Ω; (3.1a)

j(C) = r(x)C�D(x)∇ C; (3.1b)

C =Cd(x) on Γd ; (3.1c)

j �n = J(x) on Γn; (3.1d)

with Ω a polyhedral domain in R
d , d = 2;3. Both, Dirichlet and Neumann

(flux) type boundary conditions will be treated. The flow field r(x) and the
symmetric positive definite tensor D(x) are assumed to be given and depend
only on position.

Eq. (3.1) is discretized on an unstructured mesh Eh = fe1; : : : ;eKg consist-
ing of elements ei. The index h indicates the mesh width, e. g. the diameter of
the largest element. Triangular and quadrilateral elements are used in 2D while
tetrahedra, pyramids, prisms and hexahedra are used in 3D. It is assumed that
quadrilateral faces in 3D are planar. Different types of elements can be mixed
provided the mesh is admissible, i. e. Eh covers Ω and the intersection of two
different elements is either empty, a common vertex, edge or face of the two ele-
ments. The set of vertices is denoted by V = fv1; : : : ;vNg, the location of vertex
vi is xi and the barycenter of element ek is denoted by xk. Furthermore, V (k)
denotes the set of all indices i where vi is a corner of element ek and conversely
E(i) is the set of all indices k such that i 2V (k).

The finite volume method needs an additional mesh that is called secondary
or dual mesh. In the vertex centered variant to be described here this mesh is

72 3. Fully Implicit Finite Volume Discretization

vi

vj

bi

bj

Figure 3.1: Construction of secondary mesh in 2D.

constructed from the primary mesh Eh by the following procedure: Element
barycenters are connected to edge midpoints in 2D or to face barycenters in 3D.
Face barycenters in 3D are then connected to edge midpoints. Examples of this
construction are shown in Fig. 3.1 for the 2D case.

The secondary mesh Bh = fb1; : : : ;bNg consists of polyhedral regions bi

called boxes or control volumes. Each control volume bi is naturally associ-
ated with vertex vi in the primary mesh. Interior vertices are approximately in
the center of their associated control volume while boundary vertices are at the
boundary of their control volume (see e. g. vertex v j in Fig. 3.1). Note that the
construction of the secondary mesh is not subject to an angle condition and can
be carried out in the same way for all element types listed above. For other
variants of the finite volume method we refer to (Michev 1996).

It is convenient to define the following index sets

I = f1; : : : ;Ng; Id = fi 2 I j xi 62 Γdg: (3.2)

Based on the primary and secondary mesh we can define two finite dimen-
sional function spaces. Vh � H1(Ω) is the standard conforming finite element
space defined as

Vh =
�

v 2C0(Ω̄) j v (multi–) linear on t 2 Eh
	

(3.3)

and Wh is a non–conforming space defined as

Wh =
�

w 2 L2(Ω) j w constant on each b 2 Bh
	

(3.4)

Finite element functions, e. g. Ch 2 Vh are typically denoted with a subscript
h. In order to incorporate the Dirichlet boundary conditions we will frequently
make use of the following subspaces of Vh and Wh:

Vhd = fv 2Vh j v(xi) =Cd(xi); i 2 I n Idg (3.5)

3.2. Stationary Advection–Diffusion Equation 73

and

Whd = fw 2Wh j w(xi) = 0; i 2 I n Idg : (3.6)

Note that Dirichlet boundary conditions are directly incorporated into Vhd .
Vh and Wh are generated by the usual nodal basis functions given by

8i; j 2 I;ϕi 2Vh : ϕi(x j) = δi j (3.7)

and

8i; j 2 I;ψi 2Wh : ψi(x j) = δi j: (3.8)

Every finite element function Ch 2 Vh is identified with a vector C 2 RN by
the mapping P : RN !Vh in the usual way:

P (C) =Ch; Ch(x) = ∑
i2I

Ciϕi(x): (3.9)

We are now in a position to state the discrete vertex centered finite volume
problem:

Find Ch 2Vhd such that

Ah(Ch;wh) = Qh(wh) 8wh 2Whd ; (3.10)

where the forms Ah and Qh are given by

Ah(Ch;wh) = ∑
i2I

wh(xi)
Z

∂bi\Ω

j(Ch) �n ds; (3.11a)

Qh(wh) = ∑
i2I

wh(xi)

2
4Z

bi

q(x) dx�
Z

∂bi\Γn

J(x) ds

3
5
; (3.11b)

with n the outer unit normal to bi. This weak form follows from
Z

Ω
wh∇ �j(Ch) dx =

= ∑
i2I

wh(xi)
Z

Ω

ψi∇ � j(Ch) dx

= ∑
i2I

wh(xi)
Z

bi

∇ � j(Ch) dx

= ∑
i2I

wh(xi)

2
4 Z

∂bi\Ω

j(Ch) �n ds+
Z

∂bi\Γn

J(x) ds

3
5

(3.12)

74 3. Fully Implicit Finite Volume Discretization

vjvi

bi
k

xi
kfγi

kf

ni
kf

xij
k

nij
k

γij
k

element ek
vi vj

bi
k

bj
k

element ek

xij
k

nij
k

γij
k

γj
kf

xj
kf

nj
kf

Figure 3.2: Intersection of a control volume with an element.

and
Z

Ω
whq(x) dx =

= ∑
i2I

wh(xi)
Z

Ω

ψiq(x) dx

= ∑
i2I

wh(xi)
Z

bi

q(x) dx

(3.13)

Using the basis function representation the weak formulation is equivalent to
the algebraic problem:

Find C 2 RN , P (C) 2Vhd such that

A(C) = Q (3.14)

with

Ai = Ah(P (C);ψi); Qi = Qh(ψi); i 2 Id: (3.15)

Clearly the vector valued mapping A is linear here and (3.14) is a system of lin-
ear equations but since all problems to be discussed below will be nonlinear we
will consider A as vector valued mapping from R

N to RjId j. Note that the degrees
of freedom related to Dirichlet vertices are fixed in C through the requirement
P (C) 2Vhd .

It remains to describe the evaluation of Ah and Qh for the special test functions
ψi. For this we need some further notation related to the control volumes. The
complicated structure of the secondary mesh becomes feasible by considering

3.2. Stationary Advection–Diffusion Equation 75

the intersection of a single control volume bi with an element ek of the primary
mesh as illustrated in Fig. 3.2. The intersection of bi with ek is called sub–control
volume and is denoted by bk

i . The part of the control volume boundary ∂bi

lying within element ek consists of straight line segments in 2D and quadrilateral
(planar) faces in 3D which are called sub–control volume faces. Each sub–
control volume face can be associated with an edge of the primary mesh and is
therefore denoted by γk

i j (the sub–control volume face in ek associated with the

edge (vi;v j)). The unit normal vector to γk
i j pointing out of bi is denoted by nk

i j.
The normal vector is constant since the sub–control volumes faces are planar
(since the faces of the primary mesh are assumed to be planar). The barycenter
of sub–control volume face γk

i j is denoted by xk
i j.

If part of ∂bk
i coincides with the boundary of the domain Ω these boundary

sub–control volume faces are denoted by γk f
i with outer normal nk f

i and barycen-

ter xk f
i . The superscript f denotes the face (edge in 2D) of element ek that is part

of the boundary. Note that there may be more than one boundary sub–control
volume face per sub–control volume (e. g. vertex vi in Fig. 3.2 right would have
three boundary sub–control volume faces if the domain Ω is the single hexahe-
dron).

With this notation we have

Ah(P (C);ψi) =
Z

bi\Ω

j(Ch) �n ds = ∑
k; j

Z

γk
i j

j(Ch) �nk
i j ds�∑

k; j

Jk
i j: (3.16)

The numerical flux Jk
i j over sub–control volume face γk

i j is computed by

Jk
i j =

(
[Ch]

k
i j r(xk

i j) �n
k
i j� ∑

m2I
Cm∇ϕ m(xk

i j)D(xk
i j)n

k
i j

)
meas(γk

i j): (3.17)

where the midpoint rule has been used to evaluate the surface integral. The eval-
uation of Ch at the integration point xk

i j in the advective part is done as follows

[Ch]
k
i j = (1�β)Ch(xi j)+β �

(
Ci r(xk

i j) �n
k
i j � 0

C j else
: (3.18)

For β = 1 we obtain the fully upwinding method whereas β = 0 corresponds to
central differencing. The factor β is fixed in our application but could, in general,
be chosen depending on the local Peclet number (resulting in modified upwind
schemes, see Michev (1996)) or the smoothness of the solution (resulting in
limiter methods).

For the evaluation of the diffusion tensor D(xk
i j) several choices exist. In order

to get optimal error estimates in the L2–norm one has to set

D(xk
i j) = Dk

; (3.19)

76 3. Fully Implicit Finite Volume Discretization

where Dk is constant on each element and the entries are volume averages over
the element ek, cf. (Bey 1997). On the other hand one–dimensional homoge-
nization of ∂ j=∂x = 0, j =�D(x)∂u=∂x in (0;L) leads to

j =

0
@1

L

LZ

0

1
D(x)

dx

1
A

�1

u(0)�u(L)
L

; (3.20)

i. e. the average diffusion coefficient is computed as a harmonic mean value.
This suggests to associate a permeability value with every control volume of the
secondary mesh and to set (in the scalar case):

D(xk
i j) =

2
1

D(xi)
+ 1

D(x j)

: (3.21)

This ad hoc definition can be made more rigorous in the case of cell centered
finite volume schemes on Voronoi meshes, see (Michev 1996).

With these definitions we have in all cases that the numerical fluxes fulfill

Jk
i j =�Jk

ji; (3.22)

which ensures local conservation of mass over control volumes.
From (3.18) one can conclude that the fully upwinding discretization (β = 1)

of the advective flux always leads to positive diagonal and negative offdiagonal
entries in the stiffness matrix, regardless of any condition on the mesh. Under
reasonable assumptions on r the discretization of the advective part leads to an
M–matrix and therefore obeys a discrete maximum principle, see (Bey 1997).
The discretization of the diffusive part yields an M–matrix only under certain
assumptions on the mesh, e. g. for triangular elements in 2D the sum of the two
angles opposite of an edge must be less than or equal π.

Finally, the linear form Qh is also approximated using the midpoint rule:

Qh(ψi) =
Z

bi

q(x) dx�
Z

∂bi\Γn

J(x) ds

�∑
k

q(xi)meas(bk
i)� ∑

γk f
i \Γn

J(xk f
i)meas(γk f

i):
(3.23)

The convergence properties of the vertex centered finite volume method for
the stationary advection–diffusion problem have been investigated by several
authors. The most comprehensive treatment can be found in the recent work of
Bey (1997). For the diffusion–dominated case (no upwinding) one can show
optimal error estimates in the H1 and L2–norms (only Dirichlet boundary con-
ditions), i. e. O(h) and O(h2) convergence, respectively, if u 2 H2(Ω). In the
advection–dominated case one has O(h) convergence when the fully upwind-
ing procedure is used. The advection–dominated case is also investigated in
Michev (1996) where some modified upwinding schemes are defined. Since
these schemes are difficult to extend to the two–phase flow equations we do not
consider them here.

3.3. Phase Pressure–Saturation Formulation (PPS) 77

3.3 Phase Pressure–Saturation Formulation (PPS)
In this section we apply the vertex centered finite volume method of the previous
section to the two–phase flow equations in phase pressure–saturation formula-
tion with pw and Sn as unknowns. The resulting discretization scheme is referred
to as PPS in the rest of this work.

The equations to be solved are given by (compare to Eqs. (2.2)):

∂(Φρw(1�Sn))

∂t
+ ∇ � fρwuwg�ρwqw = 0; (3.24a)

uw = λwvw; vw =�K (∇ pw�ρwg) ; (3.24b)

∂(ΦρnSn)

∂t
+ ∇ � fρnung�ρnqn = 0; (3.24c)

un = λnvn; vn =�K (∇ pw + ∇ pc�ρng) : (3.24d)

in (0;T)�Ω, Ω a polyhedral domain in RN , d = 2;3. Boundary conditions are
given by

pw(x; t) = pwd(x; t) on Γwd ρwuw �n = φw(x; t) on Γwn (3.25a)

Sn(x; t) = Snd(x; t) on Γnd ρnun �n = φn(x; t) on Γnn (3.25b)

and initial conditions

pw(x;0) = pw0(x); Sn(x;0) = Sn0(x) x 2Ω: (3.26)

We will consider the general case where the coefficients may have the follow-
ing dependencies (α = w;n):

g constant; (3.27a)

qα = qα(x; t); (3.27b)

pc = pc(x;Sw); krα = krα(x;Sα); (3.27c)

ρα = ρα(pα); µα = µα(pα); Φ= Φ(x; pw; pn): (3.27d)

The incompressible case, where ρw;ρn;Φ are constant, is also included. We
will discretize Eqs. (3.24) first in space leaving the time variable continuous.
Suitable time discretizations will be derived in a later section.

Following the derivation for the linear advection–diffusion equation we define
index sets

Iwd = fi 2 I j xi 62 Γwdg; Ind = fi 2 I j xi 62 Γndg (3.28)

as well as subsets of the finite element space Vh

Vwhd(t) = fv 2Vh j v(xi) = pwd(xi; t); i 2 I n Iwdg ; (3.29a)

Vnhd(t) = fv 2Vh j v(xi) = Snd(xi; t); i2 I n Indg (3.29b)

78 3. Fully Implicit Finite Volume Discretization

and the test space Wh:

Wwhd = fw 2Wh j w(xi) = 0; i 2 I n Iwdg ; (3.30a)

Wnhd = fw 2Wh j w(xi) = 0; i 2 I n Indg : (3.30b)

Note that spaces Vαhd depend on time t. The corresponding weak formulation
of the two–phase flow problem is then given by:

Find pwh(t) 2Vwhd(t), Snh(t) 2Vnhd(t) such that for α = w;n

∂
∂t

Mαh(pwh(t);Snh(t);wαh)+Aαh(pwh(t);Snh(t);wαh)

+Qαh(t; pwh(t);Snh(t);wαh) = 0 wαh 2Wαhd ;0 < t < T:
(3.31)

with the accumulation terms (the time argument is omitted for ease of writing)

Mwh(pwh;Snh;wwh) = ∑
i2I

wwh(xi)
Z

bi

Φρw(1�Snh) dx; (3.32a)

Mnh(pwh;Snh;wnh) = ∑
i2I

wnh(xi)
Z

bi

ΦρnSnh dx; (3.32b)

the internal flux terms

Awh(pwh;Snh;wwh) = ∑
i2I

wwh(xi)
Z

∂bi\Ω

ρwuw �n ds; (3.33a)

Anh(pwh;Snh;wnh) = ∑
i2I

wnh(xi)
Z

∂bi\Ω

ρnun �n ds; (3.33b)

and the source, sink and boundary flux terms

Qwh(t; pwh;Snh;wwh) = ∑
i2I

wwh(xi)

2
4 Z

∂bi\Γwn

φw ds�
Z

bi

ρwqw dx

3
5
; (3.34a)

Qnh(t; pwh;Snh;wwh) = ∑
i2I

wnh(xi)

2
4 Z

∂bi\Γnn

φn ds�
Z

bi

ρnqn dx

3
5
: (3.34b)

Writing (3.31) in terms of coefficient vectors leads to a system of ordinary
differential equations (ODE) or, more precisely, to a system of differential alge-
braic equations in the incompressible case as will be discussed below:

For 0 < t < T find pw(t) 2 R
N , P (pw(t)) 2 Vwhd(t) and Sn(t) 2 R

N ,
P (Sn(t)) 2Vnhd(t) such that for α = w;n:

∂
∂t

Mα(pw(t);Sn(t))+Aα(pw(t);Sn(t))+Qα(t;pw(t);Sn(t)) = 0: (3.35)

3.3. Phase Pressure–Saturation Formulation (PPS) 79

where the components are given by (time argument is suppressed)

Mα;i(pw;Sn) = Mαh(P (pw);P (Sn);ψi); (3.36a)

Aα;i(pw;Sn) = Aαh(P (pw);P (Sn);ψi); (3.36b)

Qα;i(t;pw;Sn) = Qαh(t;P (pw);P (Sn);ψi) (3.36c)

for all i 2 Iαd and α = w;n.
It remains to declare the precise evaluation of the quantities given in (3.36).

All nonlinearities are evaluated at vertices and then interpreted as finite element
functions, i. e. given pw(t) and Sn(t) we have (time argument is suppressed):

pch = P (pc); pc;i = pc(xi;1�Sn;i); (3.37)

pnh = P (pn); pn;i = pw;i +pc;i; (3.38)

ραh = P (ρα); ρα;i = ρα(pα;i); (3.39)

µαh = P (µα); µα;i = µα(pα;i); (3.40)

Φh = P (Φ); Φi = Φ(xi;pw;i;pn;i); (3.41)

krwh = P (krw); krw;i = krw(xi;1�Sn;i); (3.42)

krnh = P (krn); krn;i = krn(xi;Sn;i); (3.43)

λαh = P (λα); λα;i = krα;i=µα;i: (3.44)

We begin with the accumulation terms which are approximated as

Mwh(pwh;Snh;ψi) =
Z

bi

Φhρwh(1�Snh) dx =

� ∑
k2E(i)

Φiρw;i(1�Sn;i)meas(bk
i)

(3.45)

and

Mnh(pwh;Snh;ψi) =
Z

bi

ΦhρnhSnh dx =

� ∑
k2E(i)

Φiρn;iSn;i meas(bk
i)

(3.46)

The use of the midpoint rule corresponds to the mass lumping approach in the
finite element method.

For the interior fluxes in the wetting phase we obtain

Awh(pwh;Snh;ψi) =
Z

∂bi\Ω

ρwhuw �n ds =

= ∑
k; j

Z

γk
i j

ρwhλwhvw �n ds

�∑
k; j

ρwh(x
k
i j) [λwh]

k
i j vwh(x

k
i j) �n

k
i j meas(γk

i j)

(3.47)

80 3. Fully Implicit Finite Volume Discretization

with the directional part of the Darcy velocity given by

vwh(x
k
i j) =�K(xk)

"
∑
m2I

�
pw;m∇ϕ m(xk

i j)�ρw;mϕm(xk
i j)g
�#

(3.48)

(note that absolute permeability is evaluated at element barycenters) and the
upwind evaluation of the mobility given by

[λwh]
k
i j = (1�β)λwh(x

k
i j)+β �

(
λw;i vwh(xk

i j) �n
k
i j � 0

λw; j else
: (3.49)

In the same way we obtain for the non–wetting phase

Anh(pwh;Snh;ψi) =
Z

∂bi\Ω

ρnhun �n ds =

= ∑
k; j

Z

γk
i j

ρnhλnhvn �n ds

�∑
k; j

ρnh(x
k
i j) [λnh]

k
i j vnh(x

k
i j) �n

k
i j meas(γk

i j)

(3.50)

with

vnh(x
k
i j) =�K(xk)

"
∑
m2I

�
pn;m∇ϕ m(xk

i j)�ρn;mϕm(xk
i j)g
�#

(3.51)

and

[λnh]
k
i j = (1�β)λnh(x

k
i j)+β �

(
λn;i vnh(xk

i j) �n
k
i j � 0

λn; j else
: (3.52)

Finally, the sources/sinks and boundary fluxes are evaluated as

Qwh(t; pwh;Snh;ψi) =
Z

∂bi\Γwn

φw ds�
Z

bi

ρwhqw dx

� ∑
γk f

i \Γwn

φw(x
k f
i ; t)meas(γk f

i)�∑
k

ρw;iqw(xi; t)meas(bk
i)

(3.53)

and

Qnh(t; pwh;Snh;ψi) =
Z

∂bi\Γnn

φn ds�
Z

bi

ρnhqn dx

� ∑
γk f

i \Γnn

φn(x
k f
i ; t)meas(γk f

i)�∑
k

ρn;iqn(xi; t)meas(bk
i)

(3.54)

respectively.

3.4. Interface Condition Formulation (PPSIC) 81

bi∩ΩI
vi

ΩI

ΩII

bi∩ΩII

Γ
I

vi
II

Figure 3.3: Control volume at the boundary of two subdomains.

3.4 Interface Condition Formulation (PPSIC)
In this section we incorporate the interface conditions at media discontinuities
developed in Section 2.3 into the the vertex centered finite volume method. The
resulting method is referred to as the PPSIC method.

The idea is as follows. Assume a domain consisting of two subdomains ΩI

and ΩII with interface Γ. Let Ω be meshed in such a way that the interface Γ is
resolved by mesh edges in 2D and faces in 3D. In order to develop the discrete
equations imagine the two subdomains ΩI, ΩII to be separated and all vertices
and corresponding degrees of freedom on the interface Γ to be duplicated. This
situation is illustrated for vertex vi in Fig. 3.3. Now (virtually) apply the vertex
centered finite volume method separately in each of the two subdomains with
flux type boundary conditions at the interface Γ. We now incorporate the inter-
face conditions developed in Section 2.3. Since pw is continuous at Γ the two
degrees of freedom for pw in vertex vi on either side can be identified. From the
extended capillary pressure continuity (2.45) we can compute Sn in vII

i from the
value of Sn in vI

i which reduces the degrees of freedom for an interface vertex
back to two. If we sum the discrete mass balance equation for phase α over
control volumes bi\ΩI and bi\ΩII the normal fluxes over the edges (faces) at
the interface cancel (indicated by the arrows in Fig. 2.3) out due to condition
(2.44). Forgetting about the separation of ΩI and ΩII we are thus left with the
standard balance equation over control volume bi where the fluxes over control
volume faces are evaluated in a special way.

In the development of the PPS method in Sect. 3.3 all quantities were assumed

82 3. Fully Implicit Finite Volume Discretization

to be continuous and have been evaluated at mesh vertices. This is not appro-
priate here since saturation (and all quantities derived from it) may be discon-
tinuous at element boundaries. Furthermore we assume that spatial dependence,
e. g. of porosity, may be discontinuous at element boundaries as well. All quan-
tities are therefore evaluated as (multi-) linear functions on each element that do
not have to be globally continuous.

Let the degrees of freedom be given as vectors pw(t)2 RN and Sn(t)2 RN as
before. Since pw is globally continuous the evaluation restricted to the element
ek is the same as before:

pwhjek
(x) = ∑

m2V (k)

pw;mϕm(x) (3.55)

where V (k) are the indices of vertices of ek and x 2 ēk.

As an auxiliary vector we define pcmin as

pcmin;i = min
k2E(i)

pc(xk
;1�Sn;i) (3.56)

where E(i) are the indices of all elements having vertex vi as a corner and xk

is the barycenter of element ek. In (3.56) we evaluate the capillary pressure
function in all elements adjacent to vertex vi for the saturation given there and
compute the minimum value.

Using pcmin;i we can compute the saturation Sn at vertex vi with respect to
element ek via the extended capillary pressure condition as follows:

Ŝn;i;k =

8<
:

Sn;i if pc(xk
;1�Sn;i) = pcmin;i

0 pcmin;i < pc(xk
;1)

1�S where S solves pc(xk
;S) = pcmin;i

: (3.57)

Note that this definition also allows more than two subdomains meeting at vertex
vi. The evaluation of saturation with respect to ek for any x 2 ēk (includes the
corners !) is then given by

Snhjek
(x) = ∑

m2V (k)

Ŝn;m;kϕm(x): (3.58)

We are now in a position to state the evaluation of quantities depending on
saturation:

pchjek
(x) = ∑

m2V (k)

pc(xk
;1� Ŝn;m;k)ϕm(x) (3.59)

pnhjek
(x) = ∑

m2V (k)

�
pw;m + pc(xk

;1� Ŝn;m;k)
�

ϕm(x) (3.60)

3.5. Global Pressure with Total Velocity (GPSTV) 83

ρnhjek
(x) = ∑

m2V (k)

ρn(pnhjek
(xm))ϕm(x) (3.61)

µnhjek
(x) = ∑

m2V (k)

µn(pnhjek
(xm))ϕm(x) (3.62)

krwhjek
(x) = ∑

m2V (k)

krw(xk
;1� Ŝn;m;k)ϕm(x) (3.63)

krnhjek
(x) = ∑

m2V (k)

krn(xk
; Ŝn;m;k)ϕm(x) (3.64)

λαhjek
(x) = ∑

m2V (k)

krαhjek
(xm)

µαhjek
(xm)

ϕm(x) (3.65)

Φhjek
(x) = ∑

m2V (k)

Φ
�

xk
;pw;m; pnhjek

(xm)
�

ϕm(x) (3.66)

Note that the positional argument is always the barycenter of the element to
catch the dependence on subdomains correctly. The definition of ρw and µw is
the same as in the PPS method since pw is continuous.

The approximation of the dual forms Mαh, Aαh and Qαh is the same as in
(3.45) through (3.54) with evaluation of coefficients replaced by their element–
wise counterparts defined above, we give Mnh as an example:

Mn;i(pw;Sn)� ∑
k2E(i)

Φhjek
(xi) ρnhjek

(xi) Ŝn;i;k meas(bk
i) (3.67)

3.5 Global Pressure with Total Velocity (GPSTV)
The purpose of this section is to apply the vertex centered finite volume method
to the incompressible two–phase flow problem in global pressure/total velocity
formulation. This formulation has the advantage that both extreme values of sat-
uration can be treated in the domain Ω. Furthermore, the pressure and saturation
equations are less coupled and should therefore be easier to solve.

The continuous problem is given by

∇ �u�qw�qn = 0; (3.68a)

u = λv; v =�K (∇ p�G) ; (3.68b)

∂(ΦρnSn)

∂t
+ ∇ � fρnung�ρnqn = 0; (3.68c)

un = λnvn; vn =�K (∇ p+ fw∇ pc�ρng) : (3.68d)

with boundary conditions

p(x; t) = pd(x; t) on Γwd u �n =U(x; t) on Γwn (3.69a)

Sn(x; t) = Snd(x; t) on Γnd ρnun �n = φn(x; t) on Γnn (3.69b)

84 3. Fully Implicit Finite Volume Discretization

and initial conditions

Sn(x;0) = Sn0(x) x 2Ω: (3.70)

The coefficient functions are supposed to have the following properties:

ρα; µα; g constant; (3.71a)

qα = qα(x; t); Φ= Φ(x) (3.71b)

pc = pc(Sw); krα = krα(Sα): (3.71c)

The definition of the index sets Iwd , Ind and discrete function spaces Vαhd(t),
Wαhd carries over from Sect. 3.3 in the obvious way. The weak formulation is
now given by:

Find ph(t) 2Vwhd(t), Snh(t) 2Vnhd(t) such that

∂
∂t

Mnh(Snh(t);wnh)+Anh(ph(t);Snh(t);wnh)+Qnh(t;wnh) = 0 (3.72a)

Awh(ph(t);Snh(t);wwh)+Qwh(t;wwh) = 0 (3.72b)

for all wαh 2Wαhd and 0 < t < T with the accumulation term given by

Mnh(Snh;wnh) = ∑
i2I

wnh(xi)
Z

bi

ΦρnSnh dx; (3.73)

the internal flux terms given by

Anh(ph;Snh;wnh) = ∑
i2I

wnh(xi)
Z

∂bi\Ω

ρnun �n ds; (3.74a)

Awh(ph;Snh;wwh) = ∑
i2I

wwh(xi)

Z

∂bi\Ω

u �n ds; (3.74b)

and the source, sink and boundary flux terms

Qnh(t;wwh) = ∑
i2I

wnh(xi)

2
4 Z

∂bi\Γnn

φn ds�
Z

bi

ρnqn dx

3
5
; (3.75a)

Qwh(t;wwh) = ∑
i2I

wwh(xi)

2
4 Z

∂bi\Γwn

U ds�
Z

bi

qw +qn dx

3
5
: (3.75b)

Writing (3.72) in terms of coefficient vectors leads to a system of ordinary
differential equations supplemented by a set of algebraic equations (constraints):

For 0 < t < T find p(t) 2 RN , P (p(t)) 2Vwhd(t) and Sn(t) 2 RN , P (Sn(t)) 2
Vnhd(t) such that

∂
∂t

Mn(Sn(t))+An(p(t);Sn(t))+Qn(t) = 0 (3.76a)

Aw(p(t);Sn(t))+Qw(t) = 0 (3.76b)

3.5. Global Pressure with Total Velocity (GPSTV) 85

with components given in the obvious way (see Sect. 3.3).

Since we do not consider porous media with discontinuities here the evalu-
ation of coefficient functions is done at vertices with subsequent finite element
interpolation as described in the PPS method.

The approximation of Mnh, Qnh and Qwh is straightforward (see Sect. 3.3). In
the Anh–term the velocity is now written in terms of global pressure:

Anh(pwh;Snh;ψi) =
Z

∂bi\Ω

ρnun �n ds =

= ∑
k; j

Z

γk
i j

ρnλnhvn �n ds

�∑
k; j

ρn [λnh]
k
i j vnh(x

k
i j) �n

k
i j meas(γk

i j)

(3.77)

with

vnh(x
k
i j) =�K(xk)

"
∑
m2I

�
pm + fwh(x

k
i j)pc;m

�
∇ϕ m(xk

i j)�ρng

#
(3.78)

and

[λnh]
k
i j = (1�β)λnh(x

k
i j)+β �

(
λn;i vnh(xk

i j) �n
k
i j � 0

λn; j else
: (3.79)

Note that the velocity vnh(xk
i j) used to evaluate the upwind switch still contains

fw. A “central” evaluation of fw in (3.78) seems to work ok since the problem
is diffusion dominated if ∇ pc is the dominant term in vn.

Upwinding for the total mobility in the Awh–term is done via separate upwind-
ing of the phase mobilities. Therefore we evaluate the wetting phase velocity
(direction) at the integration point

vwh(xk
i j) =�K(xk)

"
∑
m2I

�
pm� fnh(xk

i j)pc;m

�
∇ϕ m(xk

i j)�ρwg

#
(3.80)

and the corresponding integration point value of wetting phase mobility

[λwh]
k
i j = (1�β)λwh(x

k
i j)+β �

(
λw;i vwh(xk

i j) �n
k
i j � 0

λw; j else
: (3.81)

86 3. Fully Implicit Finite Volume Discretization

The Awh–term is evaluated as

Awh(pwh;Snh;ψi) =
Z

∂bi\Ω

u �n ds =

= ∑
k; j

Z

γk
i j

λhv �n ds

�∑
k; j

[λh]
k
i j vh(x

k
i j) �n

k
i j meas(γk

i j)

(3.82)

with the integration point value of total mobility given by

[λh]
k
i j = [λwh]

k
i j +[λnh]

k
i j (3.83)

and the directional part of the total velocity given by

vh(x
k
i j) =�K(xk)

"
∑
m2I

pm∇ϕ m(xk
i j)�

ρw [λwh]
k
i j +ρn [λnh]

k
i j

[λh]
k
i j

g

#
(3.84)

3.6 Global Pressure with Total Flux (GPSTF)
In contrast to the last section we now wish to apply the vertex centered finite vol-
ume discretization to the compressible two phase flow problem in global pres-
sure formulation. Unfortunately, Eq. (2.33) is not in conservative form and the
finite volume technique cannot be applied to the term ∇ρ α � uα . We therefore
propose a formulation with a global pressure that uses the total flux instead of
the total velocity. The continuous problem is given by

∂(Φρw(1�Sn)+ΦρnSn)

∂t
+ ∇ � j�ρwqw�ρnqn = 0; (3.85a)

j = ρwuw +ρnun; (3.85b)

uw = λwvw; vw =�K (∇ p� fn∇ pc�ρwg) ; (3.85c)

un = λnvn; vn =�K (∇ p+ fw∇ pc�ρng) ; (3.85d)

∂(ΦρnSn)

∂t
+ ∇ � fρnung�ρnqn = 0: (3.85e)

(3.85f)

With global pressure being defined by (2.21), capillary pressure is now not com-
pletely eliminated from the pressure equation, however, its influence is reduced
compared to the phase pressure formulation since it is always multiplied by the
product λwλn which vanishes for extreme values of saturation. Furthermore,
the quantity ρwλw +ρnλn does vary less than λw + λn in the case of water–gas
systems (the variation in viscosity is partly compensated by the variation in den-
sity).

3.6. Global Pressure with Total Flux (GPSTF) 87

Boundary conditions for (3.85) are given by

p(x; t) = pd(x; t) on Γwd j �n = J(x; t) on Γwn (3.86a)

Sn(x; t) = Snd(x; t) on Γnd ρnun �n = φn(x; t) on Γnn (3.86b)

and initial conditions by

p(x;0) = p(x); Sn(x;0) = Sn0(x) x 2 Ω: (3.87)

The coefficient functions are supposed to have the following properties:

µα ; g constant; (3.88a)

qα = qα(x; t); (3.88b)

pc = pc(Sw); krα = krα(Sα); (3.88c)

ρα = ρα(p); Φ= Φ(x; p): (3.88d)

With the standard notation introduced in Sect. 3.3 we have the weak formula-
tion:

Find ph(t) 2Vwhd(t), Snh(t) 2Vnhd(t) such that for α = w;n

∂
∂t

Mαh(ph(t);Snh(t);wαh)+Aαh(ph(t);Snh(t);wαh)

+Qαh(t; ph(t);wαh) = 0 wαh 2Wαhd ;0 < t < T:
(3.89)

with

Mwh(ph;Snh;wwh) = ∑
i2I

wwh(xi)
Z

bi

Φ(ρw(1�Snh)+ρnSnh) dx; (3.90a)

Awh(ph;Snh;wwh) = ∑
i2I

wwh(xi)
Z

∂bi\Ω

(ρwuw +ρnun) �n ds; (3.90b)

Qwh(t; ph;wwh) = ∑
i2I

wwh(xi)

2
4 Z

∂bi\Γwn

J ds�
Z

bi

(ρwqw +ρnqn) dx

3
5
; (3.90c)

and the other terms as in Sect. 3.3. The system of ODE also has the same
structure as in the PPS method.

The evaluation of the forms (3.90) for a test function ψi is done as follows:

Mwh(ph;Snh;ψi)�∑
k

Φi
�
ρw;i(1�Sn;i)+ρn;iSn;i

�
meas(bk

i); (3.91a)

Awh(ph;Snh;ψi)�∑
k; j

∑
α=w;n

ραh(x
k
i j) [λαh]

k
i j vαh(x

k
i j) �n

k
i j meas(γk

i j); (3.91b)

Qwh(t; ph;ψi)� ∑
γk f

i \Γwn

J(xk f
i ; t)meas(γk f

i)�∑
k

∑
α

ρα;iqα(xi; t)meas(bk
i)

(3.91c)

88 3. Fully Implicit Finite Volume Discretization

with

vwh(xk
i j) =�K(xk)

"
∑
m2I

�
pm� fnh(xk

i j)pc;m

�
∇ϕ m(xk

i j)�ρwh(xk
i j)g

#
; (3.92a)

vnh(xk
i j) =�K(xk)

"
∑
m2I

�
pm + fwh(xk

i j)pc;m

�
∇ϕ m(xk

i j)�ρnh(xk
i j)g

#
(3.92b)

and

[λαh]
k
i j = (1�β)λαh(x

k
i j)+β �

(
λα;i vαh(xk

i j) �n
k
i j � 0

λα; j else
: (3.93)

3.7 Implicit Time Discretization
We now describe some implicit time discretization schemes that are used to
derive fully discrete schemes from the semi–discrete equations given above.

Let the time interval (0;T) be subdivided into discrete steps

0 = t0
; t1

; : : : ; tn
; tn+1

; : : : ; tM = T (3.94)

that are not necessarily equidistant. The evaluation of any quantity at time level
tn is denoted by a superscript n (not to be mixed up with subscript n, which
denotes the non–wetting phase). E. g. we have pwh(tn) = pn

wh, Vwhd(tn) =V n
whd

or Sn(tn) = Sn
n. The notation for a time step is

∆tn = tn+1� tn
: (3.95)

3.7.1 ONE STEP θ-SCHEME

The one step θ–scheme (see e. g. (Rannacher 1994; Helmig 1997)) applied to
the semi–discrete system (3.35) yields:
For n = 0;1; : : : ;M�1 find pn

w;S
n
n such that for α = w;n

Mn+1
α �Mn

α +∆tnθ
�
An+1

α +Qn+1
α
�
+∆tn(1�θ)(An

α +Qn
α) = 0; (3.96)

with Mn+1
α = Mα(pn

w;S
n
n), etc. In case of the semi–discrete system (3.76) it

would read

Mn+1
n �Mn

n +∆tnθ
�
An+1

n +Qn+1
n

�
+∆tn(1�θ)(An

n +Qn
n) = 0; (3.97a)

An+1
w +Qn+1

w = 0; (3.97b)

i. e. the time discretization is only applied to the saturation equation and the
pressure equation should be satisfied at the new time level.

For θ = 1 we obtain the first order accurate backward Euler scheme and for
θ = 1=2 the Crank–Nicolson scheme which is second order accurate in time.
However, the Crank–Nicolson scheme has only weak damping properties, cf.
Rannacher (1988), which may cause stability problems.

3.7. Implicit Time Discretization 89

3.7.2 BACKWARD DIFFERENCE FORMULA

The second order backward difference formula, BDF(2), has superior damp-
ing properties when compared to the Crank–Nicolson scheme (see (Rannacher
1988)) and is a standard method for stiff ODE problems, see e. g. Hairer and
Wanner (1991). BDF(2) is a two step scheme requiring the solution at two pre-
ceding time levels. In our scheme the solution at t1 is simply computed with the
one step θ–scheme from above. Starting with the second time step the scheme
reads:

For n = 1;2; : : : ;M�1 find pn
w;S

n
n such that for α = w;n

1

∑
k=�1

an;kMn+k
α +∆tn �An+1

α +Qn+1
α
�
= 0; (3.98)

with the coefficients given by

an;1 =
∆tn�1 +2∆tn

∆tn�1 +∆tn ; an;0 =�
∆tn�1 +∆tn

∆tn�1 ; (3.99a)

an;�1 =
(∆tn)2

(∆tn�1)2 +∆tn�1∆tn : (3.99b)

The application to the semi–discrete system (3.76) is done as in the one step
θ–scheme.

3.7.3 DIFFERENTIAL ALGEBRAIC EQUATIONS

With the global pressure formulation GPSTV for the incompressible case we
obtained the semi–discrete problem

∂
∂t

Mn(Sn(t))+An(p(t);Sn(t))+Qn(t) = 0 (3.100)

Aw(p(t);Sn(t))+Qw(t) = 0 (3.101)

cf. Eq.(3.76). This system is in the form of a system of differential algebraic
equations (DAE), i. e. a system of ODE supplemented with a set of algebraic
constraints. More specific, it is a system of DAE with index 1 since the con-
straint equation can always be solved for p(t) when Sn(t) is given. Furthermore,
it is said to be in explicit form since the constraint equation is given separately.

With the other three schemes PPS, PPSIC and GPSTF we obtained semi–
discrete systems of the form

∂
∂t

Mw(pw(t);Sn(t))+Aw(pw(t);Sn(t))+Qw(t;pw(t);Sn(t)) = 0

∂
∂t

Mn(pw(t);Sn(t))+An(pw(t);Sn(t))+Qn(t;pw(t);Sn(t)) = 0

90 3. Fully Implicit Finite Volume Discretization

with a time derivative in both equations. This system can be formally rewritten
in the form

�
Mww Mwn

Mnw Mnn

�
| {z }

M

∂pw(t)

∂t
∂Sn(t)

∂t

!
+

�
Aw(pw;Sn)+Qw(t;pw;Sn)

An(pw;Sn)+Qn(t;pw;Sn)

�
= 0

with the (solution–dependent) submatrices given by

(Mαw)i j =
∂Mαw;i

∂pw; j
; (Mαn)i j =

∂Mαn;i

∂Sn; j
:

In the incompressible case this results into a system of DAE in implicit form
which is characterized by M being a singular matrix. This has some conse-
quences for the time discretization schemes. Necessary properties for the gen-
eral case can be found in Hairer and Wanner (1991). We will only show here
that the two schemes defined above correctly treat the implicit constraint when
applied to the incompressible two–phase flow problem.

Let us assume that Iwd = Ind , i. e. at a boundary vertex both components either
have Dirichlet or flux boundary conditions. In the incompressible case (ρα , Φ
constant) we obtain the following equations for the one step θ–scheme:

Mwn
�
Sn+1

n �Sn
n

�
+∆tnθ

�
An+1

w +Qn+1
w

�
+∆tn(1�θ)(An

w +Qn
w) = 0;

(3.102a)

Mnn
�
Sn+1

n �Sn
n

�
+∆tnθ

�
An+1

n +Qn+1
n

�
+∆tn(1�θ)(An

n +Qn
n) = 0;

(3.102b)

where the matrices Mwn and Mnn are diagonal and of the same size with entries
independent of the solution. By eliminating Sn+1

n � Sn
n from this system we

obtain the relation

θ
�
M�1

wn

�
An+1

w +Qn+1
w

�
�M�1

nn

�
An+1

n +Qn+1
n

��
+(1�θ)

�
M�1

wn (A
n
w +Qn

w)�M�1
nn (An

n +Qn
n)
�
= 0:

(3.103)

The expression in square brackets is, in case of the PPS–method, a discrete
version of the constraint equation (2.11a). As can be seen, the constraints at the
new time level and the old time level occur in equation (3.103). If θ= 1, i. e. the
backward Euler method, the constraint is always fulfilled at the new time level.
If 0 < θ < 1 we can state that the constraint equation at the new time level is
satisfied if it has been satisfied at the old time level. It is therefore important
for the Crank–Nicolson scheme to start with a pressure field that satisfies the
constraint equation. Since we do not want to rewrite the DAE in explicit form
we simply use one step of backward Euler in the very first time step to make the
pressure field fulfill the constraint equation.

3.8. Validation of the Numerical Model 91

Since only spatial terms of the new time level are needed in the BDF(2)
scheme the implicit constraint is always satisfied as in the backward Euler
scheme. Unfortunately some favorable schemes, such as the fractional step θ–
scheme, see (Rannacher 1994), cannot be applied directly to a system of implicit
DAE since they do not satisfy the implicit constraint.

3.7.4 GLOBAL CONSERVATION OF MASS

Any finite–volume scheme has the property of conserving mass locally and glob-
ally. It is therefore important that this property is not destroyed by the time dis-
cretization scheme. We will shortly illustrate here that the one step θ–scheme
(together with the finite volume discretization in space) conserves mass globally
even for variable time steps. Unfortunately, the BDF(2) scheme suffers from
mass balance errors when the time step size is changed.

In order to verify global conservation of mass of a discrete scheme in the
time–dependent case we have to show that the sum over all discrete equations
and time levels has the form�

Total mass
in Ω at tM

�
�
�

Total mass
in Ω at t0

�
+

�
Sum of sources,
sinks, boundary fluxes

�
= 0:

(3.104)

Indeed, for the one step θ–scheme we obtain for α = w;n:

∑
i2Iα

�
MM

α;i�M0
α;i
�
+

M�1

∑
n=0

∑
i2Iα

∆tn
h
θQn+1

α;i +(1�θ)Qn
α;i

i
= 0; (3.105)

which is of the required form.
For a fixed size of the time step ∆tn = ∆t the BDF(2) scheme leads to

∑
i2Iα

�
3
2

MM
α;i�

1
2

MM�1
α;i �

1
2
(M1

α;i +M0
α;i)

�
+

M�1

∑
n=0

∑
i2Iα

∆tQn+1
α;i = 0; (3.106)

where one step of backward Euler has been used for the very first time step.
The “ fancy” approximation of the initial mass comes from the two step nature
of BDF(2). If the time step size is allowed to vary then the accumulation terms
at intermediate time steps do not cancel out since ∑1

k=�1 An+k;k 6= 0 in general.
This is a consequence of BDF(2) being a difference scheme in time, whereas the
one step θ–scheme comes from an integral formulation in time with trapezoidal
rule for the spatial terms.

3.8 Validation of the Numerical Model
In this section we compare numerical computations and (quasi–) analytic solu-
tions for the two one–dimensional model problems analyzed in Sections 2.4.2
and 2.4.3. The aim here is to show that the numerical solution converges towards
the exact solution and to determine the experimental order of convergence.

92 3. Fully Implicit Finite Volume Discretization

3.8.1 HYPERBOLIC CASE

The incompressible two–phase problem without capillary pressure is solved in
the domain Ω = (0;300[m])� (0;75[m]) and the time interval (0;1500[d]) with
the following parameters:

fluids:
ρw = ρn = 1000[kg=m3

]

µw = µn = 0:001[Pa s]

rock:
Φ = 0:2
K = 10�7

[m2
]

residual saturation:
Swr = Snr = 0

relative permeability:
Brooks–Corey, λ = 2:0

capillary pressure:
pc � 0

boundary conditions:
φα = 0 for y = 0 and y = 75[m]

pn = 2 �105
[Pa], Sw = 1 for x = 0

φn = 3 �10�4
[kg=(ms2

)], Sw = 0 for x =

300

initial conditions:
Sw(x;0) = 0 for x 2 Ω

The domain Ω is discretized with K� 1 quadrilateral elements, where K =
32;64; : : : ;512. Since no capillary diffusion is present all methods introduced
above essentially behave the same, therefore the PPS scheme with (pn;Sw) as
primary unknowns has been selected. In order to enable a quantitative compari-
son the Lp–norm of the error in the saturation variable,

kSw�SwhkLp =

0
@Z

Ω

jSw�Swhjp dx

1
A

1
p

; (3.107)

is computed for p = 1;2 at the final time T = 1500[d]. With the parameters
given above the velocity of the front is v� 1:84 �10�6[m=s]. A spatial resolution
of 64 elements and a temporal resolution of 64 time steps (equidistant) therefore
corresponds to a Courant number C = v∆t=∆x� 0:8.

Table 3.1 shows the error norms of the saturation for the final time T =
1500[d] using either backward Euler or Crank–Nicolson time–stepping. Both
methods used fully upwinding of the mobilities (β = 1) and a fixed Courant
number of 0:8. The convergence rate r is determined as

r = log

�
kSw�SwhkLp

kSw�Sw2hkLp

�
= log

1
2
: (3.108)

The optimal approximation order of a step function with the ansatz space Vh

given here is O(h) in the L1–norm and O(h
1
2) in the L2–norm. The table shows

that these approximation orders are almost reached.
Figure 3.4 shows the numerical solutions in comparison to the analytic solu-

tion. The top and middle plots show the solutions corresponding to Table 3.1
above. As can be seen, the Crank–Nicolson scheme gives a much better shock
resolution. The bottom plot gives results of the backward Euler scheme with

3.8. Validation of the Numerical Model 93

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Backward Euler, fully upwind, Courant=0.8

analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Crank-Nicolson, fully upwind, Courant=0.8

analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

 S
at

ur
at

io
n

w

x [m]

Backward Euler, fully upwind, 64 time steps

analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

Figure 3.4: Numerical solution of the Buckley–Leverett problem: Backward
Euler with Courant number 0:8 (top), Crank–Nicolson with Courant number 0:8
(middle) and backward Euler with fixed number of time steps (bottom).

94 3. Fully Implicit Finite Volume Discretization

Table 3.1: Experimental order of convergence for the Buckley–Leverett problem
with Brooks–Corey relative permeability and Courant number 0:8.

Method space time L1 L2

elements steps error rate error rate
backward 32 32 1:54 �101 2:21 �100

Euler, 64 64 8:86 �100 0.80 1:67 �100 0.40
fully 128 128 5:06 �100 0.81 1:26 �100 0.41
upwind 256 256 2:86 �100 0.82 9:44 �10�1 0.42

512 512 1:61 �100 0.83 7:03 �10�1 0.43
Crank– 32 32 9:23 �100 1:77 �100

Nicolson, 64 64 5:14 �100 0.84 1:34 �100 0.40
fully 128 128 2:94 �100 0.81 1:01 �100 0.41
upwind 256 256 1:68 �100 0.81 7:54 �10�1 0.42

512 512 9:59 �10�1 0.81 5:50 �10�1 0.46

fully upwinding and a fixed time step size of ∆t = 1500[d]=64 while the spatial
mesh size varies. It can be seen that there is very little improvement in solu-
tion quality above a Courant number of 1:6 which corresponds to 128 elements,
i. e. errors coming from spatial and temporal discretization are balanced for a
Courant number of about 1. Although the backward Euler scheme is uncondi-
tionally stable it is not reasonable to take large time steps from an approxima-
tion point of view. It should be noted, however, that the shock resolution (for
Courant 1) is quite good due to the nonlinearity of the advection term (so–called
“self–sharpening effect”). The Crank–Nicolson scheme becomes unstable for
a Courant number exceeding 1, the BDF(2) scheme requires even a Courant
number below 1=2 for the problem here!

We conclude that the implicit schemes presented above converge towards the
exact solution with rates that can be expected for this type of problem. How-
ever, they are not very efficient for the purely hyperbolic case discussed in this
subsection. We have chosen implicit schemes since we are interested in the case
where capillary diffusion is important. This case is discussed next.

3.8.2 PARABOLIC CASE

The two–phase flow problem is solved in the domain Ω = (0;1:6[m])2 and the
time interval (0;8000[s]). The parameters are chosen as follows:

3.8. Validation of the Numerical Model 95

Table 3.2: Experimental order of convergence for the McWhorter problem with
Brooks–Corey relative permeability and capillary pressure.

Method space time L1 L2

elements steps error rate error rate
backward 32 12 8:45 �10�2 9:13 �10�2

Euler, 64 24 5:04 �10�2 0.75 6:19 �10�2 0.56
fully 128 48 2:93 �10�2 0.78 4:03 �10�2 0.62
upwind 256 96 1:71 �10�2 0.78 2:57 �10�2 0.65

512 192 1:00 �10�2 0.77 1:61 �10�2 0.67
backward 32 12 2:56 �10�2 4:05 �10�2

Euler, 64 24 1:33 �10�2 0.94 2:44 �10�2 0.73
central 128 48 7:21 �10�3 0.88 1:45 �10�2 0.75
differences 256 96 4:22 �10�3 0.77 8:56 �10�3 0.76

512 192 2:74 �10�3 0.62 4:99 �10�3 0.78

fluids:
ρw = ρn = 1000[kg=m3

]

µw = µn = 0:001[Pa s]

rock:
Φ = 0:3
K = 10�10

[m2
]

residual saturation:
Swr = Snr = 0

relative permeability:
Brooks–Corey, λ = 2:0

capillary pressure:
Brooks–Corey with λ = 2 and pd =

5000[Pa]

boundary conditions:
φα = 0 for y = 0 and y = 1:6[m]

pn = 2 �105
[Pa], Sw = 1 for x = 0

φn = 0, Sw = 0 for x = 1:6[m]

initial conditions:
Sw(x;0) = 0 for x 2 Ω

The parameters correspond to the example given at the end of Subs. 2.4.3.
The domain Ω is discretized with K � 2 quadrilateral elements, where K =
32;64; : : : ;512. The number of time steps varies from 12 to 192 (time steps
are equidistant).

Table 3.2 lists the L1 and L2–norms of the error in the saturation variable at
the final time T = 8000[s]. The PPS method with (pn;Sw) as primary unknowns
has been used with backward Euler time–stepping and fully upwinding (β = 1)
as well as central differencing of mobilities (β = 0). The solutions for both
variants are shown graphically in Figure 3.5 top and middle. Since the problem
is diffusion–dominated central differencing can be used which leads to a better
approximation in the smooth parts of the solution. The rates, however, are about
equal due to the lack of regularity in the solution. The bottom plot in Figure
3.5 shows the numerical solution when the number of time steps is fixed to
24 and only the spatial mesh size is varied. As can be seen, very large time
steps can be taken. It should be noted that the free boundary moves very fast

96 3. Fully Implicit Finite Volume Discretization

at the beginning of the simulation since we have that S(x; t) = S(xt�
1
2). An

explicit scheme would require excessively small time steps at the beginning.
This behavior also suggests that the time step size should be chosen adaptively.

3.8. Validation of the Numerical Model 97

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 S
at

ur
at

io
n

w

x [m]

Backward Euler, fully upwinding, PPS scheme

quasi-analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 S
at

ur
at

io
n

w

x [m]

Backward Euler, central differences, PPS scheme

quasi-analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 S
at

ur
at

io
n

w

x [m]

Backward Euler, central differences, fixed dt

quasi-analytic solution
32 elements
64 elements

128 elements
256 elements
512 elements

Figure 3.5: Numerical solution of the McWhorter problem: Backward Euler
with fully upwinding and fixed ∆t=∆x (top), backward Euler with central differ-
encing and fixed ∆t=∆x (middle) and backward Euler with fixed number of time
steps (bottom).

98 3. Fully Implicit Finite Volume Discretization

4

Solution of Algebraic Equations

This chapter concentrates on the resolution of the algebraic equations arising
within each time step of the fully implicit/fully coupled solution procedure.

After a description of the multigrid mesh structure the inexact Newton method
will be reviewed shortly. Then we will turn our attention to the resolution of
the linear systems arising within each Newton step. The main objective of this
chapter is the construction of an appropriate multigrid method for these systems.
Finally, the last section of this chapter is devoted to the parallel implementation
of the multigrid solver.

4.1 Multigrid Mesh Structure
The nonlinear and linear solvers to be described in this chapter utilize a multigrid
mesh structure to accelerate the solution process. This multigrid mesh structure
denoted by

E0;E1; : : : ;EJ (4.1)

is constructed from an intentionally coarse mesh E0 (generated by hand or an
initial mesh generator) by regular subdivision of each element. Figure 4.1 illus-
trates the subdivision process for all six element types. The stable refinement of
tetrahedra is based on the method of Bey (1995).

The set of vertices belonging to mesh El is written as Vl. The number of
elements on level l is denoted by Kl and the number of vertices by Nl . In the

Figure 4.1: Regular refinement rules.

99

100 4. Solution of Algebraic Equations

multigrid case the mesh size index h is replaced by the level index l. Moreover,
the mesh size index is omitted where not absolutely necessary.

Local mesh refinement is also possible. In that case we prefer conforming
meshes without hanging nodes. This is achieved by introducing additional ir-
regular refinement rules. Elements produced by irregular refinement rules are
not allowed to be refined. If further refinement is required they are replaced by
regularly refined elements, for details we refer to (Bank, Sherman, and Weiser
1983; Bey 1995) in the sequential case and (Bastian 1996; Lang 1999) for a
parallel implementation.

4.2 Inexact Newton Method
4.2.1 ALGORITHM

The discrete schemes derived in Chapter 3 all lead to a large set of nonlinear
algebraic equations

F(z) = 0 (4.2)

to be solved per time step. The vector z contains pressure and saturation un-
knowns in the following ordering

z = (pw;1; : : : ;pw;N;Sn;1; : : : ;Sn;N)
T (4.3)

which is referred to as equation–wise ordering. The vector function F has com-
ponents

F = (Fw;1; : : : ;Fw;N;Fn;1; : : : ;Fn;N)
T (4.4)

which, e. g. in the case of the PPS–method and a one step θ–scheme are given
by

Fα = Mn+1
α �Mn

α +∆tnθ
�
An+1

α +Qn+1
α
�
+∆tn(1�θ)(An

α +Qn
α) ; (4.5)

see Eq. (3.96). Actually, those coefficients in z corresponding to Dirichlet
boundary conditions are not unknown and the number of nonlinear equations
is reduced correspondingly. In the implementation (and description of it) it is
more convenient to keep these components as “unknowns” and to extend F by
an appropriate number of trivial equations.

The linearization (Jacobian) A of F at the linearization point z is the matrix
with entries

(A(z))i j =
∂Fi

∂z j
(z): (4.6)

The entries of the Jacobian are either computed analytically or by numerical
differentiation:

∂Fi

∂z j
(z) =

Fi(z+∆z je j)�Fi(z)
∆z j

+O(∆z j) (4.7)

4.2. Inexact Newton Method 101

with e j the j–th unit vector, ∆z j = ε(1+ jz jj) and ε 2 [10�8
;10�6].

We are now in a position to state the inexact Newton algorithm.

ALGORITHM 4.1 The following algorithm inewton solves the nonlinear sys-
tem F(z) = 0 to accuracy εnl starting from the initial guess z.

inewton (F, z, εnl)
f

(1) κ = 0; z0 = z;
(2) while

�
kF(zκ)k2 � εnlkF(z0)k2

�
f

(3) Choose εκ
lin 2 (0;1];

Find sκ such that
(4) kF(zκ)+A(zκ)sκk2 � εκ

linkF(zκ)k2;
(5) Choose λκ 2 (0;1];
(6) zκ+1 = zκ +λκsκ;
(7) κ = κ +1;

g
g

Superscript κ denotes the iteration index and k:k2 is the Euclidean vector
norm.

Two strategies for the selection of the initial guess are available. The first
strategy simply uses the converged value of the preceding time step. The sec-
ond strategy uses the multigrid hierarchy to compute a better initial guess. The
nonlinear problem F(z0) = 0 is solved on the coarsest mesh using the value of
the preceding time step restricted to the coarsest mesh (straight injection is used
here) as initial guess. Then z0 is interpolated to mesh level 1 to be used as initial
guess and the process is repeated until the finest level is reached. In the lin-
ear case this procedure is called nested iteration or the full multigrid procedure.
Nested iteration is especially effective in the case of large time steps. The auxil-
iary nonlinear coarse grid problems need not be solved as accurately as the fine
grid equations.

Steps (3),(4) in algorithm inewton compute an approximation of the Newton
update sκ which is the solution of the linear system

A(zκ)sκ =�F(zκ): (4.8)

The accuracy εκ
lin, also called a forcing term, required in the solution of this

linear system is chosen as

εκ
lin =

8<
:

ε0 κ = 0

min

�
ε0;

�
kF(zκ)k2
kF(zκ�1)k2

�2
�

κ > 0
: (4.9)

This choice allows for an inaccurate solution in the first Newton steps while
ensuring quadratic convergence in the final steps. For a comparison of forcing

102 4. Solution of Algebraic Equations

term strategies we refer to (Eisenstat and Walker 1996). The safety factor ε0

should not be chosen too large in the problems considered here. This is due
to the fact that the convergence of the linear solver may not be monotone in
the sense that all saturation values are in the interval [0;1]. We typically use
ε0 = 10�4 in the numerical computations reported below.

Since Newton’s method converges only in a sufficiently close neighborhood
of the solution a damping strategy is needed to achieve global convergence.
Step (5) implements a simple line search strategy where the damping factor λκ

is chosen as the largest value in the set f1; 1
2 ;

1
4 ; : : :g such that

kF(zκ +λκsκ)k2 �
�

1�
1
4

λκ
�
kF(zκ)k2: (4.10)

For a theoretical motivation of this strategy we refer to (Braess 1992).

4.2.2 LINEARIZED OPERATOR FOR PPS–SCHEME

In order to get more insight into the structure of the Jacobian system for the
fully coupled two–phase flow problem we consider it as a discretization of the
linearized continuous equations.

We set

pw = p̃w +δpw; Sn = S̃n +δSn; (4.11)

where p̃w; S̃n is the linearization point. A system of linear partial differential
equations for an approximation of the updates δpw;δSn is obtained by using
Taylor expansion of the nonlinearities and ignoring all terms that are more than
linear in the updates. For the PPS–method these equations are given in the
incompressible case by

�∇ � fλwK∇δ pwg �∂(ΦδSn)
∂t � ∇ � fwwδSng

�∇ � fλnK∇δ pwg
∂(ΦδSn)

∂t + ∇ � fwnδSn +λn p0cK∇δ Sng

!
= rhs: (4.12)

with the velocities

ww =�λ0wK (∇ p̃w�ρwg) ; (4.13a)

wn =�λ0nK (∇ p̃n�ρng)+λnK∇ (p0c): (4.13b)

All coefficient functions in (4.12) are to be evaluated at the linearization point
p̃w; S̃n. From the definition of F, z and the Jacobian A it is evident that the
Jacobian has a 2�2 block structure

A =

�
Aww Awn

Anw Ann

�
: (4.14)

The 2� 2 structure in (4.14) directly corresponds to that in (4.12), i. e. for
h ! 0, Aww is a discretization of the term �∇ � fλwK∇δ pwg, etc. . From this
correspondence we can deduce some qualitative properties of the linear system
to be solved in each Newton step.

4.3. Multigrid Solution of Linear Systems 103

The case S̃n = 1 . For S̃n = 1 in Ω we have krw = 0 and consequently the
whole block Aww vanishes. Of course, selected rows of Aww vanish if S̃n = 1
locally. In this case point–wise iterative schemes cannot be applied.

Variability of coefficients . Remembering that typical shapes of the relative
permeability functions are e. g. krn(Sn) = S4

n and that the solution may have steep
gradients (even shocks) we see that the coefficients in all blocks vary strongly
with spatial position. The absolute permeability K may be anisotropic and also
strongly variable in magnitude with spatial position. Finally the function p0c in
the nn–block depends on the solution and therefore on position.

Convection vs. diffusion . The nn–block is the discretization of a time–
dependent convection–diffusion operator. Depending on the parameters it may
be either convection or diffusion dominated. The ww–block is always the dis-
cretization of an elliptic operator. This corresponds directly to the characteri-
zation of the two–phase flow equations as a coupled system of an elliptic and a
parabolic/hyperbolic equation.

4.3 Multigrid Solution of Linear Systems

4.3.1 INTRODUCTION

This section treats the resolution of large and sparse systems of linear equations

Az = b (4.15)

where in our application A is the Jacobian arising in the fully coupled New-
ton solution of the two–phase flow problem and b is the nonlinear defect. For
illustrative purposes we will also frequently refer to the case where A is the
discretization of a linear scalar model problem of the form ∇ � frC�D∇ Cg.

Let N be the dimension of the system (4.15). Direct resolution of (4.15) with
Gaussian elimination requires O(N3) arithmetical operations, see e. g. (Golub
and Van Loan 1989). Taking the sparsity structure into account (i. e. avoiding
fill–in and computation with zero elements) the operation count can be reduced
for two–dimensional problems to O(N2) for banded Gaussian elimination or
O(N1:5) for nested disection. The corresponding numbers for three–dimensional
problems are O(N2:33) and O(N2), see e. g. (Axelsson and Barker 1984). In
two space dimensions direct methods are very efficient up to several thousand
unknowns. In three dimensions, however, direct resolution quickly becomes
infeasible.

For large problems (we will handle millions of unknowns) iterative methods
are the only choice. Starting with an initial guess z0, iterative methods for the
resolution of (4.15) produce a sequence of iterates z1

;z2
; : : : that (hopefully)

converges to the exact solution z.

104 4. Solution of Algebraic Equations

In the case of relaxation methods the idea is to split the matrix A into

A = M�N (4.16)

where M should be a approximation of A that is easy to invert. The iteration is
then given by

zµ+1 = zµ +M�1(b�Azµ): (4.17)

The quantity dµ = b�Azµ is called the defect in step µ. Typical choices for
M are the diagonal of A (Jacobi method) or the lower triangle of A (Gauß-Seidel
method). Another popular choice is

A = LU�N (4.18)

where L and U are lower and upper triangular matrices derived from A by incom-
plete LU decomposition without introduction of additional fill–in. Thus L and
U have the same sparsity pattern as A. A measure of the speed of convergence
of an iterative method is given by

kz� zµ+1k � ρkz� zµk (4.19)

with a suitable norm k:k, e. g. Euclidean norm, maximum norm or energy norm
if A is symmetric positive definite. In order to reduce the error by a factor of ε
at most µ = dlogε= logρe steps are required.

For methods of type (4.17) the convergence factor typically has the form

ρ = 1�O(h2) (4.20)

leading to a fourfold increase in the number of iterations to achieve a fixed error
reduction when the mesh size h is halfened. Simple modifications of the basic
scheme (4.17) (the SOR method) are able to reduce the convergence factor to

ρ = 1�O(h) (4.21)

but rely on a problem–dependent parameter that is, in general, not known. Clas-
sical textbooks for relaxation methods are (Varga 1962; Young 1971), a newer
source containing many more methods is the excellent monograph by Hack-
busch (1994). The arithmetical complexity of methods with property (4.20) is
O(N2) in two and O(N1:67) in three dimensions. Methods with property (4.21)
have a complexity of O(N1:5) and O(N1:33) respectively. The convergence factor
ρ certainly depends on the type of problem to be solved. Convergence of these
basic iterative methods can be shown for symmetric positive definite matrices,
diagonally dominant matrices or so–called M–matrices, see e. g. (Hackbusch
1994). Unfortunately non of these theories is able to ensure the convergence
for the Jacobian systems arising in the fully coupled Newton solution of the
two–phase flow problem.

4.3. Multigrid Solution of Linear Systems 105

Another large class of methods for the solution of (4.15) are Krylov subspace
methods. The basic idea is to choose the correction sµ (µ > 1) to the initial guess
z0 from the Krylov subspace fd0

;Ad0
; : : : ;Aµ�1d0g in such a way that the error

eµ = z� z0 � sµ is minimized in some way, e. g. in the energy norm in case
of the conjugate gradient method. A good description of these algorithms is
given in (Barrett et al. 1994). The methods can be accelerated substantially by
using a preconditioner, which is a basic iterative method as discussed above or
the multigrid method to be discussed below. By using optimally damped SSOR
the computational complexity of such methods can be as low as O(N1:25) and
O(N1:17) in two and three space dimensions, cf. (Axelsson and Barker 1984).
For unsymmetric matrices A the minimization over the Krylov subspace cannot
be done as cheaply as in the symmetric case. Several methods are known, each
sacrificing another property, see (Barrett et al. 1994) for details. We will use the
BiCGSTAB method of Van der Vorst (1992) as an accelerator for the multigrid
method in this work.

The third class of iterative methods to be mentioned here is the class of multi-
grid (or multilevel) methods. By studying the convergence behavior of the basic
iterative scheme (4.17) applied to the model problem�∆C = q one observes that
highly oscillating errors are damped much more quickly than slowly oscillating
errors. The slow convergence stated in (4.20) is due to these low frequency error
components. The idea is now to combine a basic iterative method with a so–
called coarse grid correction which reduces the low frequency error components
effectively. Details of this procedure will be given below. For an introduction to
multigrid methods we refer to (Hackbusch 1985; Wesseling 1992; Briggs 1987).

For elliptic model problems it can be shown that the convergence factor ρ
of the multigrid method is independent of the mesh size h. The computational
complexity is therefore O(N) and thus optimal. As most other iterative meth-
ods, multigrid does not converge for arbitrary matrices A. Rigorous convergence
proofs are available for elliptic model problems, possibly with low order pertur-
bations, see (Hackbusch 1985; Xu 1992; Bramble 1993) or systems like the
Stokes equation, see (Verfürth 1988; Wittum 1990).

Unlike the other methods discussed above the multigrid method needs aux-
iliary matrices A0;A1; : : : ;AJ�1 in addition to the system matrix A = AJ . The
construction of these auxiliary matrices will be discussed below. From an imple-
mentation point of view the interface of the linear solver with the discretization
part of the computer program is much more involved when multigrid methods
are used.

For the specific case of the two–phase problem multigrid methods have been
applied to the solution of the pressure equation within a decoupled (IMPES)
type of approach, see e. g. (Scott 1985; Dendy Jr. 1987). This can be considered
a “standard” application of multigrid since only a scalar elliptic problem has to
be solved (although with possibly strongly varying or anisotropic coefficients).

Multigrid applied to the fully implicit/fully coupled type of approach has been
studied in (Brakhagen and Fogwell 1990; Molenaar 1995). Both investigations

106 4. Solution of Algebraic Equations

have been restricted to the incompressible case on structured meshes in two
space dimensions. In the remaining part of this section we will describe the
components of our multigrid algorithm in detail.

4.3.2 STANDARD MULTIGRID ALGORITHM

We now describe the standard method when A is the discretization of a scalar
linear and elliptic model problem, e. g. ∇ � frC�D∇ Cg= q. Let a hierarchy of
meshes fElgJ

l=0 as described in Sect. 4.1 be given. The discretized equations on
each mesh level are then given by

Alzl = bl; l = 0; : : : ;J: (4.22)

The dimension of these systems is Nl . Furthermore we need grid transfer
operators Rl, Pl which are linear mappings of appropriate dimension:

Rl : R
Nl ! R

Nl�1 (Restriction) (4.23a)

Pl : R
Nl�1 ! R

Nl (Prolongation) (4.23b)

Finally let S denote any of the relaxation methods discussed above. S is called
a smoother in multigrid notation. We are now able to formulate the standard
multigrid algorithm.

ALGORITHM 4.2 The following algorithm mgc executes a single iteration of
the standard multigrid method with finest level l applied to the current iterate zl .

mgc (l, zl , bl)
f

if (l == 0) z0 = A�1
0 b0;

else f
Apply ν1 iterations of S to Alzl = bl;
dl = bl �Alzl;
dl�1 = Rldl ;
sl�1 = 0;
for (g = 1; : : : ;γ) mgc(l�1,sl�1,dl�1);
sl = Plsl�1;
zl = zl + sl;
Apply ν2 iterations of S to Alzl = bl;

g
g

The parameters ν1, ν2 are the number of pre– and postsmoothing steps. Typi-
cally they are in the range 1; : : : ;3. The parameter γ controls the cycle form. We
will only use γ= 1, called a V–cycle, in the numerical experiments below.

4.3. Multigrid Solution of Linear Systems 107

The canonical way to define the prolongation operator (matrix) Pl is via finite
element interpolation:

(Plsl�1)i =
Nl�1

∑
j=1

sl�1; jϕl�1; j(xi); (4.24)

where ϕl�1; j is the finite element basis function corresponding to vertex j on
level l� 1. Since the support of the basis functions is local Pl is a very sparse
rectangular matrix. The standard choice for the restriction operator Rl is

Rl = PT
l (4.25)

in the case of a finite element or finite volume discretization. For the coarse
grid matrices Al, l < J, two standard choices exist. They are either computed by
discretization of the continuous problem (which we assumed up to now) or via
the Galerkin coarse grid operator approach as

Al�1 = RlAlPl: (4.26)

Various advantages and disadvantages of these standard components will now
be discussed in more detail.

4.3.3 ROBUSTNESS

The convergence rate of the standard multigrid method applied to the model
problem �∆C = q can be shown to be independent of the mesh size parameter
h. However, when applied to the more complicated model problem ∇ � frC�
D∇ Cg= q it is not independent of the coefficients r and D. A multigrid method
is considered to be robust if it converges independent of other “bad” parameters
in addition to the mesh size h.

Three types of scalar model problems are typically discussed in this respect:

�∇ � fd(x)∇ Cg= q; d discontinuous with position; (4.27a)

�∇ � fD(x)∇ Cg= q; D anisotropic tensor; (4.27b)

∇ � frC� ε∇ Cg= q; krk� ε, dominating convection: (4.27c)

Most work of multigrid practitioners is concerned with making the method
work with one or more of these problems. With a few exceptions these methods
are motivated heuristically and no rigorous proofs are available. We will now
give a short overview of the different approaches.

Problems of type (4.27a) are called interface problems. The diffusion coeffi-
cient d is supposed to be discontinuous by orders of magnitude across internal
boundaries of the domain. If these internal boundaries are resolved by the coars-
est mesh multigrid converges well and almost optimal convergence estimates are
available in the two–dimensional case, cf. (Bramble et al. 1991). In three space

108 4. Solution of Algebraic Equations

dimensions the situation is more involved and multigrid convergence may dete-
riorate for certain coefficient distributions, see Dryja et al. (1996) for details.

In many practical situations the discontinuities of the diffusion coefficient are
not aligned with coarse grid edges (faces). In this case the standard multigrid al-
gorithm with discretized coarse grid operators does not converge. Several reme-
dies have already been developed in (Alcouffe et al. 1981; Kettler 1982), see
also (Hackbusch 1985). These approaches use specially designed prolongation
operators constructed from the stiffness matrix Al and the Galerkin coarse grid
operator. For newer approaches we refer to (Wagner, Kinzelbach, and Wittum
1997) who use a Schur–Complement coarse grid operator and (Molenaar 1994).

Problem (4.27b) with D = diag(1;ε) is called the anisotropic model problem.
It belongs to the class of singular perturbation problems since the type of the
equation changes from elliptic to parabolic when ε= 0. The convergence rate of
standard multigrid with point–wise Jacobi or Gauß–Seidel smoothing quickly
deteriorates when ε gets smaller or larger than one. One remedy is to use block–
line smoothers or a modified ILU smoother with appropriate ordering of the
unknowns, for theoretical results see (Wittum 1989). Another remedy is to pre-
vent mesh coarsening in the direction of weak coupling (e. g. the y–direction if
ε� 1) which is called semi–coarsening. The robust smoother approach is hardly
extendable to three space dimensions since the solution of two–dimensional sub-
problems is required within the smoother. Semi–coarsening works also in the
three–dimensional case and is extended to unstructured meshes in the context of
algebraic multigrid methods (see below).

Finally, problem (4.27c) is may be the most challenging of all. In case the
flow field r has no recirculation zones the problem with ε = 0 (pure convection)
results in a lower triangular matrix if the unknowns are ordered properly and an
appropriate upwind discretization is used. Various techniques have been devised
to construct robust smoothers in the case with recirculation zones, see (Hack-
busch 1997; Rentz–Reichert 1996; Hackbusch and Probst 1997; Bey 1997; Bey
and Wittum 1997). Alternatively, one can try to improve the coarse grid cor-
rection. A crucial property in this respect is to inherit the stability of the fine
grid matrix (achieved through an upwind discretization) to the coarse grid prob-
lems. This requires carefully constructed prolongation and restriction operators
in connection with the Galerkin approach. Standard prolongation and restriction
does not work. Recently, robust methods with improved coarse grid correction
have been suggested in (Reusken 1995a; Reusken 1996).

A class of multigrid methods that aim at solving all of the problems (4.27a–
4.27c) are the algebraic multigrid methods. They are very attractive from a
practical point of view since only the fine grid problem is required as input. The
pioneering work in this direction is (Ruge and Stüben 1987). Agglomeration
type multigrid methods have been developed in (Vaněk, Mandel, and Brezina
1996; Braess 1995; Raw 1996). New approaches based on incomplete LU fac-
torizations have been presented by (Reusken 1995b; Bank and Wagner 1998).

4.3. Multigrid Solution of Linear Systems 109

4.3.4 SMOOTHERS FOR SYSTEMS

We want to apply the multigrid method to the Jacobian system arising from the
fully implicit discretization of the two–phase flow problem. According to (4.14)
the system matrix A has a 2� 2 block structure in the equation–wise ordering.
Since some or all rows of the Aww–block may vanish point–wise smoothers are
not applicable.

Well–defined smoothers are obtained by using the point–block ordering
where all unknowns corresponding to a vertex of the mesh are grouped together.
This may be written as

z̄ = (pw;1;Sn;1; : : : ;pw;N ;Sn;N)
T = Qz; (4.28)

where Q is a permutation matrix performing the reordering. The equivalent,
transformed system of equations is then written as

Āz̄ = b̄ (4.29)

with Ā = QAQT , z̄ = Qz and b̄ = Qb. The permuted matrix Ā has a N�N block
structure

Ā =

0
B@

Ā11 : : : Ā1N
...

...
ĀN1 : : : ĀNN

1
CA ; (4.30)

where each block is 2�2.
Dirichlet boundary conditions are treated by replacing the corresponding row

of the linear system by a trivial equation. Thus Ā has always dimension 2N.
It turns out that the diagonal blocks Āii are always regular except at boundary
vertices where a boundary condition of the following form is prescribed:

ρwuw �n = φw; Sn(x; t) = 1 (4.31)

(this assumes (pw;Sn) as unknowns). Obviously, if Sn = 1 the flux of the wetting
phase over this boundary is zero and cannot be prescribed. Therefore boundary
conditions of type (4.31) do not occur.

As a smoother in our multigrid procedure we use block variants of the Jacobi,
Gauß–Seidel and ILU iterations with respect to the blocking given in (4.30). As
has been indicated, the Jacobi and Gauß–Seidel schemes are always well defined
but convergence of all schemes and existence of the ILU decompositions cannot
be proven in general for the matrices given here.

A general approach for the construction of smoothers for systems of equa-
tions are the transforming smoothers of Wittum (1990). With the point–block
diagonal matrix

D̄ = diag(Ā11; : : : ; ĀNN) (4.32)

110 4. Solution of Algebraic Equations

one could use

Â = QT D̄�1Q (4.33)

as a left transformation. Point–wise iteration could then be applied to the trans-
formed system ÂA. The resulting smoothers are very similar to the point–block
smoothers defined above, in fact Jacobi and Gauß–Seidel variants are identical.
This type of smoother is used as preconditioner in (Dawson et al. 1997).

Finally we note that ÂA becomes block triangular when Aww = 0 showing the
effectiveness of the transformation in this case. In the numerical experiments
below only point–block smoothers will be used.

4.3.5 TRUNCATED RESTRICTION

High spatial variability or even discontinuity of the absolute permeability tensor
often occurs in single and multiphase flow applications. Furthermore, the rela-
tive permeability and capillary pressure functions also give rise to high spatial
variability of the coefficients of the second order terms as has been discussed
in Subs. 4.2.2. In view of the discussion on interface problems in Subs. 4.3.3
one should choose carefully designed grid transfer operators in connection with
a Galerkin or Schur–Complement coarse grid operator. It is, however, not clear
how the stability of the coarse grid matrices can be ensured in case of the fully
coupled solution of the two–phase flow problem, especially in the hyperbolic
case. All approaches for interface problems mentioned above were only con-
cerned with scalar problems.

We were therefore interested in using the discretized equations on the coarse
grids for stability reasons. Then, however, the standard multigrid method cannot
handle large permeability variations that are not aligned with the coarsest grid.
In order to understand this behavior we consider the following simple model
problem in one space dimension

�
d
dx

�
d(x)

dC
dx

�
= q in Ω = (0;1) (4.34a)

C = 0 on ∂Ω (4.34b)

with the diffusion coefficient d given by

d(x) =

�
1 x < θ
ε� 1 else

: (4.35)

A finite volume discretization of (4.34) on an equidistant mesh of size h yields
the tridiagonal system

�
di� 1

2

h
zi�1 +

di� 1
2
+di+ 1

2

h
zi�

di+ 1
2

h
zi+1 = hqi; 0 < hi < 1; (4.36)

4.3. Multigrid Solution of Linear Systems 111

i

l

l-1

j

1/2
k = 1 k = ε

θ

dj+0.5dj-0.5

di+0.5di-0.5

2h

Figure 4.2: One–dimensional interface problem.

where di� 1
2
, di+ 1

2
denotes pointwise evaluation of (4.35) half way between grid

points.
Let us now consider a standard two–grid algorithm with discretized coarse

grid operator for solving (4.36). Specifically, we consider vertices j on the fine
grid and i on the coarse grid that happen to lie in the vicinity of the interface as
shown in Fig. 4.2.

The situation shown in the figure is such that for the fine mesh vertex j we
have d j� 1

2
= 1, d j+ 1

2
= ε and for the coarse mesh vertex i we have di� 1

2
= di+ 1

2
=

ε. During coarse grid correction a defect of order O(1) is computed at fine mesh
vertex j which is restricted with factor 1=2 to the right hand side of the coarse
grid equation i. The coarse grid solve then essentially computes a correction of
order O(ε�1) at vertex i which results in the divergence of the standard multigrid
algorithm for sufficiently small ε.

The proposed remedy is simple: We just have to prevent the restriction of the
defect from a vertex with large diagonal entry to a vertex with small diagonal
entry. In the following, we devise a purely algebraic way to do this. The result
will be a modified restriction operator to be used in the multigrid algorithm.

We denote the system (4.36) on mesh level l as usual by Alzl = bl , l = 0; : : : ;J.
By Dl = diag(Al) we denote the diagonal of Al . Suppose that we scale the
equations on each mesh level from the left with D�1

l and denote the result by

Ãlzl = b̃l; Ãl = D�1
l Al; b̃l = D�1

l bl : (4.37)

A two–level coarse grid correction with standard components applied to the
original equations Alzl = bl can be written in terms of the diagonally scaled
equations as

znew
l = zold

l +PlÃ
�1
l R̃l

�
b̃l � Ãlzold

l

�
(4.38)

with

R̃l = D�1
l�1RlDl: (4.39)

112 4. Solution of Algebraic Equations

The entries of the “new” restriction operator R̃l are given by

(R̃l)i j = (Rl)i j
(Al) j j

(Al�1)ii
(4.40)

and reflect exactly the difficulties with division by ε as discussed above. We
therefore propose to replace R̃l by a truncated version R̂l given as

(R̂l)i j = (Rl)i j �min

�
cut;

(Al) j j

(Al�1)ii

�
; (4.41)

where cut is some user supplied parameter. We have to ensure that (4.41) does
not spoil the multigrid convergence rate in the case of constant coefficients. A
quick calculation shows that in this case (Al) j j=(Al�1)ii � 1 at interior vertices
if the order of the differential operator is not larger than the space dimension.
Thus in all cases of interest for us the standard multigrid method is retained
for constant coefficients if cut � 1. Since (Al) j j=(Al�1)ii may be larger than 1
when restricting from an interior vertex to a vertex at a Neumann boundary we
choose cut = 2 in all the examples below. Numerical experiments confirm that
the precise value of cut is not important as long as it is smaller than 5.

The implementation of the multigrid method with truncated restriction is
straightforward. In a preprocessing step the truncated restriction operator R̂l

is computed and stored for all levels. Then the system matrices on all levels and
the right hand side on the finest level are scaled by D�1

l from the left. Now multi-
grid cycles are performed with the standard restriction replaced by R̂l. We will
call this method the diagonally scaled/truncated restriction multigrid algorithm
or DSTR–MG.

The DSTR–MG method has been developed on a purely heuristic basis. It is
plain e. g. that if the spatial variations of the coefficients are on the order of the
mesh size almost all entries of the restriction are truncated, which will result in
a poor coarse grid correction. Thus the coarse grid size should be chosen with
respect to the problem to be solved.

We will now illustrate the behavior of the method with two scalar examples
in 2D. Applications to the fully coupled two–phase flow problem are given in
Chapter 7. The model problem �∇ � fd(x)∇ Cg= 0 is solved in the unit square
with Dirichlet boundary conditions left and right and Neumann boundary condi-
tions at top and bottom. The coefficient distribution for both examples is shown
in Fig. 4.3. Note that the cell size in example 2 is π=15. The model prob-
lem is discretized with a vertex centered finite volume scheme on a sequence of
equidistant quadrilateral meshes with h0 = 1=2. The diffusion coefficient is eval-
uated at the barycenter of each element. Table 4.1 shows results for a 10�8 re-
duction of the residual in the euclidean norm starting with initial guess zero. For
comparison an algebraic multigrid method similar to the one given in (Braess
1995) is included. Both methods are used as a preconditioner in a Krylov sub-
space method and the number of preconditioner evaluations is reported. As a

4.3. Multigrid Solution of Linear Systems 113

d=1.0

d=10-6

1/
3

2/3

C
=

0

C
=

1

d=1.0

C
=

1

C
=

0

π/15

103

1010-1

10-3

Example 1 Example 2

Figure 4.3: Coefficient distribution for the two example problems.

smoother either a symmetric Gauß–Seidel method or an Incomplete factoriza-
tion is used as indicated in the table. The number of pre– and postsmoothing
steps was 2 in all cases (ν1 = ν2 = 2).

For example 1 the DSTR–MG method exhibits standard multigrid perfor-
mance. The convergence rate is about 0:1 and it can be used without Krylov
method. The algebraic multigrid method shows an iteration count proportional
to the number of levels J. For the more difficult example 2 both methods show
an O(J) behavior. The algebraic multigrid method converges faster in this case.
The convergence behavior of the algebraic multigrid method is only slightly
worse when compared to example 1. It should be noted that standard multigrid
with discretized coarse grid operator does not converge for both examples with
or without Krylov acceleration.

It remains to extend the DSTR–MG method to systems of equations. We

Table 4.1: Multigrid performance for two interface problems.

Example 1 Example 2
no krylov BiCGSTAB CG BiCGSTAB BiCGSTAB CG

DSTR DSTR AMG DSTR DSTR AMG
h�1 SGS(2,2) SGS(2,2) SGS(2,2) SGS(2,2) ILU(2,2) SGS(2,2)

16 8 6 6 21 13 7
32 8 6 8 23 17 8
64 8 7 10 29 21 11

128 8 7 12 31 21 14
256 9 6 15 34 24 17

114 4. Solution of Algebraic Equations

consider the system to be in point–block ordering. In the derivation the diagonal
matrix Dl is then replaced by the point–block diagonal D̄l from (4.32). The 2�2
block structure carries over naturally to the restriction matrices giving

˜̄Rl = D̄�1
l�1R̄lD̄l (4.42)

in analogy to (4.39). R̄l is the component–wise standard restriction. The indi-
vidual 2�2 blocks of ˜̄Rl are given by

(˜̄Rl)i j = (R)i j(D̄l�1)
�1
ii (D̄l) j j (4.43)

where we used the fact that (R̄l)i j = (R)i jI2�2 with (R)i j the scalar component
of standard restriction in the non–system case. Following the idea above ˜̄Rl is
now replaced by a truncated version defined as

�
(˜̄Rl)i j

�
αβ

= (R)i j �max

�
0;min

�
cut;

�
(D̄l�1)

�1
ii (D̄l) j j

�
αβ

��
(4.44)

for α;β= 1;2. Note that entries are truncated from above by cut and from below
by zero. Note also that (˜̄Rl)i j is, in general, a full 2�2 matrix.

4.3.6 ADDITIONAL REMARKS

The multigrid algorithm, including the truncated restriction, can be applied to
problems discretized on locally refined meshes. Since adaptivity and local mesh
refinement is not used in this work we refer to (Bastian 1996) for notes on the
implementation of multigrid on adaptively refined meshes.

Multigrid can also be applied directly to discretizations of nonlinear partial
differential equations, see (Hackbusch 1985, Chap. 9). In this so–called non-
linear multigrid method the smoother is replaced by an iterative scheme for the
nonlinear problem and a nonlinear coarse grid problem is set up. There are three
reasons why did not try to use this method here:

� Nonlinear smoothers are inefficient to implement in most unstructured
mesh codes since they require to reassemble a single row (or a small set
of rows) of the Jacobian at a time.

� Nonlinear smoothers are typically restricted to Jacobi or Gauß–Seidel type
schemes. The robust smoother methodology is not (yet) as developed as
in the linear case.

� Nonlinear multigrid is more expensive with respect to computation time
when compared to Newton–multigrid, at least for the type of problems we
are interested in, see (Molenaar 1995) for a comparison of both methods.

5

Parallelization

Computing time requirements for time–dependent three–dimensional nonlinear
problems are still enormous. Field scale models with fine geometrical detail re-
quire on the order of millions of mesh elements. In that respect linear solvers
with optimal complexity become increasingly important since all other compo-
nents of a simulator scale linearly with mesh size.

The first section of this chapter describes a data parallel implementation of
the multigrid solver which is based on a suitable decomposition of the multigrid
hierarchy into as many parts as processors are available. The construction of
such decompositions will be the subject of the second section in this chapter.

5.1 Parallelization of the Solver
5.1.1 INTRODUCTION

In order to increase the size of tractable problems to the range of millions of
mesh elements the use of parallel computer architectures is mandatory. In
this section we will therefore introduce a data parallel implementation of the
Newton–multigrid solver. Even with a multigrid solver the linear system solver
typically requires more than 60% of total computation time and is therefore the
important part to parallelize.

The parallel solution of linear systems arising from the discretization of
(preferably elliptic) partial differential equations is an area of active research
for many years. The most successful methods are domain decomposition and
multigrid methods. An excellent introduction to both methods with respect to
parallelization is given in (Smith et al. 1996), detailed parallel implementations
are given in (Van de Velde 1993).

Provided a suitable smoothing iteration is chosen all components of the stan-
dard multigrid method are inherently parallel. Thus a parallel implementation
can be based on mapping the mesh data structure to the processors. Since the
multigrid algorithm is not modified during the parallelization process (strictly
true only for Jacobi smoothing) optimal convergence properties of the multigrid
method are not harmed. This does not apply, however, for many multigrid meth-
ods that are robust against additional bad parameters such as anisotropy or dom-
inating convection. It turns out that typical robust smoothers like line smoothers
or methods based on incomplete LU factorization are hardly parallelizable.

Domain decomposition (DD) methods on the other hand are specifically de-
signed for parallel computation. A whole new body of theory had to be de-
veloped to show the near optimality of these methods, see (Dryja and Widlund

115

116 5. Parallelization

E0 E1

Processor 0 Processor 1 Processor 2 Processor 3

Figure 5.1: Mapping two grid levels to four processors.

1990; Xu 1992). With respect to robustness DD methods typically suffer from
the same problems as do standard multigrid methods. Direct comparisons of DD
and multigrid methods are rare but a sophisticated comparison is available from
Heise and Jung (1995). They found a data parallel multigrid implementation to
be consistently faster by a factor 2 : : : 5 when compared to a non–overlapping
DD method (with coarse grid space) in two space dimensions. This is mostly
due to the better convergence properties of the multigrid method, the favorable
parallelization properties of DD (fewer and shorter messages) cannot be utilized
on contemporary parallel computers with their “ fat” processing nodes and fast
communication networks.

5.1.2 DATA DECOMPOSITION

Our data parallel multigrid implementation is based on a suitable mapping of
the hierarchical mesh data structure fEljl = 0; : : : ;Jg to the set of processors
P = f1; : : : ;Pg denoted formally by mapping functions

ml : El ! P ; l = 0; : : : ;J: (5.1)

In principle an element e 2 El can be mapped to any available processor.
Different mappings will, of course, result in realizations with varying efficiency.
Selection of a set of mappings which give a high efficiency is called the load
balancing problem. In most parts of this section we are concerned with the
implementation of the multigrid components for arbitrary mappings ml , but we
will comment on the load balancing problem later on. Fig. 5.1 shows an example
where a mesh hierarchy with two levels is mapped to four processors.

Since the mesh construction is hierarchical we can associate with each e2 El ,
l > 0, an element f (e) 2 El�1 such that e originated from refinement of element
f (e). f (e) is called the father element of e. Furthermore we denote by Vl(e) the
vertices of element e and by NBl(e) the neighboring elements of any e 2 El.

5.1. Parallelization of the Solver 117

on level lon level l-1

Figure 5.2: Context of an element.

Suppose that element e 2 El is assigned to processor p = ml(e). In order to
implement the numerical algorithms described in this work a set of additional el-
ements and vertices related to e, called its context, have to be stored by processor
p. In detail the context of element e consists of

� the vertices Vl(e),

� the neighboring elements NBl(e) together with their vertices

� and the father element f (e) together with its vertices.

Fig. 5.2 shows the context of a single element. Thus the elements on level l
stored by processor p are given by

E(p)
l =

8<
:e 2 El

������
ml(e) = p

or ml(n) = p with n 2 NBl(e)
or ml+1(s) = p with f (s) = e

9=
; (5.2)

and the vertices stored by processor p are given by

V (p)
l =

n
v 2Vl

���9e 2 E(p)
l : v 2Vl(e)

o
: (5.3)

It is clear that no additional storage for the context is necessary if neighboring
elements and father elements are mapped to the same processor. It is the aim
of the load balancing procedure to find mappings fmlg such that each processor
has about the same number of elements on each mesh level while minimizing the
additional storage (and computation) needed for the overlap. The overlapping
decomposition of the mesh data structure is sufficient to implement a variety of
numerical algorithms including error estimators and multigrid methods.

We can now proceed to describe the data parallel multigrid implementation.
We assume for ease of presentation that degrees of freedom are associated only

118 5. Parallelization

with the vertices of the mesh. The general case with additional degrees of free-
dom in edges, faces and elements is also possible, even with local mesh refine-
ment, cf. (Wieners 1997; Lang 1999). Under this assumption the degrees of
freedom on each level form a vector zl 2 RNl on each level. The description of
the multigrid components is based on the definition of various projections from
R

Nl to RNl .

Projection H(p)
l is a linear map from R

Nl !R
Nl that picks out the components

of a vector that correspond to vertices of elements assigned to processor p:

�
H(p)

l zl

�
i
=

�
(zl)i 9e 2 El : ml(e) = p^ vi 2Vl(e)
0 else

: (5.4)

The projection V (p)
l picks out components of a vector that correspond to cor-

ners of elements which are fathers of elements on the fine level that are mapped
to p. Additionally, the projection is zero at a vertex if it is already a corner of a
level-l-element that is mapped to p. Formally it is given by

�
V (p)

l zl

�
i
=

(
(zl)i� (H(p)

l zl)i 9e 2 El+1 : ml+1(e) = p^ vi 2Vl(f (e))
0 else

:

(5.5)

Note also that neighboring elements are not included in the definitions of the
two projections since they play only a rôle in the evaluation of error estimators
but not in the solver components.

Projections H(p)
l and V (p)

l define subspaces of RNl via

H (p)
l = fx 2 RNl j9y : x = H(p)

l yg; V (p)
l = fx 2 RNl j9y : x =V (p)

l yg: (5.6)

By construction we have H (p)
l \V (p)

l = f0g. Furthermore, fH (p)
l jp 2 Pg is

an overlapping subspace decomposition. With the help of the “picking function”
p�l : f1; : : : ;Nlg! P given by

p�l (i) = p,8p;q 2 P :
�

H(p)
l ei = ei^H(q)

l ei = ei^ p 6= q
�
) p < q; (5.7)

ei being the i-th unit vector, we define also a non–overlapping decomposition by

�
Q(p)

l zl

�
i
=

�
(zl)i p�l (i) = p
0 else

(5.8)

and its corresponding subspace Q (p)
l . Finally, we define

I(p)
l = H(p)

l +V (p)
l ; I (p)

l = H (p)
l +V (p)

l ; (5.9)

5.1. Parallelization of the Solver 119

which gives us the inclusion

Q (p)
l �H (p)

l � I (p)
l : (5.10)

We denote by fz(p)
l 2X (p)

l jp2 Pg a decomposition of a vector zl 2 RNl where

X (p)
l is any of Q (p)

l , H (p)
l or I (p)

l .

Since the Q (p)
l are non–overlapping we have the unique representation of any

vector as

zl = ∑
p2P

Q(p)
l zl: (5.11)

In addition the projections Q(p)
l are orthogonal with respect to the euclidean

inner product which gives us

kzlk2
2 = ∑

p2P
kQ(p)

l zlk2
2; (5.12)

i. e. the global norm can be computed by summing local norms.

We say that a decomposition fz(p)
l 2 X (p)

l jp 2 Pg of zl has the X –summation
property if

zl = ∑
p2P

z(p)
l : (5.13)

Since H (p)
l and I (p)

l are overlapping the corresponding decompositions are not
unique.

For any vector zl 2 RNl a decomposition defined by

z(p)
l = H(p)

l zl; z(p)
l = I(p)

l zl (5.14)

is called H –consistent or I –consistent respectively.

A similar notation can be introduced for matrices. A decomposition fA(p)
l :

X (p)
l ! X (p)

l jp 2 Pg of Al 2 RNl�Nl has the X –summation property if

Al = ∑
p2P

A(p)
l : (5.15)

5.1.3 PARALLEL MULTIGRID ALGORITHM

The aim is to decompose all operations of the sequential algorithm into local

computations in the subspaces Q (p)
l , H (p)

l and I (p)
l with corresponding commu-

nication operations providing the global coupling. We begin by deriving every
single step and then combine all steps into the complete parallel multigrid cycle.

120 5. Parallelization

dl = bl �Alzl; Defect Computation. In finite element and finite volume com-
putations on unstructured meshes the stiffness matrix (or Jacobian in the non-
linear case) is assembled element by element. The summation over all ele-
ments fe 2 Eljml(e) = pg in each processor p naturally results in matrices

fA(p)
l : H (p)

l !H (p)
l jp2 Pg and right hand sides fb(p)

l 2H (p)
l jp2 Pg that have

the H –summation property. This can be done without any communication.
Therefore we have

dl = bl �Alzl

= ∑
p2P

H(p)
l b(p)

l � ∑
p2P

H(p)
l A(p)

l H(p)
l zl

(5.16)

where we inserted projections to indicate the subspaces. If we introduce the

H –consistent decomposition fz(p)
l = H(p)

l zljp 2 Pg of the vector zl we get

dl = ∑
p2P

H(p)
l

�
b(p)

l �A(p)
l z(p)

l

�
= ∑

p2P
H(p)

l d(p)
l : (5.17)

In summary we have

� Given fb(p)
l g, fA(p)

l g with H –summation property

� and fz(p)
l g H –consistent

� fd(p)
l = b(p)

l �A(p)
l z(p)

l g can be computed locally without communication
and

� fd(p)
l g has H –summation property.

sl = M�1
l dl; Approximate Solve. In order to arrive at local computations some

restrictions on Ml are necessary. Clearly Ml can only be inverted without com-

munication if it is block diagonal with respect to the subspaces Q (p)
l , resulting

in a block–Jacobi type smoother for the multigrid method. Given Al we set

M(p)
l = Q(p)

l A(p)
l Q(p)

l ; Ml = ∑
p2P

M(p)
l : (5.18)

Assuming that fs(p)
l = Q(p)

l slg and fd(p)
l = Q(p)

l dlg are unique decomposi-

tions of sl and d(p)
l we get

Mlsl = dl

, ∑
p2P

Q(p)
l A(p)

l Q(p)
l Q(p)

l sl = ∑
p2P

Q(p)
l dl

, M(p)
l s(p)

l = d(p)
l ; 8p 2 P :

(5.19)

In summary we have

5.1. Parallelization of the Solver 121

� If Ml is a block diagonal matrix w. r. t. the subspaces Q (p)
l

� and the defect is provided in unique form fd(p)
l = Q(p)

l dlg

� a correction fs(p)
l = Q(p)

l slg in unique form can be computed locally.

zl = zl + sl; Update. We assume that fz(p)
l = H(p)

l z(p)
l g is in H –consistent

form as required by the defect computation step. Applying H(p)
l to both sides of

the update equation

H(p)
l zl = H(p)

l zl +H(p)
l sl (5.20)

we see that sl is also required in H –consistent form to enable a local computa-
tion of the update step.

dl�1 = Rldl ; Restriction. From an element–wise consideration the following
identity can be derived:

RlH
(p)
l dl = I(p)

l�1RlH
(p)
l dl; 8p 2 P : (5.21)

Assuming that fd(p)
l g is a decomposition with the H –summation property we

get

dl�1 = Rldl = Rl ∑
p2P

H(p)
l d(p)

l

= ∑
p2P

RlH
(p)
l d(p)

l = ∑
p2P

I(p)
l�1RlH

(p)
l dl

= ∑
p2P

R(p)
l d(p)

l

(5.22)

with R(p)
l = I(p)

l�1RlH
(p)
l .

In summary we have that

� fd(p)
l g with H –summation property

� can be restricted to fd(p)
l�1g locally without communication

� where fd(p)
l�1g has the I –summation property.

sl = Plsl�1; Prolongation. Again, an element–wise consideration yields the
following relation for the prolongation step:

H(p)
l Plsl�1 = H(p)

l PlI
(p)
l�1sl�1; 8p 2 P : (5.23)

Provided that

122 5. Parallelization

� fs(p)
l�1 = I(p)

l�1sl�1g is I –consistent,

� it can be interpolated locally to fs(p)
l = P(p)

l s(p)
l�1g with P(p)

l = H(p)
l PlI

(p)
l�1

and

� resulting fs(p)
l g is H –consistent.

We are now in a position to formulate the parallel version of the multigrid
cycle by concatenating the steps discussed in detail above. The different con-
sistency requirements of the individual steps will naturally lead to the necessary
communication operations.

ALGORITHM 5.1 The following algorithm pmgc implements one cycle of the
standard multigrid method in parallel. It works on decompositions of the current

iterate fz(p)
l g and the right hand side fb(p)

l g which are assumed to possess H –
consistency and H –summation property, respectively, on entry. All statements
preceded by 8p : : : : are assumed to be executed in parallel.

pmgc (l, fz(p)
l g, fb(p)

l g)
f

(1) if (l == 0) z0 = A�1
0 b0;

else f
(2) for (m = 1; : : : ;ν1) f // presmoothing

(3) 8p : d(p)
l = b(p)

l �A(p)
l z(p)

l ; // fA(p)
l g, fb(p)

l g H –sum

(4) Hsum to Q(fd(p)
l g); // communication

(5) 8p : s(p)
l = M(p)

l

�1
d(p)

l ; // M(p)
l = Q(p)

l A(p)
l Q(p)

l

(6) Q to Hcons(fs(p)
l g); // communication

(7) 8p : z(p)
l = z(p)

l +ωs(p)
l ; // H –cons. update

g
(8) 8p : d(p)

l = b(p)
l �A(p)

l z(p)
l ; // fd(p)

l g H –sum

(9) 8p : d(p)
l�1 = R(p)

l d(p)
l ; // R(p)

l = I(p)
l�1RlH

(p)
l

(10) Isum to Hsum(fd(p)
l�1g); // communication

(11) 8p : s(p)
l�1 = 0; // H –consistent

for (g = 1; : : : ;γ)

(12) pmgc(l�1,fs(p)
l�1g,fd(p)

l�1g); // recursive call

(13) Hcons to Icons(fs(p)
l�1g); // communication

(14) 8p : s(p)
l = P(p)

l s(p)
l�1; // P(p)

l = H(p)
l PlI

(p)
l�1

(15) 8p : z(p)
l = z(p)

l + s(p)
l ; // update

(16) for (m = 1; : : : ;ν2) // postsmoothing
// same as (3) – (7) above

g
g

5.1. Parallelization of the Solver 123

Processor 0 Processor 1 Processor 2 Processor 3

Figure 5.3: Flow of information in Hsum to Q communication.

Upon entry the solution is assumed to be in H –consistent form and the right
hand side in H –summation form. The local defect computed in step (3) of
algorithm pmgc also has H –summation property as has been discussed above.
The defect needed in the subsequent local solve step (5) has to be in unique
form. Therefore a communication operation of the form

Hsum to Q (fd(p)
l g)

f
d(p)

l = Q(p)
l ∑

q2P
d(q)l ;

g

has to be inserted in step (4). This communication requires every processor to

send the data not belonging to its subspace Q (p)
l to another processor. Fig. 5.3

illustrates the flow of information for the fine mesh in Fig. 5.1.
The local solve in step (5) yields a correction that is unique but the update in

step (7) requires a H –consistent correction. The communication operation

Q to Hsum (fs(p)
l g)

f
s(p)

l = H(p)
l ∑

q2P
s(q)l ;

g

performs this transformation. The flow of information is exactly reverse to that
given in Fig. 5.3. The parallel multigrid implementation requires two communi-

124 5. Parallelization

Processor 0 Processor 1 Processor 2 Processor 3

Figure 5.4: Flow of information in Isum to Hsum communication.

cation operations per smoothing step. This is a consequence of the small overlap
in the data partitioning. With a more generous overlap where for a given vertex
all surrounding elements are stored on the same processor each smoothing step
can be implemented with one communication operation.

We now proceed to the coarse grid correction. As has been discussed above,
the local restriction in step (9) of algorithm pmgc results in fd(p)

l�1g which has
I –summation property. However, H –summation property is required in the
recursive call in step (12). A communication on the coarse mesh is inserted in
step (10) to perform this transformation:

Isum to Hsum (fd(p)
l�1g)

f
d(p)

l�1 =
�

d(p)
l�1�V (p)

l�1d(p)
l�1

�
+Q(p)

l�1 ∑
q2P

V (q)
l�1d(q)l�1;

g

Note that only the part V (p)
l�1d(p)

l�1 of the local defect in each processor is redis-
tributed. Fig. 5.4 shows the flow of information for the two level example from
Fig. 5.1.

Note that V (p)
l�1 6= f0g can only occur if ml�1(f (e)) 6= ml(e) for some element

e2 El with ml(e) = p. If ml�1(f (e)) = ml(e) for all elements e then no commu-
nication is necessary in the restriction (and prolongation). This is a consequence

5.2. Load Balancing 125

of processing the defect in H –summation form. It is a necessary requirement
for the implementation of additive multigrid methods, cf. (Bastian 1996).

Finally, the recursive call of the multigrid cycle in step (12) of pmgc results in
a correction that is H –consistent but I –consistency is required as a prerequisite
in the prolongation step (14). The corresponding communication operation is
formally given by

Hcons to Icons (fs(p)
l�1g)

f
s(p)

l�1 = s(p)
l�1+V (p)

l�1 ∑
q2P

Q(q)
l�1s(q)l�1;

g

and the flow of information is exactly reverse to that shown in Fig. 5.4. No
communication is necessary if all elements are mapped to the same processor as
their father element.

Algorithm pmgc is still in abstract mathematical formulation. In the actual
implementation the different subspaces are replaced by vector spaces of appro-
priate dimension and corresponding mappings of local to global indices. For
more details we refer to (Bastian 1996; Lang 1999).

In addition algorithm pmgc requires a preprocessing phase where the ma-

trices fM(p)
l g are constructed from fA(p)

l g obtained from discretization. This

requires a communication operation similar to Hsum to Q since fA(p)
l g has

H –summation property and fM(p)
l g is unique. If the truncated restriction from

Subs. 4.3.5 is used another local communication is required in the setup phase.

Assembling of the stiffness matrix fA(p)
l g and the right hand side fb(p)

l g can
typically be done without communication provided a H –consistent decompo-

sition fz(p)
l g of the current solution is available in the nonlinear case on each

level. The PPSIC method from Section 3.4 requires a local communication to
compute the smallest capillary pressure in each vertex.

The parallel multigrid method is only part of the global solution algorithm.
The time–stepping procedures, inexact Newton scheme and Krylov subspace
methods can be parallelized using the same data partitioning with the guiding
principle that right hand sides are stored in H –summation mode (or unique if
norms are to be computed) and solution vectors are stored in H –consistent form.

Finally, we note that algorithm pmgc can be extended to the case of adaptively
refined meshes . The description is, however, rather tedious and we refer to
(Bastian 1996; Lang 1999) for details.

5.2 Load Balancing
This section is devoted to the problem of partitioning a multigrid hierarchy in
such a way that load balance is obtained in each computational phase and com-
munication required in the smoother and the intergrid transfer is kept small. We

126 5. Parallelization

begin by stating four related abstract graph partitioning problems where two of
them are new. Then we will illustrate how these graph partitioning problems are
used to solve the load balancing problem for possibly locally refined multigrid
hierarchies. After reviewing shortly the work that has been done on standard
graph partitioning we will describe two algorithms which can be used to solve
the new graph partitioning problems. The algorithms will be based on an ap-
proach known as the multilevel graph partitioner.

5.2.1 GRAPH PARTITIONING PROBLEMS

This section defines four related graph partitioning problems which are utilized
in the solution of load balancing problems for parallel unstructured (hierarchi-
cal) mesh applications.

k-way Graph Partitioning Problem. The input quantities for the k-way graph
partitioning problem are an undirected graph G = (N;A);A� N�N, a number
2 � k 2 N and weights for vertices and edges: w : N ! N and w : A ! N . The
total weight of all vertices is then W = ∑n2N w(n). Let π : N ! f0; : : : ;k� 1g
be a function associating a number in the range 0 : : :k� 1 with each vertex.
π is called a partition map and the subset N(i) = fn 2 Njπ(n) = ig is called a
partition. The subset X = f(n;n0)2 Ajπ(n) 6=π(n0)g is called an edge separator.

A partition map πis called a solution of the k-way graph partitioning problem
if the following two properties hold:

(i) ∑
n2N(i)

w(n)� δW=k 8i (Balance condition); (5.24a)

(ii) ∑
a2X

w(a) is minimal (Minimal separator weight): (5.24b)

The first condition ensures that the weight of each partition (the work) is
balanced, whereby a load imbalance δ is allowed. A reasonable value for δ
is 1:0 : : :1:1. The second condition ensures that the weight associated with the
separator edges (modeling communication cost) is minimized.

k-way Graph Repartitioning Problem. The k-way graph repartitioning prob-
lem is a variation of the k-way graph partitioning problem where an initial parti-
tion map π0 is supplied in addition. The corresponding partitioning N0(i)= fn2
Njπ0(n) = ig may be arbitrary. In order to satisfy the balance condition some
vertices have to change partitions. The cost associated with moving a vertex is
given by the vertex size function s : N ! N .

The output partition map π to be computed is required to satisfy the balance
condition (i), the edge separator weight minimization (ii) and the migration cost
minimization condition

(iii) ∑
n2fm2Njπ(m)6=π0(m)g

s(n) is minimal (Minimal migration cost)

(5.25)

5.2. Load Balancing 127

Clearly separator weight and migration cost cannot be minimized simulta-
neously. Priority has to be given to one or the other or a combined objective
function has to be formed. The heuristic algorithms to be described below will
not exactly minimize either separator weight or migration cost but will rather
keep them small.

The vertex migration cost (iii) is the total migration cost. Alternatively, one
could also minimize the maximum migration cost associated with all vertices
going in and out of one partition.

Constrained k-way Graph Partitioning Problem. This problem is a variation
of the k-way graph partitioning problem that is useful for load balancing hierar-
chical meshes as will be shown in the next subsection.

In the constrained version of the graph partitioning problem the vertex set
N is divided into two disjoint subsets N = N0 [N00, N0 \N00 = /0. The vertices
n 2 N0 are assumed to be already assigned to their partition, i. e. π(n) is fixed
on those vertices and is not subject to change. N0 is called the set of constrained
vertices or simply the constraint and N00 is called the set of free or unconstrained
vertices. The definitions of a partition and total weight naturally carry over to
the subsets:

N0(i) = fn 2 N0jπ(n) = ig; N00(i) = fn 2 N00jπ(n) = ig; (5.26a)

W 0 = ∑
n2N0

w(n); W 00 = ∑
n2N00

w(n): (5.26b)

A partition map π is a solution of the constrained k-way partitioning problem
if it provides a balanced partitioning of the free vertices N00 in the following way:

(i0) ∑
n2N00(i)

w(n)� δW 00
=k 8i (Constrained balance) (5.27)

together with a minimization of the edge cut weight (ii). Note that the balance
condition (i0) is restricted only to the free vertices. The weight of the constrained
vertices is not considered at all. The separator weight, however, includes all
inter-partition edges, even those incident on constrained vertices. Since the par-
tition of any constrained vertex cannot be changed the cost associated with the
edges X 0 = f(n;n0) 2 Ajπ(n) 6= π(n0)^ n;n0 2 N0g is a fixed contribution to the
separator weight and could have been excluded in the definition.

Fig. 5.5 gives an illustration of the constrained k-way graph partitioning prob-
lem. In typical applications only a subset of the free vertices is connected to the
set of constrained vertices. Edges incident only on constrained vertices have
been excluded since they do not influence the solution.

Constrained k-way Repartitioning Problem. The constrained k-way partition-
ing problem can be extended to the case of repartitioning. As in the uncon-
strained version we supply an initial partition map π0. The solution of the con-
strained k-way repartitioning problem has to satisfy conditions (i0) and (ii) and

128 5. Parallelization

free vertex constrained vertex

0

1

2

3

0

2

3

1

Figure 5.5: Illustration of the constrained k-way partitioning problem

in addition should minimize the migration cost which is now

(iii0) ∑
n2fm2N00jπ(m)6=π0(m)g

s(n) (Minimal migration cost); (5.28)

since the constrained vertices are not assumed to change partitions.

5.2.2 APPLICATION TO MESH–BASED PARALLEL

ALGORITHMS

In this subsection we consider how the abstract graph partitioning problems de-
fined above can be utilized to solve the load balancing problem for a variety
of mesh–based parallel applications such as the numerical simulator developed
in this work. In particular we consider the class of unstructured hierarchical
meshes as they have been defined in Section 4.1 including the possibility of
local mesh refinement.

Non–Hierarchical Meshes. To start with, we consider an unstructured mesh
in two or three space dimensions. Multiple element types are allowed but the
mesh is assumed to be non–hierarchical, i. e. it exists of exactly one level
E0. Since our parallel solver described in Section 5.1 is based on a decom-
position of the element set the load balancing problem amounts to solving
a k-way graph partitioning problem with N = E0, k = P and the edge set
A = f(e;e0)j e and e0 are neighboring elements g. The weight associated with
each graph vertex (mesh element) can be used to balance multiple element types
(e. g. one could make a quadrilateral twice as expensive as a triangle to roughly
balance the matrix–vector operations) or types of computationally different ele-
ments (as for example in some computational mechanics problems). The edges
of the input graph usually are assigned unit weight.

5.2. Load Balancing 129

Level 0 Level 1 Level 2

Ω Ω

Figure 5.6: A locally refined hierarchical mesh.

We now consider the case of an adaptively refined non–hierarchical mesh.
Although this form of mesh modification is not possible in our code we include
it here for completeness. Assume that the mesh has been mapped to k = P
processors before refinement. Now the mesh is modified by replacing each of
the elements to be refined by a set of smaller elements covering the same vol-
ume (area) of the original element. In a parallel version of the mesh refinement
algorithm it is natural that the newly created elements are stored in the same pro-
cessor as the element being replaced. Thus we obtain the initial partition map
π0 of a k–way graph repartitioning problem.

Locally Refined Hierarchical Meshes. A locally refined hierarchical mesh
consists of a sequence of unstructured meshes E0;E1; : : : ;EJ where each El ,
l > 0, is constructed from El�1 by refining not necessarily all elements of El�1
according to certain refinement rules. The construction is termed hierarchi-
cal since each element e 2 El , l > 0, is associated with exactly one element
f (e) 2 El�1 (its father) such that e originated from refinement of f (e). In con-
trast to Section 4.1 we allow that not all elements of some level El�1 are refined
and therefore El need not cover the whole domain Ω. Fig. 5.6 shows a locally
refined mesh hierarchy with three levels in two dimensions.

The load balancing problem for a locally refined hierarchical mesh can be
reduced to a sequence of constrained k-way partitioning problems as follows.
The parallel multigrid algorithm developed above uses local communication be-
tween neighboring partitions on each mesh level in the smoother. This requires
the work on each mesh level to be balanced over all processors. In typical appli-
cations (that require a parallel computer) it can be assumed that work increases
exponentially with mesh levels making it most effective to have a good parti-
tioning on the finest mesh levels. We therefore start with balancing the finest
mesh level EJ first by solving a standard k-way partitioning problem as in the
non–hierarchical case. Now consider the next coarser mesh level EJ�1. In the
downward phase of a multigrid V–cycle the transfer of residuals from EJ to EJ�1

essentially requires transfer of data from each element e 2 EJ to its father ele-
ment f (e)2 EJ�1. The parallel version of it requires a communication whenever
e and f (e) are not assigned to the same processor. It is clear that the partitioning

130 5. Parallelization

N´´ = E1 N´ = E2
free vertices constrained vertices

Figure 5.7: Constrained k-way partitioning problem input graph obtained from
two consecutive multigrid levels.

of EJ�1 must be related to that of EJ in order to minimize communication re-
quirements in the grid transfer operation. Note that an unrelated decomposition
of EJ and EJ�1 may very well lead to the situation where data must be send from
every fine grid element to every coarse grid element although each level itself
may have a low separator weight.

The load balancing problem for EJ�1 can be modeled by a constrained k-
way partitioning problem by setting G = (N;A), N = N0 [N00 with N0 = EJ ,
N00 = EJ�1 and the edge set

(e;e0) 2 A,
�

(1) e;e0 2 EJ�1 and e;e0 are neighbors, or
(2) e = f (e0)_ e0 = f (e)

: (5.29)

Since smoothing is done more often than grid transfers the graph edges cor-
responding to condition (1) should have a higher weight than those originating
from condition (2), e. g. 4 and 1 if ν1 = ν2 = 2 in the multigrid method. As an
example, Fig. 5.7 shows the input graph for the constrained k-way partitioning
problem that is used for partitioning level 1 from Fig. 5.6.

Obviously the same situation is encountered recursively for all coarser grid
levels leading to the following general procedure which is called the incremental
mapping strategy:

Solve k-way graph partitioning problem for finest mesh EJ;
for l = J�1 downto 0 f

Solve constrained k-way partitioning problem with
N0 = El+1, N00 = El and edge set from above;

g

In a parallel adaptive code the hierarchical mesh structure is distributed to the
processors and modified in parallel. Refinement and coarsening, i. e. deletions

5.2. Load Balancing 131

of previous refinements, may lead to modifications in all mesh levels except the
coarsest. Naturally, newly created elements are stored in the same processor as
their father element, cf. (Bastian 1996; Lang 1999) for details. In this context the
partitioning should take migration cost into account leading to the incremental
remapping strategy:

Solve k-way graph repartitioning problem for finest mesh EJ;
for l = J�1 downto 0 f

Solve constrained k-way repartitioning problem with
N0 = El+1, N00 = El and edge set from above;

g

Application–Dependent Clustering Schemes. In the process of constructing an
input graph for a graph partitioning problem from a given finite element mesh
(hierarchy) one need not associate a vertex of the input graph with every individ-
ual mesh element but one could associate it with a whole group of elements. We
call this an application–dependent clustering scheme since it is handled outside
the partitioners. Application–dependent clustering can considerably reduce the
size of an input graph allowing a sequential solution with negligible cost (com-
pared to the computation phase of the parallel algorithm), moreover it can often
be done in parallel.

The hierarchical mesh construction described above allows several natural
clustering strategies. E. g. , one can group together all elements on level l that
have a common ancestor on level max(0; l�d) for some integer d > 0. A second
strategy would cluster all elements on level l that have a common ancestor on
level l� (l mod d) for d > 0 (an element is considered to be its own ancestor).
The neighbor and father–son relations of the elements in the hierarchical mesh
carry over to the clusters in the natural way. The second clustering strategy has
the advantage of producing a particularly simple father–son relationship for all
clusters in the range of levels m �d : : :(m+1) �d�1 for any m� 0: Every cluster
has exactly one son. This construction has been used in Bastian (1996) and Bas-
tian (1998) to derive a load balancing method for a multigrid hierarchy where
within an incremental mapping strategy every coarse grid cluster is assigned to
the same processor as its only son cluster. The remaining coarse grid clusters
that do not have a son (have not been refined) are partitioned with a standard
k-way graph partitioner. However, this partitioning step does not take into ac-
count edges connecting clusters that have a son to those that do not have a son.
Moreover, when partitioning level m � d� 1, m > 0, the father–son relation has
simply been ignored in Bastian (1998) since a cluster on level m �d�1 can have
up to 4d son clusters in 2D and 8d in 3D. Therefore, the algorithms based on the
solution of the constrained k–way partitioning problem as outlined above are
able to take more data dependencies into account than the algorithms given in
Bastian (1998).

132 5. Parallelization

5.2.3 REVIEW OF PARTITIONING METHODS

The k-way graph partitioning problem is considered to be a difficult combinato-
rial problem. Even the case k = 2 has been shown to be NP–complete, (Garey,
Johnson, and Stockmeyer 1976), meaning that no polynomial time algorithm is
likely to be found to solve this problem. Therefore emphasis has been laid on
developing heuristic algorithms that can find a good solution in reasonable time.

The most well known of the early heuristics is that by Kernighan and Lin
(1970). It is designed to iteratively improve an initial (random) load balanced
bisection of the graph (i. e. a partitioning with k = 2). k-way partitionings are
obtained by recursive application of the procedure. An efficient implementation
of the Kernighan–Lin (KL) algorithm has been given by Fiduccia and Matthey-
ses (1982). In the 1980s a number of heuristics have been developed (Bokhari
1981; Fox 1986; Sadayappan and Ercal 1987) that identified the problem with
(unstructured) finite element and sparse matrix computations on parallel com-
puters. In the early 1990s the recursive spectral bisection method (Pothen et al.
1990; Williams 1990; Hendrickson and Leland 1992) emerged as a method that
can find very good partitions (especially in combination with KL improvement)
but which is somewhat expensive (it involves the computation of an eigenvector
of a sparse matrix related to the input graph). Shortly afterwards the multilevel
recursive bisection method has been introduced by Hendrickson and Leland
(1993b). This method matches or improves the quality of recursive spectral bi-
section while having linear time complexity in its recent k-way variant (Karypis
and Kumar 1995). With the development of the multilevel partitioning method
the k-way graph partitioning problem is considered to practically solved. State-
of-the-art implementations are available as free software libraries, the most well
known being JOSTLE (http://www.gre.ac.uk/�c.walshaw/jostle) and
METIS (http://www-users.cs.umn.edu/�karypis/metis). Even parallel
versions are available (Karypis and Kumar 1996; Walshaw, Cross, and Everett
1997).

Most recently focus shifted towards the development of algorithms to solve
the (unconstrained) repartitioning problem. Early attempts (Walshaw and
Berzins 1993; Van Driesche and Roose 1995) tried to modify the spectral
bisection algorithm, meanwhile the multilevel approach in combination with
diffusion methods (Cybenko 1989) proved to be more successful (Schloegel,
Karypis, and Kumar 1997; Walshaw, Cross, and Everett 1997).

In comparison, load balancing for adaptively refined hierarchical meshes has
very seldomly been considered in the literature. In de Keyser and Roose (1991)
and de Keyser and Roose (1992) an incremental mapping strategy is described
that proceeds from fine to coarse meshes and remaps parts of the coarse grid by
use of a cost function that models inter– and intra–grid communication. How-
ever, their grids were not truly local, i. e. every grid level covered the whole
domain Ω. The work of Bastian (1993), Bastian (1996) and Bastian (1998)
makes use of optimal–complexity multigrid methods and describes load balanc-

5.2. Load Balancing 133

ing strategies for multiplicative and additive multigrid (which have different syn-
chronization behavior) based on special clustering strategies. Klaas, Niekamp,
and Stein (1994) implemented a parallel adaptive method with a hierarchical
basis solver (a variant of additive multigrid). They used Cuthill–McKee order-
ing with subsequent blockwise column partitioning of the stiffness matrix for
load balancing. Recently, Griebel and Zumbusch (1998) proposed to use space–
filling curves for load balancing in an adaptive additive multigrid solver.

A particular problem in data parallel multigrid methods is the treatment of the
very coarsest grids where the number of elements may not be large in compar-
ison to the number of processors (or even less). In our implementation we are
able to choose an appropriate number of processors for each mesh level sepa-
rately.

5.2.4 MULTILEVEL SCHEMES FOR CONSTRAINED k-WAY

GRAPH (RE-) PARTITIONING

Introduction. In this subsection we extend the multilevel partitioning ap-
proach of Hendrickson and Leland (1993b), Karypis and Kumar (1995),
Schloegel, Karypis, and Kumar (1997) and Walshaw and Cross (1998) to the
k-way graph partitioning and repartitioning problems with constrained vertices.

In true multigrid fashion we first describe a two–level method. The two–
level method first constructs a “coarser” version of the input graph by collapsing
small groups of vertices into clusters which then form the vertices of the coarser
graph. This process is very similar to the coarsening phase in aggregation–type
algebraic multigrid methods for solving systems of linear equations.

Then the (re-) partitioning problem is solved for the coarser graph where it is
less expensive. Now the coarse partitioning can be interpolated back to the finer
graph in a canonical way by using the clustering. The partitioning of the fine
graph can be further improved by employing an iterative improvement proce-
dure, usually some variant of the KL algorithm or some simpler greedy method.

We obtain the multilevel method from the two–level method by applying the
idea recursively for the coarse grid problem. Below each of the components
of the multilevel partitioner is described in detail. We first concentrate on the
constrained k-way partitioning problem and then move on to the repartitioning
problem.

Coarsening Phase for Constrained Partitioning. The aim is to construct a
sequence of “coarser” graphs G1;G2; : : : ;GJ (J being the coarsest) with a de-
creasing number of vertices from a given input graph G0.

Given an intermediate Graph Gi = (Ni;Ai) the coarser graph Gi+1 =
(Ni+1;Ai+1) is constructed by collapsing vertices of Ni into so–called clus-
ters. Each vertex of the coarse graph then uniquely corresponds to a set of
vertices in the fine graph. This correspondence is described formally by the

134 5. Parallelization

cluster map ci : Ni ! Ni+1. The cluster Ci(n) of a vertex n 2 Ni is then the set
Ci(n) = fn0 2 Nijci(n0) = ci(n)g.

The construction of the clusters is as follows. The constrained vertices N0
i �

Ni are clustered according to their partition assignment, i. e. for any n 2 N0
i

we have Ci(n) = fn0 2 N0
i jπi(n0) = πi(n)g. These clusters make up the set of

constrained vertices N0
i+1 on the coarser level. For the clustering of the free

vertices N00
i � Ni we first construct a maximal independent set Mi of N00

i , i. e. a
subset of N00

i such that no two vertices are joined by an edge and no vertex
can be added without violating this condition. Good maximal independent sets
can be constructed by greedy procedures. The use of a maximal independent
set of the vertices produces faster coarsening than the maximal matching–based
procedures normally used in multilevel partitioners. Then initially each vertex
of the maximal independent set is assigned to its own cluster, the remaining
vertices N00

i nMi are left unassigned. By doing so we will construct at least
jMij (j:j: number of elements in a set) different clusters which will have an
average weight W̄i = W 00

=jMij. Furthermore, we define two gain functions that
will be used in the heuristics below. Let n;m 2 N00

i be two neighboring vertices,
i. e. (n;m) 2 Ai and m is already assigned to a cluster, then

connectivity(n;m) = ∑
a2f(p;p0)2Aijp=n^p02Ci(m)g

wi(a) (5.30)

sums the weights of all edges connecting n to the cluster of m. The second gain
function measures connectivity with respect to a constrained vertex. In addition
to vertices n;m 2 N00

i from above assume that o 2 N0
i is also a neighbor of n, then

constraint–connectivity(n;m;o) =

∑
a2f(p;p0)2Aijp2N0

i^πi(p)=πi(o)^(p0=n_p02Ci(m))g

wi(a)

(5.31)

sums the weights of all edges that connect n and the cluster of m to the con-
strained vertices assigned to partition πi(o). Fig. 5.8 illustrates these defini-
tions. With the given edge weights we get connectivity(n;m) = 4+ 4 = 8 and
constraint–connectivity(n;m;o) = 1+2+2 = 5.

The remaining vertices N00
i nMi are assigned to clusters by scanning them in

random order and applying the following heuristics:

1. Let n be the vertex to be assigned next. Check that n has at least one
neighbor o 2 N0

i else go to 2. By construction of the maximal independent
set n has at least one neighbor m 2 N00

i that already has been assigned to a
cluster. If adding n to the cluster of m does not exceed the average weight
W̄i then do this. If more than one possible pair (o;m) exists choose the
one which maximizes constraint–connectivity(n;m;o) and adding n to the
cluster of m does not exceed the average weight W̄i.

5.2. Load Balancing 135

1
2

2

4

4

n m

o

Figure 5.8: Illustration of connectivity and constraint–connectivity.

2. If none of the above applies, check all neighbors m 2 N00
i of n that al-

ready have been assigned to a cluster and choose the one that maximizes
connectivity(n;m) and adding n to the cluster of m does not yield a cluster
that has more than average weight W̄i.

3. If non of the above applies then n will be assigned to a new cluster.

After all vertices have been assigned to clusters the edge set, the weight func-
tions and the partition assignment for constrained vertices of the coarse graph
G = (Ni+1;Ai+1) are constructed as follows:

(u;u0) 2 Ai+1 ,9(n;n0) 2 Ai : ci(n) = u^ ci(n
0) = u0; (5.32a)

wi+1(u) = ∑
n2fn02Nijci(n0)=ug

wi(n); (5.32b)

wi+1
�
(u;u0)

�
= ∑

(n;n0)2f(m;m0)2Aijci(m)=u^ci(m0)=u0g

wi
�
(n;n0)

�
(5.32c)

πi+1(u) = j ,9n 2 N0
i : ci(n) = u^πi(n) = j (5.32d)

This ends the description of the coarsening step. Coarsening is applied recur-
sively until a given number of vertices has been reached or the size of the graph
cannot be sufficiently reduced. The target number of vertices is a small number
(3 to 10) times k.

Coarsest Problem Solve. For the coarsest graph GJ = (NJ;AJ) a constrained
k-way graph partitioning problem has to be solved. We will do this in two steps.
First a standard k-way graph partitioning problem is solved for the subgraph
G00

J = (N00
J ;AJ \N00

J �N00
J) consisting of the free vertices. This will result in a

reasonable clustering of vertices but the assignment of partition numbers possi-
bly will not be optimal. Think of the example shown in Fig. 5.5 but with the

136 5. Parallelization

partition numbers arbitrarily permuted. Therefore we will try to improve the
partition number assignment with a KL–like algorithm in the second step.

Assume that a partition map πJ with corresponding partitions N00
J (i), 0� i < k

has been computed. The elementary operation of our iterative improvement
procedure will swap the partition number assignments of partitions i and j 6= i,
i. e. it will redefine the partition map in the following way:

swap(i; j) : 8n 2 N00
J (i) : πJ(n) = j; 8n 2 N00

J (j) : πJ(n) = i: (5.33)

For any two partition numbers 0� i; j < k we define

constraint–sep–weight(i; j) =

∑
a2f(p00;p0)2AJjp002N00

J (i)^p02N0

J(j)g

wJ(a) (5.34)

as the sum of weights of all edges connecting a vertex in partition i of the free
vertices with any vertex in partition j of the constrained vertices. Possible can-
didates for partition i to be swapped with are

swap–candidates(i) = f j 6= ijconstraint–sep–weight(i; j)> 0g: (5.35)

The gain in total separator weight for swapping partition i with any j 2
swap–candidates(i) is given by

swap–gain(i; j) = constraint–sep–weight(i; j)+ constraint–sep–weight(j; i)

� constraint–sep–weight(i; i)� constraint–sep–weight(j; j):
(5.36)

A positive gain means an improvement in total cost.
The iterative improvement procedure consists of a number of iterations.

Within each iteration a sequence of tentative swaps is constructed as follows:

1. Scan all pairs (i; j)2 f(a;b)j0� a < k^b 2 swap–candidates(a)g and for
each value z 2 Z set up a list of all pairs with swap–gain(i; j) = z.

2. Select a pair (imax; jmax) from the list with highest gain value, append it
to the sequence of swaps and remove all remaining pairs (imax; :) from the
lists. Do the swap, recompute all gain values and rearrange the lists. Note
that the highest obtainable gain may be negative. Repeat until all the lists
are empty (this will be after k�1 swaps).

3. Now the sequence of moves is reexamined. Let gi be the gain obtained in
the i-th swap of the sequence. Choose l such that ∑l

i=1 gi is maximal and
positive. Restore the state of the partition map that has been obtained after
the first l swap operations. If l = 0 then no improvement is possible and
the algorithm ends, otherwise do another iteration.

Assuming that jswap–candidates(i)j is bounded for all i one iteration of the
algorithm above can be implemented with run–time proportional to k by using
the bucket sorting idea described in (Fiduccia and Mattheyses 1982).

5.2. Load Balancing 137

Projection Step. The first operation in the refinement phase is to transfer a
partitioning from a coarse graph to the partitioning of the fine graph. This is
simply accomplished by setting

πi(n) = πi+1(ci(n)) (5.37)

Iterative Improvement. Consider a graph Gi, 0� i� J together with its parti-
tion map πi that has been obtained by solving the coarsest level problem or that
has been interpolated from a coarser graph. Due to nonuniform vertex weights
it may be that the partitioning obtained so far does not satisfy the load balancing
condition. In addition one might be able to improve the separator weight by
moving vertices from one partition to another. We will now describe an iterative
improvement procedure that tries to improve separator weight and load balance
simultaneously. The algorithm follows the ideas presented in the work of Wal-
shaw and Cross (1998). Previous algorithms tried to improve load balance and
separator weight separately, see (Schloegel, Karypis, and Kumar 1997), but this
does not seem to be necessary. Since the improvement procedure does not in-
volve graphs on different levels we omit the level index in the following.

The algorithm to be developed now is again of KL–type with hill climbing
ability. We begin by defining the local separator weight of vertex n 2 N00 with
respect to a partition i as

local–sep–weight(n; i) = ∑
a2f(m;m0)2Ajm=n^π(m0)=ig

w(a); (5.38)

i. e. the sum of weights of all edges that connect vertex n with a vertex in par-
tition i. Note that the neighboring vertices include free vertices and constrained
vertices! The elementary step in the optimization algorithm consists of moving
a vertex n 2 N00 from partition i = π(n) to another partition j 6= i. The gain in
separator weight associated with this move is

move–gain(n; j) = local–sep–weight(n; j)� local–sep–weight(n;π(n))
(5.39)

The gain is positive if the separator weight will be smaller after the move. A
vertex n 2 N00 is only considered to be moved to one of its candidate partitions
given by

move–candidates(n) =

f j 6= π(n)j9(m;m0) 2 A : m = n^m0 2 N00^π(m0) = jg:
(5.40)

All vertices n with move–candidates(n) 6= /0 are called border vertices.

The weight of partition i in the free vertices is W 00(i) = ∑n2N00(i)w(n). We say
that partition i is overweight if W 00(i)> T where T = δW 00

=k is the target weight
of a partition.

138 5. Parallelization

The iterative improvement procedure requires that the vertices N00 form a con-
nected subgraph of G. This may not be the case in our application since each
grid level of a locally refined mesh hierarchy need not cover the whole domain
Ω. Therefore, if (N00

;A\ (N00�N00)) has non–connected components, addi-
tional edges with weight zero are introduced to ensure connectedness prior to
optimization.

The optimization procedure consists of a number of iterations. Each iteration
constructs a sequence of moves where each move transfers a vertex from its
current partition to another partition. A vertex may only be transferred once in
an iteration. We now describe the details of a single iteration:

1. Initialization. In order to reduce run–time only a limited set of ver-
tices and destination partitions is considered in a single iteration, see
(Schloegel, Karypis, and Kumar 1997; Walshaw and Cross 1998). In par-
ticular we set up a list of all pairs (n; j) where n is a border vertex and
j 2move–candidates(n).

2. Selection. Take the pair (n; j) from the list which maximizes
move–gain(n; j). If several pairs have the same move–gain value take the
one with smallest vertex weight w(n) if move–gain(n; j)� 0 and largest
vertex weight w(n) if move–gain(n; j) < 0. This strategy maximizes the
gain over several moves, see (Walshaw and Cross 1998).

3. Acceptance. Moving vertex n from partition i = π(n) to partition j is
accepted if one of the following conditions hold:

(a) max
0�l<k

W 00(l)> T and W 00(j)+w(n)<W 00(i), or

(b) max
0�l<k

W 00(l)� T and W 00(j)+w(n)� T .

The first condition always accepts a move if global balance has not been
reached yet and load balance is improved. If global balance has been
reached the second condition accepts moves that do not violate the load
balance condition. Remove pair (n; j) from the list of pairs to be consid-
ered. If (n; j) has been accepted then go to 4. If the list of pairs is empty
then go to 5 else go to 2.

4. Confirmation and hill climbing. The algorithm has the ability to tenta-
tively accept also a negative gain. If the current partition map πis “better”
(see below) than a partition map π̄previously considered as “best”partition
then it is confirmed to be the new best partition and the list of recent moves
is cleared. If the current partition map is not better than the best partition
map obtained so far then the last move (n; j) is appended to the list of
recent moves. The current partition π is considered to be better than the
previous best partition π̄ if one of the following conditions holds:

5.2. Load Balancing 139

(a) The separator weight associated with πis smaller than that of π̄. Note
that every individual move maintains or improves load balance.

(b) The separator weight is maintained but load balance is improved in
the sense that the maximum weight of any partition has been de-
creased.

(c) The previous best partition π̄did not satisfy the load balancing con-
dition and load balance is improved with π. Note that in this case we
accept also an increase in separator weight.

If the list of pairs is empty then go to 5 else go to 2.

5. Undo recent moves. The end of an iteration has been reached. Undo all
moves that are stored in the list of recent moves since they did not lead to
an improvement in the sense of 4.

Iterations are executed until no improvement can be made or a prescribed
number of iterations has been reached. The algorithm can be implemented with
run–time proportional to jN00j if the vertex degree of the input graphs is bounded,
see (Walshaw and Cross 1998).

Multilevel Method for Constrained k-way Partitioning. We are now in a posi-
tion to state the complete multilevel algorithm for solving a constrained k-way
graph partitioning problem:

ALGORITHM 5.2 Multilevel method for constrained k-way graph partitioning
problem.

Input: Graph G = (N;A), k > 1, πon N0 and weights w;
Set G0 = G; i = 0;
while (Gi not coarse enough) f

Coarsen Gi to Gi+1 ;
i = i+1;

g
J = i; Solve constrained k-way partitioning problem for GJ;
Iteratively improve partitioning of GJ;
for i = J�1 downto 0 f

Project partitioning from Gi+1 to Gi;
Iteratively improve partitioning of Gi;

g

Extension to Repartitioning. The components of the multilevel algorithm
given above can be readily extended to the case of repartitioning.

In the coarsening phase only vertices that are assigned to the same initial par-
tition can be merged into a cluster. This allows a unique extension of the initial

140 5. Parallelization

partition map π0 to the coarser graph. Moreover, coarsening can be done in par-
allel if desired. The coarse graph solve can be omitted since we can simply set
πJ = π0

J . Load balance is subsequently achieved through the use of the iterative
improvement procedure described above. Data migration cost is implicitly kept
low through the diffusion process (data will only be moved if load balance is
improved). If the initial partitioning is not too much out of balance, load bal-
ance will be achieved quickly on the few coarsest graphs and the finer graphs
will only be used to improve the partition quality.

6

UG: A Framework for
Unstructured Grid Computations

The discretization schemes and solution algorithms described in previous chap-
ters have been implemented in the partial differential equations (PDE) toolbox
UG. In this chapter we take a somewhat broader look at the problem of writing
a simulation software package.

The numerical solution of PDE problems on unstructured grids using parallel
computers leads to an increase in software complexity of several orders of mag-
nitude when compared to a sequential, structured mesh code. Consequently, the
design of simulation software with respect to code reuse over problem domains
is of great importance.

In the following we review the steps of the PDE solution process with respect
to parallel computing and discuss the modular structure of the UG software
toolbox. The object–oriented design of the numerical algorithms is discussed
in some detail to give the reader an impression how new components can be
incorporated into the UG framework.

Development of UG started in 1990 at the IWR, University of Heidelberg
and proceeded at the ICA III, University of Stuttgart, from 1994. Meanwhile
it consists of several hundred thousand lines of source code and has reached a
rather mature state. The construction of such a large software package was only
possible through the engagement of a large number of people (see author list on
(Bastian, Birken, Lang, Johannsen, Neuß, Rentz-Reichert, and Wieners 1997))
and a very cooperative and unselfish style of work over the past years.

6.1 The PDE Solution Process
The numerical solution of partial differential equations involves a sequence of
related steps starting with geometric modeling and ending with the visualization
of the results as shown in Fig. 6.1. Arrows in the figure indicate the flow of con-
trol, links in gray are optional. Although the steps are the same for structured and
unstructured grids as well as sequential and parallel computation, programming
effort can vary from almost nothing to man–years, as e. g. in mesh generation.

In the following we comment each of the basic building blocks from Fig. 6.1:
Geometric Modeling. Holds a representation of the (three–dimensional) body

in which the PDE is to be solved. Access to the representation must
include methods to find points in the interior, on (internal and exter-
nal) surfaces and on manifolds where two or more surfaces intersect.

141

142 6. UG: A Framework for Unstructured Grid Computations

visualization

geometric modeling

(initial) mesh generation

mesh modification

discretization

linear/nonlinear system solution

error estimation

output of results

pa
ra

lle
l i

nf
ra

st
ru

ct
ur

e
lo

ad
 b

al
an

ci
ng

Figure 6.1: Basic building blocks of the PDE solution process.

6.1. The PDE Solution Process 143

Creation of the geometric model might be done with CAD software
or special tools (e. g. generating internal surfaces from borehole data
in a porous medium). In a parallel environment the geometric model
might be duplicated on each processor if it is small enough, otherwise
it has to be distributed together with the mesh data.

(Initial) Mesh Generation. Constructs a volume mesh approximating the do-
main given by the geometric model. Small details, e. g. a well or a
tiny region of highly conductive material, must be resolved by the
mesh if they are critical for the solution of the PDE. Other parame-
ters to be controlled are mesh quality (angle condition), mesh size and
anisotropy. In the parallel case load balancing/domain decomposition
is notoriously difficult for this step.

Mesh Modification. Given a mesh, the purpose of this step is to construct a
new mesh that is finer in some regions and possibly coarser in other
regions of the domain without doing a complete remesh. The re-
gions are indicated by the error estimator. A very effective way to
do this is the hierarchical approach where individual elements of the
given mesh are subdivided according to certain rules. Coarsening is
achieved by recombination of previously subdivided elements. This
results in local operations and a reasonably data–parallel implemen-
tation is possible, see Bastian (1996) or Jones and Plassmann (1997).
Other techniques based on point insertion/deletion and mesh smooth-
ing are also possible. Mesh modification requires dynamic load re-
distribution in order to balance the load after the refinement step.

Discretization. Sets up a finite–dimensional approximation of the differential
equation. Operations are typically trivially parallel on element level.
Difficulties in load balance might arise if different types of equations
are to be solved in subregions or if elements require internal calcula-
tions (like in elastoplasticity).

(Non-)Linear System Solution. Large systems in 3D are typically solved with
iterative solvers. It is important to maintain a low iteration count
independent of the size of the mesh and the number of processors (and
possibly other parameters). Multilevel and domain decomposition
methods (often) have this property. Communication is required for
every node that is stored on more than one processor. See Smith,
Bjørstad, and Gropp (1996) for a good introduction.

Error Estimation/Refinement Strategy. Determine how accurately the discrete
solution approximates the differential equation. Provide information
where the mesh has to be refined or coarsened. Operations are typ-
ically parallel on element level requiring at most access to data in
neighboring elements.

Output of Results. Store geometry/mesh/solution information to a disk file for
subsequent restart or visualization. Huge amounts of data are pro-

144 6. UG: A Framework for Unstructured Grid Computations

duced by parallel computations necessitating the use of clever file
formats (suppress redundant information) and parallel file I/O.

Visualization. Huge amounts of data are produced from the simulation of time–
dependent processes on fine meshes. Although sequential visual-
ization software can be improved to handle fairly large data sets
(e. g. about five million nodes in GRAPE on a workstation with 1
GB of memory), ultimately also the rendering process will have to be
parallelized.

The components of the PDE solution process

� need access to one or even several of the distributed data structures (geo-
metric model, unstructured mesh, matrices and vectors) and

� are used in combination with each other: The solution drives the modifica-
tion of the mesh in adaptive methods, visualization might be done during
computation or the solution might change the geometric model.

At full scale this requires the incorporation of all components into an inte-
grated environment. In order to ease the interaction between the components
and to allow reuse of code for the different distributed data structures it is con-
venient to provide an abstraction such as a “distributed object” and operations
for communicating among objects as well as mapping and migrating objects.
This “parallel infrastructure” is drawn as a vertical box in Fig. 6.1 since it is
intended to support all components.

6.2 Aims of the UG Project
No research group today possesses the fully integrated parallel PDE environ-
ment envisioned in the previous subsection. Due to lack in man–power and
expertise we concentrated on the mesh modification, solver and parallel infras-
tructure parts. Distributed visualization has been implemented for its value as a
debugging aid (see (Lampe 1997)) and parallel file I/O has been added as part
of a project aimed at a production code, see (Fein 1998).

The main objectives of the UG project were:

� Research in numerical algorithms, especially

– Robust multigrid methods on unstructured, locally refined meshes.

– Parallel multigrid algorithms.

– Solution of various PDE systems, a list of currently implemented
problems is shown in Fig. 6.2.

� Research in software design

6.3. The UG Toolbox 145

DIFFUSION EQUATION

Linear conforming P1
Quadratic conforming P2
Linear non-conforming CR
mixed RT0,RT1
mixed BDM

LINEAR ELASTICITY

Linear conforming P1
Quadratic conforming P2
Non-conforming (Falk)
Stabilized BDM

ELASTOPLASTICITY

Linear conforming P1
Quadratic conforming P2

BIHARMONIC EQUATION

Morley
Argyris Element

NONLINEAR

CONVECTION–DIFFUSION

Finite–Volume
Control–Volume FE

STOKES

Taylor–Hood Element

NAVIER–STOKES

Finite–Volume stabilized
stationary–instationary
compressible–incompressible
laminar, turbulent (k� ε)

DENSITY DRIVEN FLOW

Finite–Volume

MULTI–PHASE FLOW

Finite–Volume
Global Pressure
Transition Conditions
Fractured Porous Media
Multicomponent Flow

Figure 6.2: PDE problems and discretizations currently implemented in the UG
toolbox.

– Design of numerical algorithms such that they can be reused, com-
posed in many ways and implemented with limited knowledge of the
whole software.

– Design of a ‘parallel infrastructure’ that can manage a complex dis-
tributed data structure in a general way.

– Code should be portable from Macintosh to parallel supercomputer.

6.3 The UG Toolbox
This subsection first describes the modular structure of the UG software. Then
some of the modules are described in more detail.

6.3.1 MODULAR STRUCTURE

The UG software is structured into several layers shown in Fig. 6.3. We will
browse through the layers from bottom to top.

The Dynamic Distributed Data (DDD) layer provides the parallel infrastruc-
ture for creating and maintaining the distributed unstructured mesh data struc-
ture. It uses the Parallel Processor Interface (PPIF, a set of message passing

146 6. UG: A Framework for Unstructured Grid Computations

dynamic distributed data (DDD)

PPIF

domain manager
output
devices

inter-module
database chaco

std lgm

X
11

M
ac

in
to

sh
po

st
sc

ri
pt

m
et

a
pp

m

grid manager

2D mesh gen. 3D mesh gen.

graphics linear algebra numerics support

numerical algorithms

user interface user code

command discretization

main()
{ ...
}

Figure 6.3: Modular structure of UG.

6.3. The UG Toolbox 147

functions which have been implemented on top of PVM, MPI and many vendor
specific message passing systems) for portability to many platforms. DDD is
described in more detail below.

The next layer provides basic sequential functionality. The domain manager
offers an abstract geometry interface to the grid manager. Two different imple-
mentations of this interface are available, the standard domain and the linear
geometric model (both are described in more detail below). The output devices
module offers a portable graphics interface which is implemented for X11, Mac-
intosh, postscript and other formats. The inter–module database is used by mod-
ules to exchange data with each other in a standardized way. Finally, the graph
partitioner CHACO, see (Hendrickson and Leland 1993a), has been included for
use in the load balancing routines (DDD does not include the partitioning step,
this has to be supplied by the code using DDD).

The grid manager module is responsible for creation and modification of the
unstructured mesh data structure. Creation of initial meshes is done sequentially
by 2D/3D advancing front mesh generators. The 3D mesh generator has been
contributed by J. Schöberl, Linz, and is described in Schöberl (1997).

On top of the grid manager we have the graphics module enabling 2D and 3D
visualization of meshes and solutions on planar cuts. Parallel 3D hidden surface
removal is included, see (Lampe 1997). Graphical output can be sent to any out-
put device. The linear algebra module provides kernels for sparse matrix–vector
operations and iterative solvers. Numerics support includes useful functionality
for many finite volume and finite element discretizations.

The numerical algorithms module provides a large variety of numerical meth-
ods such as linear solvers, nonlinear solvers, time–stepping schemes etc. From
the point of view of the application programmer UG provides a framework (see
(Gamma, Helm, Johnson, and Vlissides 1995)) for building specialized simula-
tor applications. The numerical algorithms are implemented in a set of classes
which can be used directly or from which the application programmer can in-
herit in order to add new components or to replace existing ones. In the imple-
mentation of his new classes the programmer can use functionality offered by
other UG modules (e. g. numerics support) in the traditional form of subroutine
libraries. The object oriented design of the numerical algorithms is described in
detail in Subs. 6.4.

At initialization time the user application instantiates various objects to be
used by the framework (such as geometry description or boundary conditions)
and passes control to the user interface module. Numerical algorithm objects
are typically instantiated from interpreted script files for flexible control of the
solution process.

UG has been implemented in the C programming language. Most of its design
follows the modular programming style, except the numerical algorithms which
have been designed with object oriented methods.

148 6. UG: A Framework for Unstructured Grid Computations

6.3.2 DYNAMIC DISTRIBUTED DATA

The DDD layer provides the parallel infrastructure to create and maintain the
distributed unstructured mesh data structure as well as the distributed sparse
matrices and vectors. The underlying idea of DDD is that an arbitrary data
structure (such as an unstructured mesh) can be identified with a directed graph
where each node corresponds to an object (e. g. a vertex or an element) and
each edge in the graph corresponds to a reference (pointer) from one object to
another.

For the purpose of parallel processing we want to assign parts of the graph to
different processors. Since we aim at distributed memory architectures a pro-
cessor can only store an edge if it has also been assigned the two corresponding
nodes (no pointers to objects in another processor’s memory are possible). In
order for each edge to be stored in at least one processor some nodes have to be
stored in several processors, resulting in an overlapping decomposition of the
graph. Different forms of overlap are possible and are determined by the needs
of the application. Fig. 6.4 shows an example. Part (a) of the figure shows a
simple graph that is to be distributed. Parts (b) and (c) show two different pos-
sibilities of overlapping decompositions. The overlap arises naturally in many
data–parallel algorithms (often called “ghost cells”) and also allows the sequen-
tial code to be reused on each processor. Objects that are stored on several
processors are called distributed objects in DDD notation.

Data–parallel algorithms typically require information to be exchanged
among different copies of a distributed object in order to maintain consistency.
Since many objects may reside on a processor, DDD provides means to ex-
change data for whole sets of objects shared by pairs of processors. Lists of
references to such sets of shared objects (called “ interfaces” in DDD notation)
are kept sorted by globally unique identification numbers of objects in order to
quickly implemented the necessary gather/scatter operations to and from mes-
sage buffers. Fig. 6.4(d) shows an example of an interface list.

The most powerful feature of DDD is its ability to dynamically migrate ob-
ject copies from one processor to another while automatically updating the ref-
erences to neighboring objects and the corresponding interface lists. E. g. one
could move node 41 in Fig. 6.4(b) from processor 1 to processor 2. In order not
to loose edge (41;2), one must include a copy of node 2 and edge (41;2) into the
transfer. The result would be the distribution shown in Fig. 6.4(c). DDD would
automatically figure out that a copy of object 4 already exists on processor 2
(i. e. 42), it would create a copy of object 2 on processor 2 and insert (correctly
translated) pointers between objects 4 and 2 on processor 2. Finally, it would
adjust the interface lists accordingly to enable subsequent communication. Note
that it is the responsibility of the application to ensure that no reference is lost
during a transfer operation.

DDD objects correspond to individual vertices or elements of the mesh data
structure. All operations are designed to handle hundreds of thousands of ob-

6.3. The UG Toolbox 149

1

2

3

4

5

(a)

1

2

31 5

41

32

42

processor 1 processor 2

(b) distributed object

1

4

5

processor 1 processor 2

(c)

31 32

21 22

1

2

31 5

41

32

42

processor 1 processor 2

(d)

interface lists

Figure 6.4: Concepts of Dynamic Distributed Data.

150 6. UG: A Framework for Unstructured Grid Computations

jects per processor efficiently. Memory overhead is 12 bytes in each object and
an additional 12 bytes for each remote copy of an object. DDD only stores infor-
mation about local objects and copies of these local objects on other processors,
no component of DDD has global information about all objects.

DDD has been developed by Klaus Birken in his thesis, see (Birken 1998).
The underlying concepts of DDD have been extracted from the first parallel
version of UG described in Bastian (1996), see also (Birken and Bastian 1994).

6.3.3 GEOMETRY DEFINITION

The domain manager, see Fig. 6.3, provides an abstract geometry interface to
the grid manager. This allows the grid manager to operate without knowledge
of the actual representation of the geometry. Two implementations of the do-
main manager interface are currently available: The “standard domain” and the
“ linear geometric model” (LGM).

A standard domain consists of a piecewise description of the surface (bound-
ary) of the domain. Each part of the surface (called a boundary segment) is given
by a mapping of a parameter space (e. g. [0;1]2) to R3 . The mapping is supplied
in the form of a suitable C-function. Consistency of boundary segments at in-
tersections (which are points or one–dimensional manifolds) has to be ensured
by the user. The standard domain interface is well suited to describe simple
geometric forms like a cube, a sphere, a torus or a cylinder.

In the linear geometric model a domain is also defined by a piecewise de-
scription of the boundary. Each boundary segment, however, is represented as
an unstructured triangular mesh in 3D space. The LGM is useful for domains
with highly irregular surface allowing no parameterization.

Boundary condition information has to be supplied consistently with the ge-
ometry information, therefore it is also accessed through the abstract domain
manager interface. This also makes the discretization code independent of the
domain model.

If the standard domain has been used for the geometry definition then bound-
ary conditions are given separately for each boundary segment using the same
parameterization. In the linear geometric model boundary conditions are evalu-
ated with respect to global coordinates (i. e. 3D space) for each boundary seg-
ment.

6.3.4 HIERARCHICAL MESH DATA STRUCTURE

The central idea of UG’s approach to scalability is the use of a hierarchical mesh
data structure. It is assumed that the geometry is simple enough to be duplicated
on each processor and that a reasonable initial mesh can be constructed that is
much coarser than the final mesh that is used to compute the solution of the
differential equation. Thus it is possible to generate an initial mesh sequentially
which is then distributed to (a subset of) the processors for (adaptive) refinement
in parallel.

6.3. The UG Toolbox 151

level 0 level 1 level 2

Figure 6.5: Three consecutive grid levels.

The mesh refinement is an extension of the algorithms of Bank, Sherman, and
Weiser (1983) (2D, triangles) and Bey (1995) (3D, tetrahedra) to multiple ele-
ment types (triangles and quadrilaterals in 2D, tetrahedra, pyramids, prisms and
hexahedra in 3D). An efficient data–parallel implementation is enabled through
a level–wise formulation (only elements of one grid level at a time are modified)
and the use of a complete set of rules (there is a refinement rule for any possi-
ble refinement of edges and faces of an element), see (Bastian 1996) and (Lang
1999).

Besides in mesh generation, the hierarchical mesh structure is also of central
importance to other steps of the PDE solution process: It is used to define a hier-
archy of finite element spaces to be used in the multigrid solver, it can be used to
obtain good initial guesses in the nonlinear solver (nested iteration) and it is use-
ful for reduction of the complexity of the load balancing problem, see Bastian
(1998). Furthermore, the hierarchical structure allows for tremendous savings in
the size of output files, see (Fein 1998), and can be used for an efficient parallel
solution of the 3D hidden surface problem, see (Lampe 1997).

We will now briefly consider the data structure used to represent the hierar-
chical mesh. It is described in more detail in (Bastian, Birken, Lang, Johannsen,
Neuß, Rentz-Reichert, and Wieners 1997).

The MULTIGRID data type represents a complete hierarchical unstructured
mesh consisting of several grid levels. A multigrid hierarchy with three levels
is shown in Fig. 6.5. The six white elements on level 2 are not stored, i. e. grid
levels need not cover the whole domain. Each grid level is accessible via the
GRID data type which is an aggregate type holding elements (the ELEMENT data
type), vertices (NODE and VERTEX data types) and edges (LINK and EDGE data
type).

The mesh topology is given by the references between its components. The
ELEMENT data type provides access to its corners of type NODE and to its neigh-
boring ELEMENTs, see Fig. 6.6(a). The NODE data type stores a single linked list
of references to neighboring NODEs as shown in Fig. 6.6(b). Each list element is
of type LINK and two LINK objects are combined to form an EDGE.

152 6. UG: A Framework for Unstructured Grid Computations

Objects on successive grid levels are connected by the references shown in
Fig. 6.6(c,d). Bidirectional references are stored between an element and each
of its siblings. Each NODE has references to the corresponding NODE structure in
the finer and coarser levels (or to an EDGE or ELEMENT if the NODE did not exist
on the coarser level.

The same structure is also used in three space dimensions. No data type rep-
resenting a face of the mesh exists in the three–dimensional version. Quantities
related to faces (such as degrees of freedom) are referenced from each of both
elements directly.

If an ELEMENT or NODE happens to be on the boundary of the domain it is
supplemented by the corresponding boundary information. Topological infor-
mation local to each of the six element types currently implemented is provided
in a uniform way in order to being able to write code that is independent of the
element type.

Typical operations on the data structure include browsing, tagging elements
for refinement/coarsening and mesh modification.

6.3.5 SPARSE MATRIX–VECTOR DATA STRUCTURE

In finite element or finite volume methods the solution of a PDE problem is ap-
proximated in a finite–dimensional function space equipped with a local basis.
This means that any function in that space is determined locally on each element
by degrees freedom related to that element and its faces, edges or vertices. Two
elements share degrees of freedom at common vertices, edges and faces. Fig. 6.7
shows the degree of freedom layout for some finite element spaces. E. g. the
P2�P1 Taylor–Hood element (shown right in Fig. 6.7) for the Navier–Stokes
equation approximates each component of the velocity vector with an element-
wise quadratic function and the pressure with an elementwise linear function. In
total this requires three numbers per node and two numbers per edge to represent
the solution.

Typically, the whole solution process requires several solutions and/or right
hand sides to be stored. Therefore the grid manager allows a variable number
of floating point values to be associated with each geometric location (node,
edge, face, element) at run–time. Note that degrees of freedom forming for ex-
ample the solution vector are not stored in one big array but rather all floating
point values related to a geometric location are stored in a small block. This
prevents the use of efficient, array–based matrix–vector operations but on the
other hand enables easy addition/deletion of degrees of freedom as the mesh
is refined/coarsened. Furthermore it allows the direct use of DDD for the par-
allelization of matrix–vector operations. The efficiency issue is somewhat re-
laxed in the case of several degrees of freedom per location (systems of PDE),
see (Neuß 1999) but it is likely that the sparse matrix data structure will be re-
designed in future versions of the software.

6.3. The UG Toolbox 153

(d)

LINK

EDGE

(b)

NODE

ELEMENT

(a)

(c) EDGENODE

Figure 6.6: UG unstructured mesh data structure.

154 6. UG: A Framework for Unstructured Grid Computations

P1: linear on triangle,
globally continuous

P3: cubic on triangle,
globally continuous

P2-P1: velocity
quadratic, pressure
linear

Figure 6.7: Degrees of freedom for some finite element spaces.

Matrix entries are collected in blocks that couple all degrees of freedom in
a geometric location with those in another geometric location. Each location
stores a list of all matrix blocks coupling this location with other locations (i. e. a
block compressed row storage scheme).

The VECDATA DESC data type describes a collection of floating point values
in one or several geometric locations to be treated as a single entity by the nu-
merical algorithms. For the matrices a similar MATDATA DESC data type exists.
BLAS (basic linear algebra subroutines) level 1 and 2 routines as well as ker-
nels for iterative methods operating on the VECDATA DESC and MATDATA DESC
structures are available.

6.3.6 DISCRETIZATION SUPPORT

Computation of stiffness matrices and right hand sides in the finite element or
finite volume method requires local, element–wise calculations. Many compo-
nents of these calculations can be reused across problem domains. The dis-
cretization support module provides:

� Various kinds of shape functions along with their derivatives for different
types of elements.

� Transformation from local to global coordinate system.

� Quadrature formulae of varying order for all element types.

� A tool constructing the secondary mesh in the vertex–centered finite vol-
ume method.

6.3.7 COMMAND LINE INTERFACE

In order to use UG, the application programmer has to write a main() func-
tion that initializes UG, registers application supplied code or data with the UG
framework and passes control to UG’s user interface.

6.4. Object–Oriented Design of Numerical Algorithms 155

Then the user can type commands interactively or execute sequences of com-
mands from a script file. The set of available commands can be extended easily
by writing an appropriate C–function and registering it as a new command with
the command interpreter.

6.4 Object–Oriented Design of Numerical
Algorithms

6.4.1 CLASS HIERARCHY

The solution of nonlinear, time–dependent problems involves several cooper-
ating numerical algorithms. E. g. an implicit time discretization requires the
solution of a system of nonlinear algebraic equations per time step. Solving
that by Newton’s method requires the solution of a system of linear equations
per iteration. As a linear solver one might consider a Krylov subspace method
which requires a preconditioner, e. g. multigrid. A multigrid iteration needs a
smoothing iteration, grid transfer operators and a coarse grid solver which in
turn might be another preconditioned Krylov method or an algebraic multigrid
scheme if the coarse grid is not small enough to solve the equations exactly. The
Newton scheme may also require an interpolation scheme to transfer an initial
guess from coarse to fine grid. In the adaptive case an error estimator is required.
Even more complex scenarios can be imagined when using decoupled solution
strategies for systems of PDEs.

The “numerical procedures” in UG have been designed to support this kind
of flexible composition of solver components. In particular we wanted to have
the following:

� Components should be reusable across problem domains. E. g. the time–
stepping code should be the same regardless of the PDE to be solved.

� Components should not use outside knowledge. E. g. the nonlinear solver
should not know whether it solves a nonlinear problem within a time–step
or a stationary problem.

� The components should be configurable from script file to be able to
quickly test different configurations.

In order to achieve these goals the numerical algorithms have been realized
as a class hierarchy. The class diagram is shown in Figs. 6.8 and 6.9. Classes
are denoted by rectangular boxes having the class name at the top. Classes with
names in italics denote abstract classes, a class name in regular text denotes
concrete classes. A line with a triangle denotes class inheritance, a regular arrow
denotes usage (reference) of a class.

Abstract classes are used to define an interface, i. e. a set of functions with
certain parameters and intended functionality. Functions of abstract classes are

156 6. UG: A Framework for Unstructured Grid Computations

N
P
_
B
A
S
E

I
n
i
t
(
)
;

D
i
s
p
l
a
y
(
)
;

E
x
e
c
u
t
e
(
)
;

N
P
_
N
L
_
A
S
S
E
M
B
L
E

P
r
e
P
r
o
c
e
s
s
(
)
;

N
L
A
s
s
e
m
b
l
e
S
o
l
u
t
i
o
n
(
)
;

N
L
A
s
s
e
m
b
l
e
D
e
f
e
c
t
(
)
;

N
L
A
s
s
e
m
b
l
e
M
a
t
r
i
x
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
T
_
S
O
L
V
E
R

T
i
m
e
P
r
e
P
r
o
c
e
s
s
(
)
;

T
i
m
e
I
n
i
t
(
)
;

T
i
m
e
S
t
e
p
(
)
;

T
i
m
e
P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
B
D
F

N
P
_
E
R
R
O
R

P
r
e
P
r
o
c
e
s
s
(
)
;

E
r
r
o
r
(
)
;

T
i
m
e
E
r
r
o
r
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
I
N
D
I
C
A
T
O
R

N
P
_
T
_
A
S
S
E
M
B
L
E

T
A
s
s
e
m
b
l
e
P
r
e
P
r
o
c
e
s
s
(
)
;

T
A
s
s
e
m
b
l
e
I
n
i
t
i
a
l
(
)
;

T
A
s
s
e
m
b
l
e
S
o
l
u
t
i
o
n
(
)
;

T
A
s
s
e
m
b
l
e
D
e
f
e
c
t
(
)
;

N
L
A
s
s
e
m
b
l
e
M
a
t
r
i
x
(
)
;

T
A
s
s
e
m
b
l
e
P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
N
L
_
S
O
L
V
E
R

P
r
e
P
r
o
c
e
s
s
(
)
;

S
o
l
v
e
r
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
B
O
X
_
2
P

N
P
_
N
E
W
T
O
N

N
P
_
T
R
A
N
S
F
E
RN
P
_
L
I
N
E
A
R
_
S
O
L
V
E
R

.
.
.

Figure 6.8: Numerical algorithms class diagram: Assemble, time–stepping and
nonlinear solver classes.

6.4. Object–Oriented Design of Numerical Algorithms 157

N
P
_
B
A
S
E

N
P
_
L
I
N
E
A
R
_
S
O
L
V
E
R

P
r
e
P
r
o
c
e
s
s
(
)
;

D
e
f
e
c
t
(
)
;

R
e
s
i
d
u
u
m
(
)
;

S
o
l
v
e
r
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

.
.
.

N
P
_
L
S

N
P
_
A
M
G

N
P
_
B
C
G
S

N
P
_
T
R
A
N
S
F
E
R

P
r
e
P
r
o
c
e
s
s
(
)
;

P
r
e
P
r
o
c
e
s
s
S
o
l
u
t
i
o
n
(
)
;

P
r
e
P
r
o
c
e
s
s
P
r
o
j
e
c
t
(
)
;

I
n
t
e
r
p
o
l
a
t
e
C
o
r
r
e
c
t
i
o
n
(
)
;

R
e
s
t
r
i
c
t
D
e
f
e
c
t
(
)
;

I
n
t
e
r
p
o
l
a
t
e
N
e
w
V
e
c
t
o
r
s
(
)
;

P
r
o
j
e
c
t
S
o
l
u
t
i
o
n
(
)
;

A
d
a
p
t
C
o
r
r
e
c
t
i
o
n
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

P
o
s
t
P
r
o
c
e
s
s
S
o
l
u
t
i
o
n
(
)
;

P
o
s
t
P
r
o
c
e
s
s
P
r
o
j
e
c
t
(
)
;

N
P
_
S
T
D

N
P
_
M
D
E
P

N
P
_
I
T
E
R

P
r
e
P
r
o
c
e
s
s
(
)
;

I
t
e
r
(
)
;

P
o
s
t
P
r
o
c
e
s
s
(
)
;

N
P
_
I
L
U

N
P
_
L
M
G
C

Figure 6.9: Numerical algorithms class diagram: Linear solvers and grid trans-
fers.

158 6. UG: A Framework for Unstructured Grid Computations

virtual and are written in italic font. Concrete classes are derived from abstract
classes and implement the interface given by the abstract base class. Typically
there are several different implementations of an abstract interface that can be
substituted at run–time (polymorphism). Classes can use other classes to imple-
ment their methods.
All numerical algorithms are derived from the abstract base class NP BASE

NP BASE

int Init (int argc , char **argv);
int Display ();
int Execute (int argc, char **argv);

MULTIGRID *mg;

int status;

having three virtual member functions Init(), Display() and
Execute() realizing the script file interface for the numerical component.
Init() will be called by the command npinit and is used to set parameters
of an object (such as the number of smoothing steps in a multigrid cycle).
The Display() function is called by the npdisplay command and prints
the current settings of an object. The Execute() member function is called
by the npexecute command and triggers execution of a numerical algorithm
(such as computing one time step). The NP BASE class has two variables: A
reference to the MULTIGRID data structure the object is supposed to work on
and a status variable indicating whether the object is executable.

A few words about implementation may be in order here since UG is writ-
ten in C, not in C++. Classes are implemented as structs containing function
pointers. E. g. , NP BASE is implemented as:

struct np_base {

/* data */
MULTIGRID *mg;
int status;

/* functions */
int (*Init) (struct np_base *, int, char **);
int (*Display) (struct np_base *);
int (*Execute) (struct np_base *, int, char **);

};
typedef struct np_base NP_BASE;

Note that every member function receives a pointer to the object as first pa-
rameter (the this pointer). All function pointers are included in every instance
of a class. A virtual function table has been omitted since memory requirements
are not critical.

6.4. Object–Oriented Design of Numerical Algorithms 159

Inheritance is implemented by including the “base class” in the “derived
class” :

struct derived_class {
struct base_class base;
...

};

We are now in a position to consider some classes in more detail.

6.4.2 INTERACTION OF TIME–STEPPING SCHEME, NONLIN-
EAR SOLVER AND DISCRETIZATION

Let us consider the solution of a system of ordinary differential equations
(ODEs) in the form

d(m(y(t)))
dt

= f(t;y(t)); y : R ! R
N
;y(t0) = y0

: (6.1)

Solving (6.1) with an implicit Euler scheme leads to the following nonlinear
algebraic system to be solved in time step n = 0;1; : : : :

FIE(yn+1) = m(yn+1)�∆tf(tn+1
;yn+1)�m(yn) = 0: (6.2)

The second order backward difference formula and the Crank–Nicolson scheme
lead to

FBDF2(yn+1) = m(yn+1)�
2
3

∆tf(tn+1
;yn+1)�

4
3

m(yn)�
1
3

m(yn�1) = 0

(6.3)

and

FCN(yn+1) = m(yn+1)�
∆t
2

f(tn+1
;yn+1)�m(yn)�

∆t
2

f(tn
;yn) = 0; (6.4)

respectively. We assume that the general form of the nonlinear system occurring
in an implicit solution of (6.1) is

F(yn+1) =
1

∑
k=k0

�
αn;km(yn+k)+βn;kf(tn+k;yn+k)

�
= 0 (6.5)

with αn;1 normalized to 1:0. In order to decouple the problem–dependent part
from the time–stepping scheme and the nonlinear solver the user basically has
to provide two functions. The first function does one step of (6.5):

d = d+αm(y)+βf(t;y) (6.6)

160 6. UG: A Framework for Unstructured Grid Computations

for given α, β, t and y. The second function is required to provide some lin-
earization J 2 RN�N of (6.5), e. g. the full linearization

(J)i j =
∂mi

∂y j
�βn;1

∂fi(t;y)
∂y j

(6.7)

where y is the current iterate at time t. From a mathematical point of view
this interface is general enough to allow a number of different time–stepping
schemes such as those mentioned above but also the fractional step-θ–scheme
and diagonally implicit Runge–Kutta methods. The linearization method (full
Newton, Picard) and the way to compute the Jacobian (numerical, analytical) is
completely up to the application and is not part of the interface.

In the code the interface to the time–dependent PDE problem is defined in the
class NP T ASSEMBLE:

NP T ASSEMBLE

TAssemblePreProcess(from,to,tn+1,tn,tn�1, yn+1,yn,yn�1);
TAssembleInitial(from,to,t0,y0);
TAssembleSolution(from,to,t,y);
TAssembleDefect(from,to,t,α,β,y,d,J);
TAssembleMatrix(from,to,t,β,y,d,v,J);
TAssemblePostProcess(from,to,tn+1,tn,tn�1, yn+1,yn,yn�1);

TAssemblePreProcess() and TAssemblePostProcess() are
called at the beginning and end of each time step. Parameters from and
to denote the range of grid levels the function should operate on. Other
parameters are given in the mathematical notation. In the code, time values
are of type double and vectors and matrices are of type VECDATA DESC and
MATDATA DESC.

TAssembleInitial() fills the initial values of the ODE problem into the
vector y. TAssembleSolution() inserts Dirichlet boundary conditions at
time t into the given solution vector y (required after calculation of an initial
guess). TAssembleDefect() directly corresponds to (6.6). The lineariza-
tion matrix may already be computed by TAssembleDefect() if this is more
efficient (e. g. when using a fixed–point iteration with a nonlinearity of the form
A(y)y). Finally, the member function TAssembleMatrix() is used to calcu-
late the linearization (6.7) (if not already done) and sets up the system of linear
equations Jv = d.

The discretization interface for stationary nonlinear problems of the form

F(y) = 0 (6.8)

is given by the class NP NL ASSEMBLE:

6.4. Object–Oriented Design of Numerical Algorithms 161

NP NL ASSEMBLE

PreProcess(from,to,y);
NLAssembleSolution(from,to,y);
NLAssembleDefect(from,to,y,d,J);
NLAssembleMatrix(from,to,y,d,v,J);
PostProcess(from,to,y);

The interface is very similar to that in the time–dependent case with
NLAssembleSolution() setting the Dirichlet boundary conditions
in a given vector, NLAssembleDefect() computing d = F(y) and
NLAssembleMatrix() setting up the linear system. A nonlinear solver
from class NP NL SOLVER expects an object of type NP NL ASSEMBLE as an
argument to its Solver() member function:

NP NL SOLVER::Solver(: : : ,NP NL ASSEMBLE *problem, : : :

);

The interaction between the time–stepping scheme, defined in class
NP T SOLVER (see Fig. 6.8), and the nonlinear solver is as follows:
NP T SOLVER is derived from NP NL ASSEMBLE and uses an object of type
NP T ASSEMBLE to implement the NP NL ASSEMBLE interface for the
nonlinear problem to be solved in a time step.

When the time–stepping scheme calls the nonlinear solver it passes itself as
the problem parameter. When the nonlinear solver then executes a mem-
ber function of the problem object, control will return to the time–stepping
scheme which has all the information available in order to compute the defect
and jacobian. Hence, the nonlinear solver does not need to know whether it
solves a nonlinear problem within a time step.

6.4.3 LINEAR SOLVERS

The purpose of the linear solver is to solve a system of linear equations Ax = b
to a given tolerance. The basic idea here is to split this task into a class
NP LINEAR SOLVER that executes iterations given by class NP ITER and
checks convergence.

NP LINEAR SOLVER may be a simple loop (implemented by concrete class
NP LS or one of several Krylov subspace methods. Various implementations of
the NP ITER interface are available ranging from exact solvers (converging in
one “ iteration”) and single grid iterations to the multigrid method. The multigrid
scheme uses grid transfers from the NP TRANSFER class. The class diagram of
the solver objects is given in Fig. 6.9.

6.4.4 CONFIGURATION FROM SCRIPT FILE

Fig. 6.10 shows part of a script file configuring a set of solver components for
the solution of a nonlinear time–dependent problem. The npcreate command

162 6. UG: A Framework for Unstructured Grid Computations

npcreate transfer $c transfer;
npinit transfer $x sol $S 2.0;

npcreate box $c box2p;
npinit box $alphaw 1.0 $alphan 1.0 $inc 1.0E-8;

npcreate ilu $c ilu;
npinit ilu $damp n 1.0:1.0;

npcreate lu $c ex;
npinit lu $damp n 1.0:1.0;

npcreate basesolver $c ls;
npinit basesolver $abslimit 1E-10 $red 1.0E-3 $m 50 $I lu $display no;

npcreate lmgc $c lmgc;
npinit lmgc $S ilu ilu basesolver $T transfer $n1 2 $n2 2 $g 1 $b 0;

npcreate mgs $c bcgs;
npinit mgs $abslimit 1E-10 $m 40 $I lmgc $display red;

nonlinear solver numproc to be used by time solver
npcreate newton $c newton;
npinit newton $abslimit 1E-10 $red 1.0E-5 $T transfer $S mgs

$rhoreass 0.8 $lsteps 6 $maxit 50 $line 1 $linrate 0
$lambda 1.0 $divfac 1.0E100 $linminred 0.0001
$display red;

the time solver
npcreate ts $c bdf;
npinit ts $y sol $A box $S newton $T transfer

$baselevel 0 $order 1 $predictorder 0 $nested 0
$dtstart 1.0 $dtmin 1.0 $dtmax 1.0 $dtscale 1.0
$rhogood 0.01 $display red;

npexecute ts $pre $init;
step=0; steps=100;
repeat {

step=step+1;
npexecute ts $bdf1;
if (step==steps) break;

}

Figure 6.10: Script file to configure numerical procedures.

6.5. Related Work and Conclusions 163

instantiates a new object of the class given by the $c option. The npinit com-
mand sets the parameters of the named object. E. g the first two lines create
and configure an instant of class NP TRANSFER. Objects get references to other
(already existing) objects as parameters, e. g. the initialization of the object
basesolver (of class NP LINEAR SOLVER) contains a reference to object lu
(of class NP ITER) in its $I option. Correctness of the types is checked in-
ternally. The last object ts to be created is the time–stepping scheme. ts has
references to the discretization object box, the nonlinear solver object newton
and the grid transfer operator object transfer. The setting of initial values is
done by the npexecute ts $pre $init command and the calculation of one
time step is done by the npexecute ts $bdf1 command in the repeat–loop.

The control of a simulation per script file is very convenient for the user. Pa-
rameters and solver components can be changed quickly or file output/graphical
display can be added at the end of each time step.

6.5 Related Work and Conclusions
There exist several frameworks aimed at “Parallel Scientific Computing” in gen-
eral such as the POOMA, see (POOMA Home Page 1998), and POET, see
(POET Home Page 1998), software developed at Los Alamos National Labo-
ratory and Sandia National Laboratory, respectively. These packages provide
abstractions for data–parallel computations consisting of a number of commu-
nicating objects. POOMA offers three so–called “Global Data Types” which
are N–dimensional arrays, banded matrices (those arising from finite difference
schemes on structured meshes) and a general particle class. The techniques,
however, seem to be suited only for rather coarse grained objects. POET, e. g.,
maintains a global data structure mapping data to processors. This is not accept-
able on the level of individual vertices or elements of an unstructured mesh.

Parallel software for unstructured mesh computations is developed at several
places. The work done at the SCOREC center at Rensselaer Polytechnic insti-
tute, see (SCOREC Home Page 1998), may be the most complete approach to an
integrated environment for parallel unstructured grid computations. Several par-
allel mesh generators have been developed and complex PDE problems can be
solved with adaptive finite element methods. In contrast to UG it does not use a
hierarchical mesh structure, however, algebraic multigrid methods are available
for fast solution of linear systems.

Diffpack, see (Diffpack Home Page 1998), developed at SINTEF and the Uni-
versity of Oslo emphasizes object–oriented design for code reuse. Parallelism
and multi–level methods have been added recently, see (Cai 1998).

The FUDOP code, see (Mitchell 1998), features a new parallel multigrid
method for adaptively refined meshes. FUDOP can refine, partition and redis-
tribute in parallel and currently supports two–dimensional, triangular meshes. It
uses hierarchical mesh refinement based on bisection.

164 6. UG: A Framework for Unstructured Grid Computations

Sumaa3d, see (Sumaa3d Home Page 1998), developed at Argonne National
Laboratory offers sequential mesh generation as well as parallel mesh refine-
ment and linear solvers. Despite its name, the parallel mesh refinement seems
to be implemented only for two–dimensional, triangular meshes. It uses a hier-
archical mesh structure with bisection refinement.

PadFEM, see (PadFEM Home Page 1998), developed at the University of
Paderborn currently implements 2D/3D sequential mesh generation, parallel re-
finement of 2D triangular meshes and domain decomposition solvers. Diffusion
based dynamic load redistribution algorithms have been developed.

The PETSc toolkit, see (Balay, Gropp, McInnes, and Smith 1997), provides
parallel solvers for sets of linear and nonlinear equations as well as uncon-
strained minimization problems. It offers several efficient sparse matrix–vector
formats on which the solvers operate. It does not include any mesh data structure
or redistribution capability. These must be supplied by the application code.

This overview of software for unstructured grid computations is not in-
tended to be complete. Nevertheless there are very few codes combining three–
dimensional mesh generation/adaptive mesh refinement, dynamic redistribution
capability and scalable numerical methods in a single environment. Capabili-
ties needed for production type codes such as parallel file I/O and distributed
visualization are virtually non–existing.

Due to lack of man–power and expertise probably no single group of re-
searchers will ever have the fully–integrated parallel adaptive PDE software
package. It is therefore mandatory to define standardized interfaces for the PDE
software components such that each group can contribute modules from its area
of expertise and use the modules of other groups in the remaining areas. Mod-
ule interfaces should be flexible enough to allow competing implementations
concentrating on different aspects such as speed, memory requirements or gen-
erality. Algorithms and data structures should be decoupled wherever possible.
In an ideal environment it should be possible, e. g., to switch from structured to
unstructured meshes without changing the code for the discretization.

The biggest challenges in the construction of such a software package are:

� Design for change. As new (numerical) algorithms are developed it should
be able to incorporate them into the framework. This requires a lot of
experience in the design of the interfaces.

� Combination of flexibility and efficiency. A general and flexible code is
nice but if it is too slow nobody will use it. These contradictory goals
can be achieved by combining a high–level object oriented approach with
efficient low–level kernels.

7

Numerical Results

7.1 Introduction

7.1.1 OVERVIEW OF THE EXPERIMENTS

In this chapter various numerical experiments are performed to illustrate the the-
oretical considerations concerning the different formulations of the two–phase
flow problem and to show the behavior of the numerical algorithms. To that end
one or several parameters (mesh size, processor number, other bad parameter)
are varied for each experiment. The setup of the experiments is described in
detail in order to enable others to verify the results and to provide a basis for
comparison with other methods.

The following numerical experiments are performed:

Section 7.2 investigates several variants of a quarter five spot. The reservoir is
two–dimensional and horizontal with capillary pressure being neglected in the
simulation (hyperbolic case).

Section 7.3 is devoted to two–dimensional vertical DNAPL infiltration. Entry
pressure effects in a porous medium with a single low permeable lens and in a
medium with geostatistical permeability distribution (and corresponding entry
pressure) are of primary importance here.

Section 7.4 covers the simulation of a medium–scale (6.5 by 2.5 meters) ex-
periment performed at the VEGAS facility, see (Kobus 1996). This example is
used to show the performance of the parallelization on up to 256 processors.

Section 7.5 treats DNAPL infiltration in three space dimensions. Up to 256
processors are used to do large scale simulations with more than 5 million un-
knowns.

Section 7.6 shows the application of the simulator to water–gas flow simulat-
ing air rising in a heterogeneous, water–saturated porous medium.

Section 7.7 extends the previous experiment to the three–dimensional case.

7.1.2 PARAMETERS AND RESULTS

Most simulations are done with the same set of parameters referred to as “stan-
dard parameters” . Deviations from these settings are explicitly noted. The stan-
dard parameters are given by:

165

166 7. Numerical Results

θ= 1 Implicit Euler time–stepping
β = 1 Fully upwinding of mobility
εnl = 10�5 Reduction in non–linear solver
ls = 6 Maximum number of line–search steps
nested Nested iteration to obtain initial guess
ε0 = 10�4 Minimum reduction in linear solver
BiCGSTAB Krylov subspace solver
MG Multigrid preconditioner
ILU Point–block ILU smoother
lexicographic ordering of degrees of freedom
ν1 = ν2 = 2 Smoothing steps
γ= 1 V–cycle
cut = 2 Truncated restriction parameter

The following quantities are reported in the results for each numerical exper-
iment (not all quantities may be listed for all experiments):

SIZE Number of elements
S Number of time steps
EX Total execution time in seconds
N Number of Newton iterations for all time steps
MG Total number of multigrid cycles for all time steps
AVG Average number of multigrid cycles per Newton iteration
MAX Maximum number of multigrid cycles per Newton iteration
TN Computation time per node and time step in milli–seconds
P Number of processors
TI Time for one multigrid cycle in seconds

7.1.3 COMPUTER EQUIPMENT

Several different computers have been used to obtain the numerical results re-
ported below. Sequential computations have been done on a Power Macintosh
G3 with 266 MHz using the Metrowerks CodeWarrior IDE Version 2.1 with
all optimizations on. Some sequential computations used a SGI Indigo2 with
200MHz R4400 processor using the IRIX C compiler with -O2 optimization
level.

Parallel computations have been performed on the 512 processor T3E system
of HLRS in Stuttgart using Cray Programming Environment Version 3.0 and
-O2 optimization level.

7.2 Five Spot Waterflooding
This section shows results for waterflooding of a two–dimensional horizontal
oil reservoir. The characteristic feature of this problem is that capillary forces

7.2. Five Spot Waterflooding 167

300 m

30
0

m

15
 m Ω

Ω1

Ω2

Ω = (0,300)2

Ω1 = (33.3,133.3) x (88.8,233.3)

Ω2 = (30,140) x (170.7,243.3)Γ0

Γ2Γ1

Γ3

Figure 7.1: Geometry of the quarter five spot.

are neglected, i. e. the saturation equation is hyperbolic. We will investigate the
case of a homogeneous permeability field and three cases with a heterogeneous
permeability field.

Fig. 7.1 shows the geometry of the five spot problem which is the same in all
variants. The reservoir is initially filled with oil (the non–wetting phase). Water
is pumped in over Γ0 and the oil exits the domain over Γ2, i. e. the wells are
implemented as flux–type boundary conditions for simplicity.

7.2.1 HOMOGENEOUS PERMEABILITY FIELD

Formulation
(pn;Sw) with PPS method.

Boundary Conditions

Γ0: φn = 0;φw =�0:0032 [kg=(sm2)]

Γ1[Γ3: φn = φw = 0
Γ2: pn = 105 [Pa] ;Sw = 0

Note: All boundary conditions are given in three–dimensional form. Compu-
tationally the reservoir is assumed to have a thickness of 1 meter, i. e. the inflow
of 0.0032 [kg=(sm2)] over Γ0 corresponds to an inflow of 8294:4 kg=day in the
lower left corner.

Fluid Properties

ρw = 1000 [kg=m3] ρn = 1000 [kg=m3]

µw = 10�3 [Pa s] µn = 20 �10�3 [Pa s]

Solid Matrix Properties
Φ= 0:2, K = kI, k = 10�10 [m2] .

168 7. Numerical Results

Table 7.1: Performance statistics for homogeneous five spot simulation on a
Power Macintosh G3.

S SIZE EX N MG AVG MAX TN
50 802 694 151 313 2.1 4 2.17
50 1602 2861 151 323 2.1 4 2.22
50 3202 12005 151 360 2.4 5 2.34

Constitutive Relations

Brooks–Corey relative permeabilities with Swr = Snr = 0 and λ = 2, no capillary
pressure.

Initial Values

Sw = 0, pn = 105 [Pa] .

Mesh & Time Steps

The coarsest mesh (level 0) has 5 by 5 equidistant quadrilateral elements, the
finest mesh used is refined six times yielding 320 by 320 elements with 103041
nodes and about 200000 degrees of freedom.

50 time steps of ∆t = 15 [days] are computed (final time 750 [days]).

Results

The left column of Fig. 7.3 shows the solution after 750 days of simulated time
on the three finest meshes. The solution exhibits a rarefaction wave and a shock
as can be expected from the Buckley–Leverett problem.

Table 7.1 shows the results for this simulation for varying spatial mesh size
and fixed size of the time step. Standard parameters from Subs. 7.1.2 have been
used.

The table shows that overall complexity scales linearly with the number of
unknowns. The number of Newton steps on the finest mesh as well as the
average and maximum number of multigrid steps per Newton iteration show
h–independent behavior. The mesh independence of the nonlinear solution al-
gorithm is achieved through the nested iteration technique. The Courant number
is about five in the 320 by 320 computation. From the results on the Buckley–
Leverett problem in Section 3.8 we expect the solution error to be dominated by
temporal error. Nevertheless, the time step is held fixed to show the robustness
of the linear and nonlinear scheme.

7.2.2 GEOSTATISTICAL PERMEABILITY FIELD

The problem setup is the same as in the homogeneous case above except that
the (isotropic) permeability field k(x) is now position dependent and provided
by geostatistical techniques. Two different permeability fields with 160 by 160
cells have been used with the following properties:

7.2. Five Spot Waterflooding 169

Figure 7.2: Heterogeneous permeability fields for five spot simulations. Mean
value is k̄ = 10�10[m2] with 2 orders of magnitude variation up and down. Reso-
lution is 160�160 cells with correlation length 8 cells (left) and 16 cells (right).
Darker values indicate lower permeability.

Name correlation length k̄ kmin kmax

C16 16 cells 10�10 10�11:8 10�8:31

C08 8 cells 10�10 10�12 10�7:98

The two permeability fields are visualized in Fig. 7.2. Permeability varies
over four orders of magnitude. The corresponding solutions are shown in
Fig. 7.3 and 7.4. 40 time steps of ∆t = 15 [days] have been computed for field
C16 and 45 time steps of the same size for C08. The Courant number is about 6
in the finest calculations. The mesh refinement study indicates that high spatial
resolution is definitely needed for this type of problem. The comparison of two
different time steps in Fig. 7.4 shows that temporal errors do not play a major
rôle.

Solver statistics (standard parameters, see Subs. 7.1.2) for the geostatistical
permeability field computations are given in Table 7.2. As in the homogeneous
case the overall complexity scales linearly with problem size and the nonlinear
solver as well as the linear solver show h–independent behavior. The time per
node and time step (TN) indicates an increasing difficulty from the homoge-
neous case to the case with a correlation length of 8 cells.

7.2.3 DISCONTINUOUS COEFFICIENT CASE

This example is included to demonstrate the effectiveness of the truncated re-
striction in the case of discontinuities in the permeability field that are not
aligned with coarse grid edges.

170 7. Numerical Results

Figure 7.3: Quarter five spot simulation. Homogeneous permeability field with
k = 10�10[m2] left and heterogeneous permeability field with correlation length
16 cells right. Time step was ∆t = 15[d] and solution is shown after 50 steps
in the homogeneous case and after 40 steps in the heterogeneous case. Spatial
resolution is 80� 80, 160� 160 and 320� 320 elements (from top). Contour
lines are plotted in 0.05 intervals, first contour line is at 0.0001.

7.2. Five Spot Waterflooding 171

Figure 7.4: Quarter five spot simulation. Heterogeneous permeability field with
correlation length 8 cells. Left column with ∆t = 15[d] after 45 steps and right
column with ∆t = 7:5[d] after 90 steps. Spatial resolution is 80�80, 160�160
and 320� 320 elements (from top). Contour lines are plotted in 0.05 intervals,
first contour line is at 0.0001.

172 7. Numerical Results

Table 7.2: Performance statistics for five spot simulation with geostatistical per-
meability field on a Power Macintosh G3.

Problem S SIZE EX N MG AVG MAX TN
C16 40 802 948 170 569 3.4 6 3.70

40 1602 4070 171 581 3.4 6 3.70
40 3202 17866 181 627 3.5 6 3.70

C08 45 802 1393 216 899 4.2 7 4.84
45 1602 5661 217 835 3.9 5 4.91
45 3202 24109 243 849 3.5 6 5.23

The problem setup is the same as in the cases above except for the permeabil-
ity field which is given by

k(x) =
�

10�16 x 2Ω1

10�10 else

and the initial values of saturation which are given by

Sw0(x) =
�

0:2 x 2 Ω2

1 else
:

Subdomains Ω1 and Ω2 are defined in Fig. 7.1.
The solution for this problem is shown in Fig. 7.5 and solver statistics are

given in Table 7.3. Standard parameters from Subs. 7.1.2 have been employed.
Again the solver exhibits linear overall complexity. It should be noted that stan-
dard multigrid with discretized coarse grid operator diverges for this problem.

7.3 Vertical 2D DNAPL Infiltration
This section investigates several two–dimensional DNAPL infiltration model
problems. The examples include gravitational and capillary pressure effects.
In particular we will consider a case where both fluids are present at maximum
saturation in the domain, furthermore the flow over a low permeable lens with

Table 7.3: Performance statistics for five spot simulation with discontinuous
permeability field on a Power Macintosh G3.

S SIZE EX N MG AVG MAX TN
25 402 119 103 308 3.0 5 2.98
25 802 571 118 335 2.8 4 3.57
25 1602 2787 128 419 3.3 5 4.35
25 3202 12284 119 469 3.9 5 4.80

7.3. Vertical 2D DNAPL Infiltration 173

Figure 7.5: Quarter Five Spot simulation with low permeable region not aligned
with coarse grid elements. Solution shown on 402 up to 3202 elements after 25
time steps of ∆t = 15 [days] (top left to bottom right). Contour lines are plotted
in 0.05 intervals, first contour line is at 0.0001.

174 7. Numerical Results

0.65 m

0.9 m

ΓN

ΓW

ΓS

ΓE

Sno*

Figure 7.6: Geometry of the 2D DNAPL problem without low permeable lens.

and without infiltration of the lens and finally the flow in a medium with geosta-
tistical permeability field where entry pressure changes from node to node.

7.3.1 BOTH FLUIDS AT MAXIMUM SATURATION

The first example consists of a homogeneous, water–saturated porous medium.
A rectangular region within the domain is assumed to be filled with DNAPL
initially. Several simulations with increasing initial DNAPL saturation are per-
formed to demonstrate the robustness of the global pressure formulations in con-
trast to a phase pressure formulation.

Fig. 7.6 shows the geometry of the domain and the coarsest level mesh. The
problem parameters are now given in detail.

Formulations Used

(pw;Sn) with PPS method, (p;u;Sn) with GPSTV method and (p; j;Sn) with
GPSTF method.

Boundary Conditions

Boundary PPS GPSTV GPSTF
ΓN pw = 105

;φn = 0 p = 105
;φn = 0 p = 105

;φn = 0
ΓW ;ΓE φw = φn = 0 u �n = 0;φn = 0 j �n = 0;φn = 0
ΓS φw = 0;Sn = 0 u �n = 0;Sn = 0 j �n = 0;Sn = 0

Fluid Properties

ρw = 1000 [kg=m3] ρn = 1460 [kg=m3]

µw = 10�3 [Pa s] µn = 0:9 �10�3 [Pa s]

7.3. Vertical 2D DNAPL Infiltration 175

Solid Matrix Properties
Φ= 0:4, K = kI, k = 6:64 �10�11 [m2] .

Constitutive Relations
Brooks–Corey relative permeabilities and capillary pressure with Swr = Snr = 0,
λ = 2 and pd = 755 [Pa].

Initial Values
Hydrostatic water and global pressure conditions are assumed initially (this is
only used as an initial guess for the Newton method since both fluids are incom-
pressible):

pw0(x;y) = p0(x;y) = 105 +(0:65� y) �9810:0

and the initial DNAPL saturation is given by

Sn0(x;y) =

�
S�n0 0:35� x� 0:55^0:4� y� 0:55
0 else

:

Mesh & Time Steps

The coarsest mesh (level 0) has 6 by 4 equidistant quadrilateral elements. After
six levels of uniform refinement a mesh with 384 by 256 elements and 98945
nodes is obtained.

50 [s] of simulated time with a maximum time step size of ∆t = 10[s] are to
be computed.

Results
Standard parameters from Subs. 7.1.2 have been used in the simulation with the
following modifications: symmetric Gauß–Seidel smoother instead of the ILU
smoother and nested iteration has been turned off after the first time step, i. e. the
converged solution from the preceding time step is used as an initial guess for
the next time step on the finest level.

Table 7.4 shows the results for an initial DNAPL saturation of 0:9, 0:99, 0:999
and 0:9999 and varying spatial mesh size. The results clearly indicate that the
(pw;Sn) formulation is not robust in this case as can be expected from the discus-
sion in Subs. 2.1.3. Very small time steps are necessary in the phase–pressure
formulation to obtain convergence of the nonlinear solver. In this context it
is important to note that the Brooks–Corey capillary pressure curve has been
regularized in a differentiable way by a straight line segment if effective water
saturation is below 5 �10�5, a value not reached in the simulation here (this is to
avoid an accidental division by zero).

Both formulations with global pressure show robust behavior at least with re-
spect to the number of nonlinear iterations. The average number of multigrid
cycles increases but much slower than for the phase pressure formulation. Total

176 7. Numerical Results

Table 7.4: Performance statistics for vertical DNAPL infiltration with initial
blob on a Power Macintosh G3. Level 3 is a 48� 32 mesh and level 6 is a
384�256 mesh.

S�n0 level PPS GPSTV GPSTF
S N MG S N MG S N MG

0.9 3 5 19 55 5 17 59 5 16 59
4 5 25 95 5 26 92 5 19 71
5 5 35 196 5 24 112 5 21 85
6 5 56 472 8 48 327 5 26 115

0.99 3 5 52 285 5 19 73 5 17 63
4 8 129 971 5 24 94 5 19 75
5 31 409 2139 5 28 118 5 23 127
6 > 150 6 39 341 5 26 123

0.999 3 9 165 2678 5 20 80 5 18 68
4 > 75 > 500 5 26 109 5 20 79
5 – 5 31 144 5 25 156
6 – 5 35 345 5 32 175

0.9999 3 > 75 5 20 79 5 18 66
4 > 500 5 26 112 5 20 79
5 > 1000 5 31 221 5 27 265
6 – 5 38 552 5 34 541

velocity and total flux formulation give virtually identical results although cap-
illary pressure is not completely eliminated from the pressure equation in the
total flux formulation. Fig. 7.7 shows pressure and saturation plots after 50[s] of
simulated time indicating the strong coupling of pressure pw and saturation Sn

in the phase pressure formulation and the weak coupling in the global pressure
formulation.

7.3.2 FLOW OVER A LOW PERMEABLE LENS

The main purpose of this subsection is to compare the PPS and PPSIC formu-
lations for a porous medium with a discontinuity as described in section 2.3.
Two different cases of capillary pressure functions are considered. In the first
case the critical saturation is not reached whereas in the second case the critical
saturation is reached and infiltration occurs.

Fig. 7.8 shows the geometry of the single lens problem. Numerical computa-
tions and experiments for a similar problem are reported in (Helmig 1997). The
problem setup is now described in detail.

Formulation
(pw;Sn) with PPS and PPSIC methods.

7.3. Vertical 2D DNAPL Infiltration 177

Figure 7.7: Solution of the 2D DNAPL infiltration problem with an initial blob
of DNAPL in a rectangular region of the domain after 50[s] of simulated time.
Initial saturation was 0:99 in this case. Phase or global pressure shown left and
DNAPL saturation right. Top plot is from PPS method, middle plot is from
GPSTV method and bottom plot is from GPSTF method.

178 7. Numerical Results

0.
65

 m

0.9 m

ΓN ΓN

ΓW

ΓE

ΓS

ΓIN
0.384375m 0.51625m

0.1875m 0.7125m

0.32m

0.4625m

DNAPL

Ω1

Ω

Figure 7.8: Geometry of the 2D DNAPL problem with low permeable lens.

Boundary Conditions

ΓIN φn =�0:075[kg=(sm2)];φw = 0
ΓN φn = φw = 0
ΓE ;ΓW pw = (0:65� y) �9810:0 [Pa] (hydrostatic);Sn = 0
ΓS φw = 0;Sn = 0

Fluid Properties

ρw = 1000 [kg=m3] ρn = 1460 [kg=m3]

µw = 10�3 [Pa s] µn = 0:9 �10�3 [Pa s]

Solid Matrix & Constitutive Relations

Brooks–Corey functions with the following parameters:

Subdomain Φ k [m2] Swr Snr λ pd [Pa]
Ω1 0:4 6:64 �10�11 0:1 0:0 2:7 755:0
ΩnΩ1 0:39 3:32 �10�11 0:12 0:0 2:0 1163:5=1466:1

Ω1 is defined in Fig. 7.8. An entry pressure of 1163:5 [Pa] corresponds to a
critical saturation of S�n = 0:62 which is reached in time step 18 (1080 [s]). An
entry pressure of 1466:1 [Pa] corresponds to a critical saturation of S�n = 0:75
which is never reached.

Initial Values

pw0(x;y) = p0(x;y) = (0:65� y) �9810:0, Sn = 0.

7.3. Vertical 2D DNAPL Infiltration 179

high

low

IP
vn

y

pc

Figure 7.9: Approximation of the entry pressure effect in the PPS method with
fully upwinding.

Mesh & Time Steps

The coarsest mesh (level 0) has 6 by 4 equidistant quadrilateral elements as
shown in Fig. 7.8. After six levels of uniform refinement a mesh with 384 by
256 elements and 98945 nodes is obtained.

75 time steps of ∆t = 60 [s] are computed (final time 4500 [s]).

Results

A mesh refinement study of the solution after 75 time steps (T = 4500 [s]) is
given in Figs. 7.10 and 7.11. Contour lines are spaced in 0:05 intervals, the first
(darkest) contour line is at a saturation value of 10�6 indicating that the solution
has compact support and no spurious oscillations. The free boundary seperating
the domains where only water and both phases are present moves about 5 mesh
cells per time step in the finest calculations.

In Fig. 7.10 both methods give comparable results with no infiltration of the
low permeable lens except for the 48� 32 mesh used with the PPS method.
To explain this behavior consider Fig. 7.9. The figure shows a control volume
extending over the interface between high permeability and low permeability
(since the elements are associated with subdomains). The nodes lying on the
interface are assumed to belong to the low permeable region. Consider now a
zero DNAPL saturation at all nodes shown in Fig. 7.9, then capillary pressure
(which is now the entry pressure) will be larger at the nodes belonging to the
low permeable region. Correspondingly, a large gradient of capillary pressure
will be computed in the elements directly above the interface as indicated in
the right part of Fig. 7.9. If this gradient is large enough the velocity vn =
�K(∇ pw + ∇ pc�ρng) in the integration point IP will point upward, effectively
producing a zero mobility and zero flux of the DNAPL over the sub–control
volume face and therefore preventing infiltration of the low permeable lens. If
the DNAPL saturation above the lens rises the velocity vn will eventually point

180 7. Numerical Results

downward allowing the DNAPL to infiltrate the lens. Since �K(∇ pw � ρng)
points downward this will happen before the critical saturation defined by the
interface condition is reached. The critical saturation is therefore only computed
approximately and the accuracy depends on the mesh size. Obviously, the 48�
32 in Fig. 7.9 was too coarse to prevent infiltration of the lens. In contrast,
the PPSIC formulation does not approximate the critical saturation value where
infiltration occurs and therefore yields correct results on all grid levels.

It should also be noted that fully upwinding (β = 1) is required in the PPS
method to prevent infiltration of the low permeable lens. Otherwise, the mobility
at the integration point IP in Fig.7.9 would not be zero and infiltration would oc-
cur immediately. Helmig (1997) compares various discretization schemes with
respect to a correct representation of the entry pressure effect.

The case with infiltration is shown in Fig. 7.11. Here the approximation of
the critical saturation in the PPS method (with fully upwinding) allows more
DNAPL to penetrate through the lens (since it infiltrates earlier) when com-
pared to the PPSIC formulation. Consequently, the fingers extending around
the lens are shorter with the PPS scheme. The figure also shows the discontinu-
ous representation of the saturation in the PPSIC formulation. The discontinuity
is resolved within one mesh cell in the PPS method.

Table 7.5 lists the solver statistics for this problem. Standard parameters from
Subs. 7.1.2 have been used in the solver. Nested iteration has been used to obtain
initial guesses. It was important to pay attention to the discontinuous represen-
tation of saturation in the PPSIC method when interpolating initial guesses from
coarse to fine grid. However, standard prolongation is used within the multigrid
method!

For both values of the entry pressure the PPSIC method performs signifi-
cantly better than the PPS method. The number of Newton steps is nearly
independent of the mesh size (fixed time step) with number of Newton steps
significantly lower for the PPSIC method. The average number of multigrid
iterations is (slowly) increasing for the PPS scheme while it stays constant for
the PPSIC method. On the finest mesh PPSIC is therefore twice as fast as PPS.
Also, PPSIC behaves the same whether the DNAPL infiltrates or not, while PPS
performs worse in the case with infiltration (time step reduction was necessary).

We conclude that the PPSIC method should be preferred over the PPS scheme
for discontinuous porous media. The PPSIC method gives qualitatively correct
results already on coarse meshes, we will show later that the approximation of
the critical saturation becomes worse for water–gas flows and problems on larger
scales. For tetrahedral elements in three space dimensions the fully upwinding
procedure is not able to prevent infiltration of a low permeable lens. Moreover,
the number of Newton iterations is lower and the number of multigrid cycles is
h–independent for the PPSIC scheme (for the problem considered here).

7.3. Vertical 2D DNAPL Infiltration 181

Figure 7.10: Single Lens DNAPL infiltration (high entry pressure). 48� 32 to
384�256 meshes. PPS left and PPSIC right.

182 7. Numerical Results

Figure 7.11: Single Lens DNAPL infiltration (low entry pressure). 48� 32 to
384�256 meshes. PPS left and PPSIC right.

7.3. Vertical 2D DNAPL Infiltration 183

Table 7.5: Performance statistics for 2D DNAPL infiltration with low permeable
lens on Power Macintosh G3.

Problem S SIZE EX N MG AVG MAX TN
PPS 75 48�32 484 405 1271 3.1 5 4.20
high 75 96�64 2264 376 1415 3.8 7 4.91
entry 75 192�128 10711 367 1787 4.9 8 5.81
pressure 75 384�256 54221 370 2409 6.5 15 7.35
PPSIC 75 48�32 398 253 765 3.0 5 3.45
high 75 96�64 1840 248 906 3.7 5 3.99
entry 75 192�128 7601 235 922 3.9 6 4.12
pressure 75 384�256 31369 234 944 4.0 7 4.25
PPS 75 48�32 527 453 1406 3.1 5 4.57
low 75 96�64 2734 449 1749 3.9 6 5.93
entry 79 192�128 13804 425 2247 5.3 8 7.11
pressure 87 384�256 77712 494 3237 6.6 10 9.09
PPSIC 75 48�32 400 254 704 2.8 4 3.47
low 75 96�64 1915 262 925 3.5 5 4.16
entry 75 192�128 7802 245 933 3.8 6 4.23
pressure 75 384�256 32409 254 930 3.7 7 4.40

7.3.3 GEOSTATISTICAL PERMEABILITY DISTRIBUTION

The problem setup and boundary conditions are taken from Subs. 7.3.2 with
the following changes. The permeability field, shown in Fig. 7.12, is geosta-
tistically distributed with a mean value of k̄ = 6:64 � 10�11 = 10�10:18[m2], a
correlation length of 8 cells and a size of 192 by 128 cells. Its minimum value
is kmin = 10�11:2 and its maximum value is kmax = 10�9:24, i. e. only one order
of magnitude variation around the mean value

Using the correlation of Leverett (1941) between capillary pressure and abso-
lute permeability (porosity is constant Φ= 0:4 in our case) we define a Brooks–
Corey type capillary pressure function with entry pressure depending on abso-
lute permeability:

pc = pd

s
k̄
k

S̄�1=λ
w : (7.1)

We use Swr = 0:1, Snr = 0, pd = 755[Pa] and λ = 2:7.
60 time steps of ∆t = 35[s] have been computed. Solution after 2100[s] of

simulated time is shown in Fig. 7.13. The PPS formulation has been used with
standard parameters of the solver (see Subs. 7.1.2). The solution shows prefer-
ential flow paths due to strong variations in entry pressure.

184 7. Numerical Results

Figure 7.12: Permeability field for vertical DNAPL infiltration.

Figure 7.13: DNAPL infiltration in a medium with geostatistical permeability
distribution. 48�32 to 384�256 meshes (top left to bottom right). PPS method
has been used.

7.4. VEGAS Experiment 185

Table 7.6: Performance statistics for 2D DNAPL infiltration with geostatistically
distributed absolute permeability on a Power Macintosh G3.

S SIZE EX N MG AVG MAX max Sn

60 48�32 497 364 969 2.7 4 0.850
60 96�64 2689 381 1492 3.9 7 0.866
60 192�128 11502 336 1650 4.9 8 0.869
60 384�256 53168 320 2048 6.4 12 0.872

Solver statistics are shown in Fig. 7.6. Performance is similar to the single
lens case with the number of Newton steps being constant and the number of
multigrid steps slightly increasing with mesh size.

7.4 VEGAS Experiment
This section is about the numerical simulation of an experiment that has
been conducted at the VEGAS facility (in german: “Versuchseinrichtung zur
Grundwasser– und Altlastensanierung”) in Stuttgart, see (Kobus 1996). Previ-
ous results of Sheta in (Helmig et al. 1998) have been used in the design of the
pilot experiment.

Fig. 7.14 shows the geometry of the domain which is 6.43 meters long, 2.4
meters high and 0.4 meters thick. The simulation, however, is two–dimensional.
DNAPL is released on top and flows downward over the lenses with different
slopes. A groundwater flow from left to right and capillary forces enable the
DNAPL to migrate upward on the slopes. The U–shaped lens to the right (sand
1) has a relatively low entry pressure and will be invaded if enough DNAPL
accumulates.

The parameters of the simulation are given as follows.

Sand 2

2

2

2
Sand 1

Sand 0

6.43 [m]

2.
4

[m
]

hy
dr

os
ta

tic
 p

re
ss

ur
e

di
st

ri
bu

tio
n

non-wetting phase
x=3.25[m] x=3.55 [m]ΓINΓN ΓN

ΓE

ΓS

ΓW

Figure 7.14: Geometry of the two–dimensional VEGAS experiment.

186 7. Numerical Results

Formulation Used

The PPSIC method with (pw;Sn) as unknowns will be used.

Boundary Conditions

ΓIN φn =�0:259[kg=(sm2)];φw = 0
ΓN φn = φw = 0
ΓE pw = (2:4� y) �9810 [Pa];Sn = 0
ΓW pw = (2:4� y) �9810+661:95 [Pa];Sn = 0
ΓS φw = 0;φn = 0

For definition of the boundary segments see Fig. 7.14.

Fluid Properties

ρw = 1000 [kg=m3] ρn = 1400 [kg=m3]

µw = 10�3 [Pa s] µn = 0:9 �10�3 [Pa s]

Solid Matrix & Constitutive Relations

Brooks–Corey functions with the following parameters:

Sand Φ k [m2] Swr Snr λ pd [Pa]
0 0:4 4:60 �10�10 0:10 0:0 3:0 234:0
1 0:4 3:10 �10�11 0:12 0:0 2:5 755:0
2 0:4 9:05 �10�12 0:15 0:0 2:0 1664:0

The location of the regions with different sands is given in Fig. 7.14.

Initial Values

pw(x;y) = (1� x=6:43) �661:95+(2:4� y) �9810:0; Sn = 0 .

Mesh & Time Steps

The coarsest mesh consists of 290 quadrilateral and triangular elements as
shown in Fig. 7.14

Uniform refinement results in the following meshes:

Level Elements
0 290
1 1160
2 4640
3 18560
4 74240
5 296960
6 1187840

240 steps of ∆t = 30[s] are to be computed. The propagation speed of the
non–wetting phase infiltration front is more than 6 mesh cells per time step in
the finest calculation.

7.4. VEGAS Experiment 187

Results

Figs. 7.15 and 7.16 show the results of the numerical computation after
7200[s] of simulated time. Comparison with experimental results given in
Fig. 7.17 show a qualitatively correct behavior in the sense that the lenses of type
2 are not infiltrated and that the U–shaped lens is infiltrated. The assumption of
a homogeneous coarse sand (sand 0), however, is not justified as is shown by the
experimental results. Small scale heterogeneities as investigated in Subs. 7.3.3
have a large influence on the flow behavior. Although the porous medium used
in the experiment is built up in a controlled laboratory environment the use of
natural sand (instead of glass beads) inevitably results in small–scale hetero-
geneities. Incorporation of these heterogeneities into the simulation with a geo-
statistical model resulted in solutions with a qualitatively correct representation
of the layering effects, see Sheta (1999).

This example is also used to show the effectiveness of the data–parallel im-
plementation. Table 7.7 shows the performance for a scaled computation where
the number of elements per processor was about 4600. Standard solver param-
eters from Subs. 7.1.2 were used with the following modifications: The ILU
smoother was replaced by a symmetric Gauß–Seidel smoother with damping
factor ω= 0:8 and the truncated restriction was replaced by standard restric-
tion. Level 0 (290 elements) was kept on one processor, levels 1 and higher
were mapped to all processors when using up to 64 processors while in the 256
processor case level 1 was mapped to 72 processors and level 2 (4640 elements)
used all processors. Recursive spectral bisection with Kernighan–Lin optimiza-
tion from the CHACO library, (Hendrickson and Leland 1993a), was used as
partitioning scheme. Nested iteration was used to obtain good initial guesses
for the nonlinear iteration on the finest level. Starting level for the nested itera-
tion was 2 (instead of 0 used in the sequential runs) to save some work on the
coarsest grid levels where parallel efficiency is poor. Table 7.7 shows a fourfold
increase in total computation time when increasing the problem size and the
number of processors by a factor of 256. This increase has three reasons: The
average number of multigrid iterations per Newton step increased by a factor
of two, the number of nonlinear iterations increased by a factor of 1.6 and the
work on the coarse meshes during nested iteration does not parallelize well (but
this a relatively small amount of work). Nevertheless the overall performance is
considered to be quite good. The last column of Table 7.7 labeled TI shows the
time for one multigrid cycle on the finest level. The small increase of only 31%
shows that load imbalance and communication overhead are small.

Table 7.8 compares multigrid with a single grid iterative scheme as precon-
ditioner in BiCGSTAB. The multigrid V–cycle used a symmetric Gauß–Seidel
smoother with two pre–and postsmoothing steps while the single–grid method
was one symmetric Gauß–Seidel step (thus the multigrid preconditioner costs
about four times as much). Due to time limitations on the CRAY T3E only the
first 25 time steps were computed with both methods. Considering total execu-
tion time (EX) it is shown that the run using the multigrid preconditioner is faster

188 7. Numerical Results

Table 7.7: Multigrid solver performance for 2D VEGAS experiment on Cray
T3E.

P S SIZE EX N MG AVG MAX TI
1 240 4640 9407 827 4546 5.5 10 0.96
4 240 18560 19280 1206 9073 7.5 13 1.06

16 240 74240 23819 1148 9635 8.4 13 1.15
64 240 296960 29624 1219 11477 9.4 15 1.24

256 240 1187840 35669 1297 13407 10.3 15 1.26

by a factor of 21 for the mesh with 1.2 million elements (2.4 million degrees of
freedom). The average number of multigrid cycles increases only very slightly
while the number of Gauß–Seidel preconditioner steps doubles with each mesh
refinement. Table 7.8 clearly indicates that efficient solvers with optimal com-
plexity are a necessity for large scale simulations with parallel computers.

7.5 3D DNAPL Infiltration
This section extends the results of Section 7.3 to the three–dimensional case.
The geometry of the domain and the location of the lenses with different prop-
erties is shown in Fig. 7.18.

Formulation Used

The PPSIC method with (pw;Sn) as unknowns will be used.

Table 7.8: Comparison of multigrid and single grid preconditioner for 2D VE-
GAS experiment after 25 time steps on Cray T3E.

Prec. P S SIZE EX N ITER AVG MAX
MG– 1 25 4640 887 107 357 3.3 6
SGS(2,2) 4 25 18560 1151 93 396 4.3 8
V–cycle 16 25 74240 1483 104 460 4.4 8

64 25 296960 1793 105 534 5.1 9
256 25 1187840 1955 100 560 5.6 9

SGS(1) 1 25 4640 3674 107 8992 84 153
4 25 18560 4516 93 12780 137 249

16 25 74240 11244 104 32976 317 450
64 25 296960 21231 106 57302 541 1149

256 25 1187840 42040 101 113180 1121 2699

7.5. 3D DNAPL Infiltration 189

Figure 7.15: Partitioning of the VEGAS mesh (16 processors). DNAPL satura-
tion after 7200[s] on levels 2 and 3 (middle and bottom).

190 7. Numerical Results

Figure 7.16: Contour plot of DNAPL saturation after 7200[s] on levels 4, 5 and
6 (from top).

7.5. 3D DNAPL Infiltration 191

Figure 7.17: Experimental result from VEGAS facility.

1 [m]

1 [m]

1 [m]

Ω1

Ω2

ΓN

ΓE

ΓS

ΓW

ΓF

ΓB

Ω1 = (0.5,0.75)x(0.25,0.75)x(0.6,0.8)
Ω2 = (0.25,0.75)x(0.25,0.75)x(0.2,0.4)

ΓIN = (0.375,0.625)2

Figure 7.18: Domain for the three–dimensional DNAPL infiltration example.

192 7. Numerical Results

Boundary Conditions

ΓIN φn =�0:25[kg=(sm2)];φw = 0
ΓN;ΓS φn = φw = 0
ΓE pw = (1� z) �9810+400 [Pa];φn = 0
ΓW pw = (1� z) �9810 [Pa];φn = 0
ΓF ;ΓB pw = (1� z) �9810+ x �400 [Pa];φn = 0

For definition of the boundary segments see Fig. 7.18.

Fluid Properties
ρw = 1000 [kg=m3] ρn = 1630 [kg=m3]

µw = 10�3 [Pa s] µn = 10�3 [Pa s]

Solid Matrix & Constitutive Relations
Brooks–Corey functions with the following parameters:

Subdomain Φ k [m2] Swr Snr λ pd [Pa]
Ω1;Ω2 0:39 5:26 �10�11 0:10 0:0 2:49 2324
Ω 0:4 5:04 �10�10 0:08 0:0 3:86 369

The location of the regions with different sands is given in Fig. 7.18.

Initial Values
pw(x;y) = x �400+(1� z) �9810:0; Sn = 0 .

Mesh & Time Steps
The coarsest mesh consists of 4� 4� 5 hexahedral elements and resolves the
interfaces between low and high permeable regions. Uniform refinement results
in the following meshes:

Level x y z elements
0 4 4 5 80
1 8 8 10 640
2 16 16 20 5120
3 32 32 40 40960
4 64 64 80 327680
5 128 128 160 2621440

50 steps of ∆t = 20[s] are to be computed. The propagation speed of the
infiltration front is between 5 and 6 mesh cells per time step.

Results
This example is intended to show the applicability of the methods in three

space dimensions and to show the excellent parallelization properties.
Fig. 7.19 shows a contour plot of DNAPL saturation at T = 1000[s] on two

cuts through the domain. The PPSIC formulation allows a discontinuous rep-
resentation of the saturation at the interface. Fig. 7.20 shows isosurfaces of
DNAPL concentration at various time steps.

7.5. 3D DNAPL Infiltration 193

Table 7.9: Performance statistics for 3D DNAPL infiltration with two low per-
meable lenses on Cray T3E.

P S SIZE EX N MG AVG MAX TI
1 50 5120 4187 218 348 1.6 2 2.10
4 50 40960 11589 243 612 2.5 4 4.69

32 50 327680 13214 264 928 3.5 7 4.76
256 50 2621440 14719 255 1098 4.3 9 4.82

The simulation used standard parameters (see Subs. 7.1.2) with the following
modifications: The point–block ILU smoother has been damped with ω= 0:9.
This is necessary for a block–Jacobi type smoother in the parallel case, the value
is not critical for this problem. Nested iteration has been used starting from
level 1 (640 elements) instead of level 0. This has been done to improve parallel
performance. Note that nested iteration includes more work on coarse meshes
where parallelization is less efficient, especially for large processor numbers.
On the other hand this effect is less critical in three dimensions than in two
dimensions due to the larger growth factor. Load balancing has been done as
follows: Level 0 (80 elements) has been kept on one processor in all calcula-
tions to enable fast solution with a direct solver. Level 1 (640 elements) has
then been distributed to all processors, except in the 256 processor case where
only 72 processors have been used on level 1. In the 256 processor run level
2 (5120 elements) has then been distributed to all processors. Load balancing
scheme was inertial recursive bisection with Kernighan–Lin optimization, see
(Hendrickson and Leland 1993a) for details.

Performance data of the simulation are presented in Table 7.9. Starting with
four processors the problem size (in space) is increased by a factor of eight
(uniform refinement) while also increasing the number of processors by eight
leading to a problem size of about 10000 hexahedral elements per processor.
The time step size was the same in all calculations. Results for a single processor
having only 5120 elements are included for reference.

The time per multigrid iteration on the finest level (TI) can be used to evaluate
the parallel efficiency of the code. In the ideal case it should be constant which
it almost is. Note that the time for one processor has to be multiplied by two
to be comparable. The average number of multigrid cycles per Newton step
indicates that multigrid convergence is almost independent of the mesh size and
the processor number for this example. Due to the use of nested iteration the
number of Newton steps on the finest mesh remains also constant although the
time step size is fixed. All components together show excellent scalability of
the overall solution process: Total computation time increases by 75% for a 256
fold increase in problem size and processor number!

194 7. Numerical Results

Figure 7.19: Contour plot of DNAPL saturation at T = 1000[s] on levels 3, 4
and 5 (2.6 million elements, 5.2 million unknowns).

7.5. 3D DNAPL Infiltration 195

Figure 7.20: Isosurfaces of DNAPL saturation 1% (left) and 30% (right) after
240, 480, 720 and 960 seconds.

196 7. Numerical Results

Sand 0

1 1 1

2

23 3
3

ΓN

ΓW ΓE

ΓSΓIN ΓIN ΓIN

20 [m]

10
 [

m
]

Figure 7.21: Geometry and initial mesh for the two–dimensional air sparging
simulation.

7.6 2D Air Sparging
Air sparging refers to a remediation technique where air is injected from below
in the saturated zone. The rising air is intended to reach organic liquids trapped
there and to enhance microbial degradation and/or volatilization. Experiments
revealed that the flow of air is affected strongly by heterogeneities present in the
soil, see van Dyke and van der Zee (1998) and the references there.

If we are only interested in the distribution of the injected air in the satu-
rated zone this process can be modeled with a two–phase flow model. Richards
equation cannot be used in this case since the air is injected from below and
is not in contact with the surface. Compressibility effects will be included via
the ideal gas law. Furthermore, we restrict ourselves to the case of a piecewise
homogeneous porous medium with the subdomains having different permeabil-
ity, porosity and constitutive relations. The qualitative behavior of the solutions
is the same as for the vertical DNAPL infiltration, only “upside down” . Due
to the higher mobility of the air phase the flow of air is much more advection–
dominated in the buoyancy–driven regions. The regions just below a low per-
meable layer where the air accumulates tend to be much thinner if the same
constitutive relations are used.

Fig. 7.21 shows the geometry of the domain. Eight low permeable layers
with different soil properties and inclinations are distributed over a region of
20 by 10 meters. Air is injected at three different places as indicated. The
domain is meshed using triangular elements and an automatic mesh generator to
demonstrate the unstructured mesh capabilities of the code.

The following parameters have been used in the simulation.

7.6. 2D Air Sparging 197

Formulation Used
The PPSIC method with (pw;Sn) as unknowns will be used.

Boundary Conditions

ΓN pw = 105[Pa];φn = 0
ΓE ;ΓW ;ΓS φn = φw = 0
ΓIN φn =�7:5 �10�4[kg=(sm2)];φw = 0

For definition of the boundary segments see Fig. 7.21.

Fluid Properties
ρw = 1000 [kg=m3] ρn = pn=84149:6 [kg=m3]

µw = 10�3 [Pa s] µn = 1:65 �10�5 [Pa s]

Solid Matrix & Constitutive Relations
Brooks–Corey functions with the following parameters:

Sand Φ k [m2] Swr Snr λ pd [Pa] S�n
0 0:40 5:04 �10�10 0:10 0:0 2:0 1600:0 –
1 0:39 2:05 �10�10 0:10 0:0 2:0 1959:6 0.30
2 0:39 5:62 �10�11 0:10 0:0 2:0 2565:7 0.55
3 0:41 8:19 �10�12 0:10 0:0 2:0 4800:0 0.80

The location of the regions with different sands is given in Fig. 7.21. The critical
saturation refers to an infiltration from sand 0.

Initial Values
pw(x;y) = 105 +(10� y) �9810:0; Sn = 0 .

Mesh & Time Steps
The initial (coarse) mesh had 760 triangular elements and 419 nodes. Uniform

refinement resulted in the following mesh hierarchy:

Level Elements Nodes
0 760 419
1 3040 1597
2 12160 6233
3 48640 24625
4 194560 97889
5 780288 391361

Final simulation time was T = 800[s], time steps size was ∆t = 16[s] (50 steps)
for levels 0 to 3 and ∆t = 8[s] for levels 4 and 5. The non–wetting phase front
moves about two mesh cells per time step in the finest calculation.

Results
Figs. 7.22 and 7.23 show contour plots of air saturation after 704[s] of sim-

ulated time for the PPSIC method and the PPS method respectively. Con-
tour lines are spaced in 0:025 intervals with the first (darkest) contour line at
Sn = 0:0001.

198 7. Numerical Results

The contour plots show that with the PPSIC method only the three lenses
directly above the air inlets are infiltrated. With the PPS method the right-
most lens, which is of type 2, is infiltrated on all mesh levels. The refinement
study shows, however, that the amount of fluid infiltrating the lens is decreas-
ing with increasing mesh refinement. This is due to the approximation of the
interface condition in the PPS method. The following argument shows that a
very fine mesh spacing is required for the PPS scheme to accurately represent
the interface condition: We assume that water pressure is hydrostatic, i. e. we
have ∇ pw = 9810[Pa=m]. The jump of capillary pressure over the interface
from sand 0 to sand 2 is � 950[Pa] for zero DNAPL saturation on both sides.
For ∇ pw + ∇ pc�ρng to point downward (and produce the correct upwinding)
∇ pc must balance ∇ pw (the gravity term can be neglected since ρn = ρw=1000)
which requires a mesh spacing smaller than 0:1[m]. This is only an upper bound
for the mesh spacing. Since the air saturation is increasing below the lens the
jump of capillary pressure becomes smaller and the mesh spacing must be even
smaller for ∇ pc to balance ∇ pw. This argument shows that PPS requires exces-
sively small mesh spacing on the order of [cm] under the lenses which makes the
method impractical for field scale models.

The solutions in Figs. 7.22 and 7.23 exhibit significantly more mesh depen-
dence than in the previous examples. This is due to the combination of several
effects: Water–gas flow is advection dominated in the buoyancy–driven regions
and the unstructured triangular mesh results in a fair amount of numerical dif-
fusion (mostly “crosswind”). Secondly, the layers of air beneath the low per-
meable lenses are extremely thin (several centimeters) and the better they are
resolved the longer is the air path. Because of a large viscosity ratio air satu-
ration is low in the buoyancy–driven regions (about 0.05). Due to these effects
the differences in the solution from level 4 to 5 amount only to a small fraction
of total mass injected (note that all plots in Figs. 7.22 and 7.23 contain the same
total mass).

Computations for this problem have been carried out on the Power Macintosh
G3 and performance data is given in Table 7.10. Standard parameters have been
employed except that nested iteration was not effective and therefore has not
been used. We think that this is due the large saturation gradients directly under
the lenses which are not infiltrated. As a consequence the number of Newton
step increases with mesh fineness or the time step has to be reduced accordingly.
The multigrid method however behaves very well as in the previous examples.

7.7 3D Air Sparging
The final example simulates the bubbling of air in a three–dimensional hetero-
geneous porous medium. The domain is given in Fig. 7.24. It is 5 meters high
and about 4 by 5 meters wide. Three lenses with different sand properties are
placed within the domain. The remaining parameters are similar to those in the
last section:

7.7. 3D Air Sparging 199

Figure 7.22: Air sparging simulation in 2D on levels 3, 4 and 5 with PPSIC
method.

200 7. Numerical Results

Figure 7.23: Air sparging simulation in 2D on levels 3, 4 and 5 with PPS
method.

7.7. 3D Air Sparging 201

Table 7.10: Performance statistics for 2D air sparging example (sequential cal-
culation on G3).

Method S SIZE EX N MG AVG MAX
PPS 50 12160 752 198 426 2.2 4

50 48640 4059 261 610 2.3 5
100 194560 43785 590 1816 3.1 9

PPSIC 50 12160 1090 210 494 2.4 5
50 48640 6351 303 749 2.5 5

100 194560 74546 767 2447 3.2 7

Formulation Used
The PPSIC method with (pw;Sn) as unknowns will be used.

Boundary Conditions

ΓTOP pw = 105[Pa];φn = 0
ΓSIDE ;ΓBOT φn = φw = 0
ΓIN φn =�3 �10�3[kg=(sm2)];φw = 0

For definition of the boundary segments see Fig. 7.24.

Fluid Properties

ρw = 1000 [kg=m3] ρn = pn=84149:6 [kg=m3]

µw = 10�3 [Pa s] µn = 1:65 �10�5 [Pa s]

Solid Matrix & Constitutive Relations
Brooks–Corey functions with the following parameters:

Sand Φ k [m2] Swr Snr λ pd [Pa] S�n
0 0:40 5:04 �10�10 0:10 0:0 2:0 1600:0 –
1 0:39 2:05 �10�10 0:10 0:0 2:0 1959:6 0.30
2 0:39 5:62 �10�11 0:10 0:0 2:0 2565:7 0.55
3 0:41 8:19 �10�12 0:10 0:0 2:0 4800:0 0.80

The location of the regions with different sands is given in Fig. 7.24. The critical
saturation refers to an infiltration from sand 0.

Initial Values
pw(x;y) = 105 +(5� y) �9810:0; Sn = 0 .

Mesh & Time Steps
The coarse mesh is shown in Fig. 7.24. It consists of 1492 tetrahedral el-

ements and all internal boundaries are resolved by faces of the initial mesh.
The mesh has been generated with “NETGEN” , see Schöberl (1997). Uniform
refinement of the tetrahedral coarse mesh resulted in the following multigrid
hierarchy:

202 7. Numerical Results

Table 7.11: Performance statistics for 3D air sparging calculation on CRAY
T3E.

P S SIZE EX N MG AVG MAX TI
2 80 95488 10771 247 1355 5.5 8 3.44

16 81 763904 15201 320 1909 6.0 9 3.76
128 83 6111232 37297 693 4684 6.8 13 3.99

Level Elements Nodes
0 1492 354
1 11936 2124
2 95488 17329
3 763904 132801
4 6111232 1040129

The time step size was ∆t = 8[s] with final time T = 640[s] (80 steps) unless
a time step reduction was enforced by the nonlinear solver.

Results

Fig. 7.25 shows an isosurface of non–wetting phase saturation Sn = 0:05 at
final time T = 640[s]. It shows that the PPSIC method also works with three–
dimensional unstructured meshes. Visualization has been done with the graphics
program GRAPE which is able to visualize large data sets, see (Rumpf et al.
1997).

Computations for this problem have been carried out on the T3E of HLRS,
Stuttgart. Table 7.11 contains the performance results on up to a million nodes
(2 million unknowns) mapped to 128 processors. Scaling the problem size and
the number of processors by a factor 64 results in an almost fourfold increase
in total computation time. This is mostly due to the increase in the number of
Newton steps on the finest mesh which in turn is due to the fact that nested itera-
tion has not been used. Nested iteration was ineffective in this example (as well
as in the two–dimensional case). We believe that this is a result of the very thin
layers of air under the lenses with a correspondingly large gradient. On the other
hand the multigrid method scales very well with respect to the average number
of iterations and the time per iteration (parallel efficiency). Standard parame-
ters have been employed with the following modifications: Nested iteration was
turned off (see above) and the point–block ILU smoother has been replaced by
the point–block Gauß–Seidel smoother.

7.7. 3D Air Sparging 203

ΓTOP

ΓINΓIN

ΓIN

ΓBOT

ΓSIDE
ΓSIDE

Sand 1

Sand 3

Sand 2

Sand 0

Figure 7.24: Geometry (left) and coarse grid (right) for 3D air sparging problem
(Visualization with GRAPE).

204 7. Numerical Results

Figure 7.25: Isosurface Sn = 0:05 after 640 [s] of simulated time in 3D air sparg-
ing problem (Visualization with GRAPE).

Conclusion and Future Work

We have demonstrated the effective use of parallel Newton–multigrid techniques
for the fully–coupled solution of the two–phase flow problem in this work. For
heterogeneous porous media we compared the fully upwinding method and a
formulation with explicit incorporation of the interface conditions. The formu-
lation with interface conditions was found to give qualitatively and quantita-
tively better results on coarser meshes and lead to linear and nonlinear systems
that were easier to solve. A global pressure formulation equipped with inter-
face conditions as described in Subs. 2.3.3 would be the preferred method if the
NAPL saturation on the high permeable side becomes large.

The techniques presented as well as the computer implementation based on
the PDE software tool–box UG are general enough to allow extensions in var-
ious directions. The forthcoming work of Lang (1999) will extend UG with
adaptive local mesh refinement and dynamic load balancing capabilities for
time–dependent problems. The solutions of multiphase flow problems exhibit-
ing shocks and free boundaries will greatly benefit from the use of adaptive local
mesh refinement provided a good error indicator can be found. First results (in
sequential mode) are promising.

Another direction of future work will be the incorporation of more complex
mathematical models. Three phase/three component models (isothermal and
non–isothermal) are currently being developed by R. Helmig and his group on
the basis of the simulator developed in this work. First results have been pre-
sented in Huber and Helmig (1998). The extension to fractured porous media is
also being worked on.

The now existing two–phase simulator is used in the computation of water–
gas flows for the purpose of security assessment of underground waste reposi-
tories. Its ability to solve large–scale problems makes it also an ideal tool to in-
vestigate “numerical upscaling” where one tries to identify effective parameters
and/or processes, see Pruess (1996) and Ewing (1997), for coarse grid numer-
ical models that match fine grid computations thus addressing the fundamental
problem of porous medium flow modeling.

205

206 Conclusion and Future Work

Bibliography

Alcouffe, R., A. Brandt, J. Dendy, and J. Painter (1981). The multigrid
method for the diffusion equation with strongly discontinuous coeffi-
cients. SIAM J. Sci. Stat. Comput. 2, 430–454.

Allen, M. (1985). Numerical modelling of multiphase flow in porous media.
Adv. Water Res. 8, 162–187.

Allen, M., G. Behie, and J. Trangenstein (1992). Multiphase Flow in Porous
Media, Volume 34 of Lecture Notes in Engineering. Springer–Verlag.

Axelsson, O. and V. Barker (1984). Finite Element Solution of Boundary
Value Problems. Academic Press.

Aziz, K. and A. Settari (1979). Petroleum Reservoir Simulation. Elsevier.

Balay, S., W. Gropp, L. McInnes, and B. Smith (1997). Efficient management
of parallelism in object–oriented numerical software libraries. In E. Arge,
A. Bruaset, and H. Langtangen (Eds.), Modern Software Tools for Scien-
tific Computing. Birkhäuser. http://www.mcs.anl.gov/petsc/petsc.html.

Bank, R., A. Sherman, and A. Weiser (1983). Refinement algorithms and
data structures for regular local mesh refinement. In Scientific Computing.
IMACS, North–Holland.

Bank, R. and C. Wagner (1998). Multilevel ILU decomposition. to appear in
Numerische Mathematik.

Barrett, R., M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, and H. van der Vorst (1994). Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM.

Bastian, P. (1993). Parallel adaptive multigrid methods. Technical Report 93–
60, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen.

Bastian, P. (1996). Parallele adaptive Mehrgitterverfahren. Teubner–Verlag.

Bastian, P. (1998). Load balancing for adaptive multigrid methods. SIAM J.
Sci. Stat. Comput. 19(4), 1303–1321.

Bastian, P., K. Birken, S. Lang, K. Johannsen, N. Neuß, H. Rentz-Reichert,
and C. Wieners (1997). UG: A flexible software toolbox for solving par-
tial differential equations. Computing and Visualization in Science 1, 27–
40.

Bear, J. (1972). Dynamics of Fluids in Porous Media. Dover Publications.

Bear, J. (1979). Hydraulics of Groundwater. McGraw–Hill.

Bear, J. and Y. Bachmat (1991). Introduction to Modeling of Transport Phe-
nomena in Porous Media. Kluwer Academic Publishers.

207

208 Bibliography

Bey, J. (1995). Tetrahedral grid refinement. Computing 55, 355–378.

Bey, J. (1997). Finite–Volumen– und Mehrgitterverfahren für elliptische
Randwertprobleme. Ph. D. thesis, Universität Tübingen.

Bey, J. and G. Wittum (1997). Downwind numbering: Robust multigrid for
convection–diffusion problems. Appl. Numer. Math. 23, 177–192.

Binning, P. and M. Celia (1994). Eulerian–Lagrangian localized adjoint
methods for contaminant transport simulations. In A. P. et al. (Ed.), Com-
putational Methods in Water Resources X. Kluwer Academic Publishers.

Birken, K. (1998). Ein Modell zur effizienten Parallelisierung von Algorith-
men auf komplexen, dynamischen Datenstrukturen. Ph. D. thesis, Univer-
sität Stuttgart.

Birken, K. and P. Bastian (1994). Distributed Dynamic Data (DDD) in a par-
allel programming environment - Specification and functionality. Techni-
cal Report RUS–22, Rechenzentrum der Universität Stuttgart.

Bokhari, S. (1981). On the mapping problem. IEEE Transactions on Com-
puters 30(3), 207–214.

Braess, D. (1992). Finite Elemente. Springer–Verlag.

Braess, D. (1995). Towards algebraic multigrid for elliptic problems of sec-
ond order. Computing 55, 379–393.

Brakhagen, F. and T. Fogwell (1990). Multigrid for the fully implicit formu-
lation of the equations for multiphase flow in porous media. In Multigrid
Methods: Special topics and applications, Volume II, pp. 31–42.

Bramble, J. (1993). Multigrid Methods. Pitman Research Notes in Mathemat-
ics Series. Longman Scientific & Technical.

Bramble, J., J. Pasciak, J. Wang, and J. Xu (1991). Convergence estimates for
multigrid algorithms without regularity assumptions. Math. Comput. 57,
1–22.

Brenner, S. and R. Scott (1994). The mathematical theory of finite element
methods. Springer.

Briggs, W. (1987). A Multigrid Tutorial. SIAM.

Brooks, A. and T. Hughes (1982). Streamline upwind/Petrov–Galerkin for-
mulations for convection dominated flows with particular emphasis on
the incompressible Navier–Stokes equation. Computer Methods in Ap-
plied Mechanics and Engineering 32, 199–259.

Brooks, R. and A. Corey (1964). Hydraulic Properties of Porous Media, Vol-
ume 3 of Colorado State University Hydrology Paper. Colorado State
University.

Bruaset, A. and H. Langtangen (1997). A comprehensive set of tools for solv-
ing partial differential equations; Diffpack. In M. Dæhlen and A. Tveito

Bibliography 209

(Eds.), Numerical Methods and Software Toolsin Industrial Mathematics.
Birkhäuser.

Cai, X. (1998). Domain decomposition in high–level parallelization of PDE
codes. http://www.ifi.uio.no/�xingca.

Celia, M. (1994). Two–dimensional Eulerian–Lagrangian localized adjoint
method for the solution of the contaminant transport equation in the satu-
rated and unsaturated zones. In A. P. et al. (Ed.), Computational Methods
in Water Resources X. Kluwer Academic Publishers.

Celia, M., T. Russel, I. Herrera, and R. Ewing (1990). An Eulerian–
Lagrangian localized adjoint method for the advection–diffusion equa-
tion. Adv. Water Resources 13(4), 187–206.

Chavent, G. and J. Jaffré (1978). Mathematical Models and Finite Elements
for Reservoir Simulation. North–Holland.

Chen, Z., R. Ewing, and M. Espedal (1994). Multiphase flow simulation with
various boundary conditions. In Proceedings of the International Confer-
ence on Computational Methods in Water Resources X, pp. 925–932.

Chung, T. (1996). Applied Continuum Mechanics. Cambridge University
Press.

Corey, A. (1994). Mechanics of Immiscible Fluids in Porous Media (3rd ed.).
Water Resources Publications.

Cybenko, G. (1989). Dynamic load balancing for distributed memory multi-
processors. Journal of Parallel and Distributed Computing 7, 279–301.

Dawson, C. (1991). Godunov–mixed methods for advective flow problems in
one space dimension. SIAM J. Numer. Anal. 28(5), 1282–1309.

Dawson, C., H. Klíe, M. Wheeler, and C. Woodward (1997). A parallel, im-
plicit, cell centered method for two–phase flow with a preconditioned
Newton–Krylov solver. Technical Report UCRL–JC–127724, Lawrence
Livermoore National Laboratory.

de Keyser, J. and D. Roose (1991). Adaptive irregular multiple grids on a
distributed memory multiprocessor. In A. Bode (Ed.), Proc. of the 2nd
European Distributed Memory Computing Conference, pp. 153–162.

de Keyser, J. and D. Roose (1992). Partitioning and mapping adaptive multi-
grid hierarchies on dirstributed memory computers. Technical Report TW
166, Dept. of Computer Science, K. U. Leuven.

de Neef, M. and J. Molenaar (1997). Analysis of DNAPL infiltration in a
medium with a low permeable lense. Computational Geosciences 1, 191–
214.

Dendy Jr., J. (1987). Two multigrid methods for three–dimensional problems
with discontinuous and anisotropic coefficients. SIAM J. Sci. Stat. Com-
put. 8, 673–685.

210 Bibliography

Diffpack (1998). Diffpack Home Page. http://www.noobjects.com/

products/diffpack.

Donea, J. (1984). A Taylor–Galerkin method for convective transport prob-
lems. Int. J. for Numerical Methods in Engineering 20, 101–119.

Douglas Jr., J., F. Furtado, and F. Pereira (1997). On the numerical simulation
of waterflooding of heterogeneous petroleum reservoirs. Computational
Geosciences 1, 155–190.

Douglas Jr., J., D. Peaceman, and H. Rachford Jr. (1959). A method for cal-
culating multi–dimensional displacement. Trans. AIME 216, 297–308.

Douglas Jr., J. and T. Russel (1982). Numerical methods for convection dom-
inated diffusion problems based on combining the method of character-
istics with finite element or finite difference procedures. SIAM J. Numer.
Anal. 19(5), 871–885.

Dryja, M., M. Sarkin, and O. Widlund (1996). Multilevel Schwartz meth-
ods for elliptic problems with discontinuous coefficients in three space
dimensions. Numer. Math. 72, 313–348.

Dryja, M. and O. Widlund (1990). Towards a unified theory of domain de-
composition algorithms for elliptic problems. In T. Chan, R. Glowinski,
J. Périaux, and O. Widlund (Eds.), Third International Symposium on
Domain Decomposition Methods for Partial Differential Equations, pp.
3–21. SIAM.

Durlofsky, L. (1993). A triangle based mixed finite element—finite volume
technique for modeling two–phase flow through porous media. Journal
of Computational Physics 105, 252–266.

Durlofsky, L. (1994). Accuracy of mixed and control volume finite element
approximations to Darcy velocity and related quantities. Water Resources
Research 30(4), 965–973.

Eisenstat, S. and H. Walker (1996). Choosing the forcing terms in an inexact
Newton method. SIAM J. Sci. Stat. Comput. 17(1), 16–32.

Emmert, M. (1997). Numerische Modellierung nichtisothermer Gas–Wasser
Systeme in porösen Medien. Ph. D. thesis, Universität Stuttgart.

Eriksson, K., D. Estep, P. Hansbo, and C. Johnson (1995). Introduction to
adaptive methods for differential equations. Acta Numerica.

Espedal, M. and R. Ewing (1987). Characteristic Petrov–Galerkin subdomain
methods for two–phase immiscible flow. Computer Methods in Applied
Mechanics and Engineering 64, 113–135.

Ewing, R. (1983). Problems arising in the modeling of processes for hydro-
carbon recovery. In R. Ewing (Ed.), Research Frontiers in Applied Math-
ematics, Volume 1, pp. 3–34. SIAM.

Bibliography 211

Ewing, R. (1991). Operator splitting and Eulerian–Lagrangian localized ad-
joint methods for multiphase flow. In The Mathematics of Finite Elements
and Applications VII.

Ewing, R. (1997). Aspects of upscaling in simulation of flow in porous media.
Adv. Water Resources 20(5-6), 349–358.

Ewing, R., R. Lazarov, J. Pasciak, and A. Vassilev (1995). Mathematical
modeling, numerical techniques, and computer simulation of flows and
transport in porous media. In Computational Techniques and Applica-
tions, pp. 1–17.

Ewing, R., H. Wang, and R. Sharpley (1994). Eulerian–Lagrangian localized
adjoint methods for transport of nuclear waste contamination in porous
media. In A. P. et al. (Ed.), Computational Methods in Water Resources
X. Kluwer Academic Publishers.

Ewing, R. and M. Wheeler (1980). Galerkin methods for miscible displace-
ment problems in porous media. SIAM J. Numer. Anal. 17, 351–365.

Falta, R. (1992). Multiphase Transport of Organic Chemical Contaminants
in the Subsurface. Ph. D. thesis, Department of Material Sciences and
Mineral Engineering, University of California, Berkeley.

Fein, E. (Ed.) (1998). d3f – Ein Programmpaket zur Modellierung von Dicht-
eströmungen.

Fiduccia, C. and R. Mattheyses (1982). A linear time heuristic for improving
network partitions. In Proceedings of the 19th IEEE Design Automation
Conference, pp. 175–181.

Forsyth, P. (1991). A control volume finite element approach to NAPL
groundwater contamination. SIAM J. Sci. Stat. Comput. 12(5), 1029–
1057.

Forsyth, P. and B. Shao (1991). Numerical simulation of gas venting for
NAPL site remediation. Adv. Water Resources 14(6), 354–367.

Fox, G. (1986, November). A graphical approach to load balancing and
sparse matrix vector multiplication on the hypercube. Presented at Min-
nesota Institute for Mathematics and its Applications Workshop.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns.
Addison–Wesley.

Garey, M., D. Johnson, and L. Stockmeyer (1976). Some simplified NP–
complete graph problems. Theoretical Computer Science 1, 237–267.

Glimm, J., E. Isaacson, B. Lindquist, O. McBryan, and S. Yaniv (1983). Sta-
tistical fluid dynamics: The influence of geometry on surface instabilites.
In R. Ewing (Ed.), Research Frontiers in Applied Mathematics, Volume 1,
pp. 137–160. SIAM.

212 Bibliography

Glimm, J., B. Lindquist, O. McBryan, and L. Padmanabhan (1983). A front
tracking reservoir simulator, five–spot validation studies and the water
coning problem. In R. Ewing (Ed.), Research Frontiers in Applied Math-
ematics, Volume 1, pp. 101–136. SIAM.

Glimm, J., D. Marchesin, and O. McBryan (1981). Unstable fingers in two
phase flow. Comm. Pure Appl. Math. 34, 53–75.

Golub, G. and C. Van Loan (1989). Matrix Computations. John Hopkins Uni-
versity Press.

Griebel, M. and G. Zumbusch (1998). Hash–storage techniques for adaptive
multilevel solvers and their domain decomposition parallelization. Con-
temporary Mathematics 218, 279–286.

Gundersen, E. and H. Langtangen (1997). Finite element methods for two–
phase flow in heterogeneous porous media. In Numerical Methods and
Software Tools in Industrial Mathematics. Birkhäuser.

Hackbusch, W. (1985). Multi–Grid Methods and Applications. Springer–
Verlag.

Hackbusch, W. (1994). Iterative Solution of Large Sparse Systems of Linear
Equations. Springer.

Hackbusch, W. (1997). On the feedback vertex set problem for a planar graph.
Computing 58(2), 129–155.

Hackbusch, W. and T. Probst (1997). Downwind Gauß–Seidel smoothing for
convection dominated problems. Numerical Linear Algebra With Appli-
cations 4(2), 85–102.

Hairer, E. and G. Wanner (1991). Solving ordinary differential equations II.
Springer, Berlin.

Hassanizadeh, M. and W. Gray (1979a). General conservation equations for
multiphase systems: 1. averaging procedure. Adv. Water Res. 2, 1–14.

Hassanizadeh, M. and W. Gray (1979b). General conservation equations for
multiphase systems: 2. mass momentum energy and entropy conditions.
Adv. Water Res. 2, 191–203.

Hassanizadeh, M. and W. Gray (1980). General conservation equations for
multiphase systems: 3. constitutive theory for porous media flow. Adv.
Water Res. 3, 30–44.

Heinrich, J., P. Huyakorn, O. Zienkiewicz, and A. Mitchell (1977). An up-
wind finite element scheme for two–dimensional convective transport
equation. Int. J. for Numerical Methods in Engineering 11, 131–143.

Heise, B. and M. Jung (1995). Comparison of parallel solvers for nonlin-
ear elliptic problems based on domain decomposition ideas. Technical
report, Johannes Kepler Universität Linz, Institut für Mathematik. Insti-
tutsbericht Nr. 494.

Bibliography 213

Helmig, R. (1997). Multiphase Flow and Transport Processes in the Subsur-
face – A Contribution to the Modeling of Hydrosystems. Springer–Verlag.

Helmig, R., H. Class, R. Huber, H. Sheta, J. Ewing, R. Hinkelmann,
H. Jakobs, and P. Bastian (1998). Architecture of the modular program
system MUFTE–UG for simulating multiphase flow and transport pro-
cesses in heterogeneous porous media. to appear.

Helmig, R. and R. Huber (1996). Multiphase flow in heterogeneous porous
media: A classical finite element method versus an IMPES–based mixed
FE/FV approach. Technical Report 19, Sonderforschungsbereich 404,
Universität Stuttgart. to appear in Int. J. Numer. Meth. in Fluids.

Helmig, R. and R. Huber (1998). Comparison of Galerkin–type discretization
techniques for two–phase flow in heterogenous porous media. Adv. Water
Resources 21(8), 697–711.

Hendrickson, B. and R. Leland (1992). An improved spectral graph par-
titioning method for mapping parallel computations. Technical Report
SAND92–1460, Sandia National Laboratory.

Hendrickson, B. and R. Leland (1993a). The CHACO user’s guide 1.0. Tech-
nical Report SAND93–2339, Sandia National Laboratories.

Hendrickson, B. and R. Leland (1993b). A multilevel algorithm for partition-
ing graphs. Technical Report SAND93–1301, Sandia National Labora-
tory.

Hornung, U. (1997). Homogenization and Porous Media. Springer–Verlag.

Huber, R. and R. Helmig (1998). Simulation of multiphase and compositional
flow in porous media. In Proceedings of XII International Conference on
Computational Methods in Water Resources. Crete.

Hvistendahl Karlsen, K., K. Lie, N. Risebro, and J. Frøyen (1997). A front
tracking approach to a two–phase fluid flow model with capillary forces.
Technical report, University of Bergen.

Jahresbericht der Wasserwirtschaft (1993). Gemeinsamer Bericht der mit
der Wasserwirtschaft befassten Bundesministerien – Haushaltsjahr 1992.
Wasser und Boden 45(5), 504–516.

Jones, M. and P. Plassmann (1997). Parallel algorithms for adaptive mesh
refinement. SIAM J. on Scientific Computing 18, 686–708.

Karypis, G. and V. Kumar (1995). Multilevel k-way partitioning scheme for
irregular graphs. Technical Report 95–064, University of Minnesota, De-
partment of Computer Science.

Karypis, G. and V. Kumar (1996). Parallel multilevel k-way partitioning
scheme for irregular graphs. Technical Report 96–036, University of Min-
nesota, Department of Computer Science.

214 Bibliography

Kernighan, B. and S. Lin (1970). An efficient heuristic procedure for parti-
tioning graphs. The Bell System Technical Journal 49, 291–307.

Kettler, R. (1982). Analysis and comparison of relaxation schemes in robust
multigrid and preconditioned conjugate gradient methods. In Multi–grid
methods. Springer. Lecture Notes in Math 960.

Kinzelbach, W. and W. Schäfer (1992). Stochastic modeling of in–situ biore-
mediation in heterogeneous aquifers. Journal of Contaminant Hydrol-
ogy 10, 47–73.

Klaas, O., R. Niekamp, and E. Stein (1994). Parallel adaptive finite ele-
ment computations with hierarchical preconditioning. Technical Report
IBNM–Bericht 94/4, IBNM, Uni Hannover.

Kobus, H. (1996). The role of large–scale experiments in groundwater and
subsurface remediation research: The VEGAS concept and approach. In
H. Kobus, B. Barczewski, and H. Koschitzky (Eds.), Groundwater and
Subsurface Remediation, pp. 1–18. Springer–Verlag.

Kroener, D. and S. Luckhaus (1984). Flow of oil and water in a porous
medium. Journal of Differential Equations 55, 276–288.

Kueper, B. and E. Frind (1988). An overview of immiscible fingering in
porous media. Journal of Contaminant Hydrology 2, 95–110.

Lampe, M. (1997). Parallelisierung eines Grafiksubsystems in einem Paket
zur numerischen Lösung partieller Differentialgleichungen. Master’s the-
sis, Uni Stuttgart.

Lang, S. (1999). Parallele adaptive Mehrgitterverfahren für dreidimension-
ale instationäre Berechnungen. Ph. D. thesis, Universität Heidelberg. to
appear, tentative title.

LeVeque, R. (1992). Numerical Methods for Conservation Laws. Birkhäuser.

Leverett, M. (1941). Capillary behavior in porous solids. Trans. AIME 142,
152–169.

McWhorter, D. and D. Sunada (1990). Exact integral solutions for two–phase
flow. Water Resources Research 26(3), 399–413.

Michev, I. (1996). Finite volume and finite volume element methods for non-
symmetric problems. Ph. D. thesis, Texas A&M University.

Mitchell, W. (1998). FUDOP Home Page. http://math.nist.gov/

Staff/WMitchell.

Molenaar, J. (1994). A simple multigrid method for 3D interface problems.
Technical report, TU Delft. Technical Report 94–44.

Molenaar, J. (1995). Multigrid methods for fully implicit oil reservoir simula-
tion. In Proceedings Copper Mountain Conference on Multigrid Methods.

Bibliography 215

Mulder, W. and R. G. Meyling (1993). Numerical simulation of two–phase
flow using locally refined grids in three space dimensions. SPE Advanced
Technology Series 1(1), 36–41.

Muskat, M., R. Wyckoff, H. Botset, and M. Meres (1937). Flow of gas–liquid
mixtures through sands. Pet. Trans. AIME 123, 69–82.

Neuß, N. (1999). A new sparse matrix storage method for adaptive solving of
large systems of reaction-diffusion-transport equations. Technical Report
1999–04, IWR, Uni Heidelberg.

PadFEM (1998). PadFEM Home Page. http://www.uni-paderborn/

fachbereich/AG/monien/SOFTWARE/PADFEM.

Parker, J., R. Lenhard, and T. Kuppusami (1987). A parametric model for
constitutive properties governing multiphase flow in porous media. Water
Resources Research 23(4), 618–624.

Peaceman, D. W. (1977). Fundamentals of Numerical Reservoir Simulation.
Elsevier.

POET (1998). POET Home Page. http://glass-slipper.ca.sandia.gov/

poet.

POOMA (1998). POOMA Home Page. http://www.acl.lanl.gov/pooma.

Pothen, A., H. Simon, and K. Liou (1990). Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452.

Pruess, K. (1991). TOUGH2–A general purpose numerical simulator for
multiphase fluid and heat flow. Technical Report LBL–29400, Lawrence
Berkeley Laboratory.

Pruess, K. (1996). Effective parameters, effective processes: From porous
flow physics to in–situ remediation technology. In H. Kobus, B. Bar-
czewski, and H. Koschitzky (Eds.), Groundwater and Subsurface Reme-
diation, pp. 183–193. Springer–Verlag.

Rannacher, R. (1988). Numerical analysis of nonstationary fluid flow. Tech-
nical Report 492, SFB 123, Universität Heidelberg.

Rannacher, R. (1994). Accurate time discretization schemes for computing
nonstationary incompressible fluid flow. In Proceedings of the Interna-
tional Conference on Computational Methods in Water Resources X, pp.
1239–1246.

Raw, M. (1996). Robustness of coupled algebraic multigrid for the Navier–
Stokes equations. Technical Report 96–0297, AIAA.

Renardy, M. and R. Rogers (1993). An Introduction to Partial Differential
Equations. Springer–Verlag.

Rentz–Reichert, H. (1996). Robuste Mehrgitterverfahren zur Lösung der
inkompressiblen Navier–Stokes Gleichung: Ein Vergleich. Ph. D. thesis,
Universität Stuttgart.

216 Bibliography

Reusken, A. (1995a). Fourier analysis of a robust multigrid method for
convection–diffusion equations. Numer. Math. 71, 365–397.

Reusken, A. (1995b). A multigrid method based on incomplete Gaussian
elimination. Technical report, Eindhoven University of Technology. De-
partment of Mathematics and Computing Science, Report RANA 95–13.

Reusken, A. (1996). On a robust multigrid solver. Computing 56, 303–322.

Richards, L. (1931). Capillary conduction of liquids in porous media.
Physics 1, 318–333.

Risebro, N. and A. Tveito (1991). Front tracking applied to a nonstrictly
hyperbolic system of conservation laws. SIAM J. Sci. Stat. Comput. 12,
1401–1419.

Ruge, J. and K. Stüben (1987). Algebraic multigrid. In S. F. McCormick
(Ed.), Multigrid Methods. SIAM.

Rumpf, M., R. Neubauer, M. Ohlberger, and R. Schwörer (1997). Efficient
visualization of large–scale data on hierarchical meshes. In W. Lefer and
M. Grave (Eds.), Visualization in Scientific Computing ’97. Springer.

Russel, T. (1985). Time stepping along characteristics with incomplete iter-
ation for a Galerkin approximation of miscible displacement in porous
media. SIAM J. Numer. Anal. 22(5), 970–1013.

Sadayappan, P. and F. Ercal (1987). Nearest–neighbor mapping of finite ele-
ment graphs onto processor meshes. IEEE Transactions on Computers C-
36(12), 1408–1424.

Scheidegger, A. (1961). General theory of dispersion in porous media. Jour-
nal of Geophysical Research 66, 3273–3278.

Scheidegger, A. (1974). The Physics of Flow Through Porous Media. Univer-
sity of Toronto Press.

Schloegel, K., G. Karypis, and V. Kumar (1997). Multilevel diffusion
schemes for repartitioning of adaptive meshes. Technical Report 97–013,
University of Minnesota, Department of Computer Science.

Schöberl, J. (1997). A rule–based tetrahedral mesh generator. Computing and
Visualization in Science 1, 1–26.

Schroll, H. and A. Tveito (1997). Local existence and stability for a
hyperbolic–elliptic system modeling two–phase reservoir flow. Technical
Report 136, Institut für Geometrie und Praktische Mathematik, RWTH
Aachen.

SCOREC (1998). SCOREC Home Page. http://www.scorec.rpi.edu.

Scott, T. (1985). Multi–grid methods for oil reservoir simulation in two and
three dimensions. J. Comput. Phys. 59, 290–307.

Bibliography 217

Sheta, H. (1999). Einfluss der Hysterese bei Infiltrations– und Ausbre-
itungsvorgängen in der gesättigten und ungesättigten Bodenzone. Ph. D.
thesis, Universität Stuttgart, Institut für Wasserbau.

Smith, B., P. Bjørstad, and W. Gropp (1996). Domain Decomposition. Cam-
bridge University Press.

Stone, H. (1973). Estimation of three–phase relative permeability and resid-
ual oil data. Journal Can. Petro. Technol. 12(4), 53–61.

Sumaa3d (1998). Sumaa3d Home Page. http://www.mcs.anl.gov/sumaa3d.

Van de Velde, E. (1993). Concurrent Scientific Computing. Springer Verlag.

Van der Vorst, H. (1992). BiCGSTAB: A fast and smoothly converging vari-
ant of Bi–CG for the solution of non–symmetric linear systems. SIAM J.
Sci. Stat. Comput. 13, 631–644.

Van Driesche, R. and D. Roose (1995). An improved spectral bisection al-
gorithm and its application to dynamic load balancing. Parallel Comput-
ing 21, 29–48.

van Duijn, C., J. Molenaar, and M. de Neef (1995). Effects of capillary forces
on immiscible two–phase flow in heterogeneous porous media. Transport
in Porous Media 21, 71–93.

van Dyke, M. and S. van der Zee (1998). Modeling of air sparging in a layered
soil: Numerical and analytical approximations. Journal of Geophysical
Research 34, 341–353.

Van Genuchten, M. (1980). A closed form equation for predicting the hy-
draulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–
898.

Vaněk, P., J. Mandel, and M. Brezina (1996). Algebraic multi–grid by
smoothed aggregation for second and forth order elliptic problems. Com-
puting 56, 179–196.

Varga, R. (1962). Matrix Iterative Analysis. Prentice Hall.

Verfürth, R. (1988). Multi–level algorithms for mixed problems II. Treatment
of the Mini–Element. SIAM J. Numer. Anal. 25, 285–293.

Wagner, C., W. Kinzelbach, and G. Wittum (1997). A robust multigrid
method for groundwater flow. Numer. Math. 75, 523–545.

Walshaw, C. and M. Berzins (1993). Enhanced dynamic load–balancing of
adaptive unstructured meshes. In Proc. of the 6th Conf. on Parallel Pro-
cessing, pp. 971–979.

Walshaw, C. and M. Cross (1998). Mesh partitioning: A multilevel balanc-
ing and refinement algorithm. Technical Report 98/IM/35, University of
Greenwich, Centre for Numerical Modelling and Process Analysis.

218 Bibliography

Walshaw, C., M. Cross, and M. Everett (1997). Dynamic load–balancing for
parallel adaptive unstructured meshes. In Proc. of the 8th Conf. on Paral-
lel Processing.

Watson, A., J. Wade, and R. Ewing (1994). Parameter and system identifica-
tion for fluid flow in underground reservoirs. In H. Engl and J. McLaugh-
lin (Eds.), Proceedings of the Conference on “ Inverse Problems and Op-
timal Design in Industry” , Volume 10, pp. 81–108. B. G. Teubner. Europ.
Cons. for Meth. Ind.

Wesseling, P. (1992). An Introduction to Multigrid Methods. John Wiley.

Whitaker, S. (1986a). Flow in porous media I: A theoretical derivation of
Darcy’s law. Transport in Porous Media 1, 3–25.

Whitaker, S. (1986b). Flow in porous media II: The governing equations for
immiscible two–phase flow. Transport in Porous Media 1, 105–125.

Wieners, C. (1997). The implementation of parallel multigrid
methods for finite elements. available in electronic form:
ftp://ftp.ica3.uni-stuttgart.de/pub/text/wieners/wieners13.ps.gz.

Williams, R. (1990). Performance of dynamic load balancing algorithms for
unstructured mesh calculations. Technical Report C3P 913, California In-
stitute of Technology.

Wittum, G. (1989). On the robustness of ILU smoothing. SIAM J. Sci. Stat.
Comput. 10, 699–717.

Wittum, G. (1990). On the convergence of multigrid methods with transform-
ing smoothers. Numerische Mathematik 57, 15–38.

Xu, J. (1992). Iterative methods by space decomposition and subspace cor-
rection. SIAM Review 34, 581–613.

Yotov, I. (1997). A mixed finite element discretization on non–matching
multiblock grids for a degenerate parabolic equation arising in porous
media flow. East–West J. Numer. Math. 5, 211–230.

Young, D. (1971). Iterative Solution of Large Linear Systems. Academic
Press.

Index

absolute permeability, 11, 13
adhesive forces, 8, 16
advection–diffusion equation, 66,

67, 71
air sparging

2D, 196
3D, 198

algebraic multigrid, 108, 113
anisotropic, 11
anisotropic model problem, 108

backward Euler, 67, 70, 88
balance condition, 126
banded Gaussian elimination, 103
barycentric phase velocity, 29
BDF(2), 67, 70, 89
BiCGSTAB method, 105
black oil model, 31
border vertices, 137
box, 72
box mesh, 71
Brooks–Corey capillary pressure,

24, 36
Brooks–Corey relative permeability,

26
Buckley–Leverett equation, 47

capillarity, 16
capillary pressure, 17, 21, 35, 60

Brooks–Corey, 24
continuity, 44
Parker, 24
Van Genuchten, 23

centered differences, 65
cohesive forces, 8, 16
component, 7, 28
component mass balance, 29
composition, 15
compositional flow model, 28
compressible, 14, 36
conceptual model, 7
condensation, 19

conservation of mass, 12, 20, 91
consistent, 119
constrained vertices, 127
contact angle, 16, 18
control volume, 72, 81
counter–current flow, 55
Courant number, 67, 92
Crank–Nicolson, 67, 70, 88
Cuthill–McKee, 133

DAE, 89
damping strategy, 102
Darcy velocity, 13
Darcy’s law, 13, 30

multiphase extension, 20
data parallelism, 115
defect, 104
degenerate parabolic problems, 66
density, 9, 12
differential algebraic equations, 78,

89
dispersivity

longitudonal, 14
transversal, 14

DNAPL, 1, 165
DNAPL infiltration

2D, 172
3D, 188

domain decomposition methods,
115

doubly degenerate, 55
drainage, 22
DSTR–MG, 112
dual mesh, 71
dynamic viscosity, see viscosity

edge separator, 126
elementary volume, see representa-

tive elementary volume
ELLAM, 67
elliptic, 14, 35
entry pressure, 22, 43, 66

219

220 Index

equation–wise ordering, 100
Eulerian–Lagrangian localized ad-

joint method, 67
existence, 37, 41
experimental order of convergence,

91
extended capillary pressure condi-

tion, 44

father element, 116
fingering, 53
finite volume method, 68, 69
five spot waterflooding, 166
forcing term, 101
fractional flow, 35
free boundary, 56, 58
free vertices, 127
front tracking method, 68
frontal mobility ratio, 48, 53
fully implicit approach, 69
fully upwinding, 75, 180
funicular saturation, 19

Galerkin coarse grid operator, 107
Galerkin finite element method, 65
Gauß–Seidel method, 104
Gaussian elimination, 103
global pressure, 38, 61, 83
Godunov method, 68
GPSTF method, 86
GPSTV method, 83
graph partitioning, 126
gravity, 13

modified, 35
grid transfer operators, 106

harmonic mean, 76
heterogeneous, 11
heterogeneous media, 41
homogeneous, 11
hydrodynamic dispersion, 14, 30
hyperbolic, 35
hysteresis, 22

ideal gas, 12
imbition, 22

immiscible, 7
IMPES, 67
incomplete decomposition, 104
incompressible, 12, 14
incremental mapping strategy, 131
individual gas constant, 12
inewton, 101
inexact Newton method, 70, 100
inflection point, 50
initial partition map, 126
ink bottle effect, 22
interface condition, 44, 70, 82
interface problem, 107
intrinsic mass density, 29
irregular refinement, 100
isotropic, 11

J–Leverett function, 42
Jacobi method, 104
Jacobian, 100
JOSTLE, 132

Kernighan–Lin, 132
Krylov subspace methods, 105

Laplace’s equation, 18
Lax shock criterion, 49
length scales, 8
line search, 102
linearization, 100
linearized operator, 102
LNAPL, 1
load balancing, 125
local conservation of mass, 70

macroscopic apparent velocity, 13
macroscopic scale, 8
mass fraction, 29
McWhorter problem, 55, 94
mean free path, 8
mechanical dispersion, 14
media discontinuity, 43, 62, 66
METIS, 132
mgc, 106
microscopic scale, 8
midpoint rule, 75

Index 221

miscible, 7
miscible displacement, 14
mixed finite element method, 65, 68
MMOC, 67
mobility, 21
modified gravity, 35
modified method of characteristics,

67
molecular diffusion, 14
molecular scale, 9
monotonicity property, 70
multigrid mesh structure, 99
multigrid method, 105, 106
multilevel partitioning method, 132
multilevel recursive bisection, 132
multiphase system, 7

NAPL, 1
nested dissection, 103
nested iteration, 101
non–wetting phase fluid, 16
nonlinear multigrid method, 114
numerical differentiation, 100
numerical flux, 75

one step θ–scheme, 88

parabolic, 14, 35
Parker capillary pressure, 24
partition, 126
partition map, 126

initial, 126
partitioning, 125

k-way graph partitioning, 126
k-way graph repartitioning, 126
constrained k-way graph parti-

tioning, 127
constrained k-way graph repar-

titioning, 127
pendular saturation, 18, 23
permeability, see absolute perme-

ability
phase, 7
phase mobility, 35
phase partitioning, 31

phase transition, 19
pmgc, 122
point–block ordering, 109, 114
point–block smoother, 110
pore size distribution, 9
pore space, 7
porosity, 10, 12
porous medium, 7
PPS method, 77
PPSIC method, 81
pressure, 13
(p;Sw)–formulation, 40
(pn;Sw)–formulation, 34
(pw;Sn)–formulation, 34
(pw;Sn;Sg)–formulation, 59
prolongation, 106

radius of curvature, 18
Rankine–Hugoniot condition, 49,

50
rarefaction wave, 49, 53
recursive spectral bisection, 132
regional scale, 8
regular refinement, 99
relative permeability, 20

Brooks–Corey, 26
Stone, 26
Van Genuchten, 25

relaxation methods, 104
representative elementary volume,

10
residual saturation, 23
restriction

standard, 106
truncated, 110

Richard’s equation, 27
Riemann problem, 48, 50
robustness, 70, 107

saturation, 19
secondary mesh, 71
self similar, 56
semi–coarsening, 108
shock, 47
single–phase system, 7

222 Index

smoother, 106
solid matrix, 7
solid phase, 7
solution, 28
space–filling curves, 133
spectral bisection, 132
standard parameters, 165
Stone relative permeability, 26
sub–control volume, 75
summation property, 119
surface tension, 17, 18, 24

tangential point, 52
Taylor–Galerkin method, 67
three–phase flow model, 27, 58
threshold pressure, 43
tortuosity, 9, 14
total differential condition, 61
total flux, 86
total mobility, 35
total velocity, 35, 37, 60, 83
tracer transport, 14
two–phase flow model, 27

unconstrained vertices, 127
unique representation, 119
uniqueness, 41
unsaturated groundwater flow, 27
unstructured mesh, 70, 71
upwind stabilization, 65

Van Genuchten capillary pressure,
23, 36

Van Genuchten relative permeabil-
ity, 25

vaporization, 19, 28
VEGAS, 165, 185
viscosity, 9, 13
viscosity ratio, 53
viscosity ration, 48
viscous fingering, 53, 66
void space, 7
void space indicator, 10
volume fraction, 14, 29

weak formulation, 36, 73, 78, 84, 87

weak solution, 47
wettability, 16
wetting phase fluid, 16

