Submission date: 8 Nov 2021

Prof. Dr. Peter Bastian, Michal Tóth

IWR, Universität Heidelberg

Exercise 1 *Updating dune-npde*

As we update the *dune-npde* module during the semester, you need to get the current state before starting to solve a new programming exercise:

- Navigate to your *dune-npde* directory in a terminal
- Execute the commands

git stash
git pull
git stash pop

These *git* commands temporarily move your local changes to the stash, download the updates and apply your changes to the new version again.

(0 Points)

Exercise 2 Analytical solution of heterogeneous heat equation

On a bounded two-dimensional domain (see picture above) the equation describing stationary heat transfer should be solved:

$$\nabla \cdot (-\lambda \nabla u) = 0, \quad \forall x \in \Omega, \text{ mit } \Omega = \bigcup_{i=1,\dots,4} \Omega_i,$$

 λ is a piecewise constant given by

$$\lambda = \begin{cases} \lambda_1 & x \in \Omega_1 \cup \Omega_3 \\ \lambda_2 & x \in \Omega_2 \cup \Omega_4 \end{cases}.$$

1. Prove, that the following function in polar coordinates

$$p_i(r,\theta) = r^{\delta}(a_i \sin(\delta\theta) + b_i \cos(\delta\theta))$$

with constant coefficients $a_i, b_i, \delta \in \mathbb{R}$ in $\Omega \setminus (0,0)$ is harmonical, that means $\Delta p_i = 0$ holds.

2. The function $p:\Omega\to\mathbb{R}$ is piecewise defined by

$$p(r,\theta)|_{\Omega_i} = p_i(r,\theta), \qquad (i=1...4).$$

Which conditions must be valid at the intersections between subdomains

$$\Omega_1 \bigcap \Omega_2, \quad \Omega_2 \bigcap \Omega_3, \quad \Omega_3 \bigcap \Omega_4, \quad \Omega_4 \bigcap \Omega_1,$$

for p to fulfil the physical requirements of the conservation law of the heat transport?

3. (*Bonus*) Determine explicit (using Matlab, Maple, Mathematica or your own program) the coefficients a_i, b_i, δ for fixed $\delta = 0.5354409455$.

(5(+2)) Points

Exercise 3 Simulation of discrete spring system

In the lecture, the equation for the total energy stored in the system at state u was derived

$$J^{(n)}(u) = J_{\text{el}}^{(n)} + J_{\text{f}}^{(n)} = \sum_{i=0}^{n} \frac{\kappa_i}{2} (\|u_{i+1} - u_i\|) - l_i)^2 - \sum_{i=1}^{n} u_i \cdot f_i$$

where $J^{(n)}:U\to\mathbb{R}$ and

$$U = \underbrace{\mathbb{R}^3 \times \mathbb{R}^3 \times \dots \times \mathbb{R}^3}_{n+1 \text{ times}}.$$

This corresponds to a discrete approximation of the elastic and potential energy (see lecture for details).

In this exercise, the solution $u \in \mathbb{R}^{3(n+1)}$ of the discrete energy functional will be determined numerically.

The functional fulfills the inequality

$$J^{(n)}(u) \le J^{(n)}(v) \qquad \forall v \in U.$$

To find a minimum of the functional $J^{(n)}(u)$, the nonlinear algebraic equation

$$\nabla J^{(n)}(u) = 0$$

should be solved.

It holds:

$$\frac{\partial J(u)}{\partial (u_k)_l} = \kappa_{k-1} (\|u_k - u_{k-1}\| - l_{k-1}) \frac{(u_k)_l - (u_{k-1})_l}{\|u_k - u_{k-1}\|} + \kappa_k (\|u_{k+1} - u_k\| - l_k) \frac{(u_k)_l - (u_{k+1})_l}{\|u_{k+1} - u_k\|} - (f_k)_l.$$

In *dune-npde* module in directory *dune-npde/uebungen/uebung02* you can find a program, which is able to compute almost all steps which are necessary to solve the problem.

The nonlinear problem should be solved by an iterative scheme:

$$\frac{\partial J(u^i,u^{i-1})}{\partial (u_k)_l} = \kappa_{k-1} (\|u_k^{i-1} - u_{k-1}^{i-1}\| - l_{k-1}) \frac{(u_k^i)_l - (u_{k-1}^i)_l}{\|u_k^{i-1} - u_{k-1}^{i-1}\|} + \kappa_k (\|u_{k+1}^{i-1} - u_k^{i-1}\| - l_k) \frac{(u_k^i)_l - (u_{k+1}^i)_l}{\|u_{k+1}^{i-1} - u_k^{i-1}\|} - (f_k)_l.$$

The iterative scheme starts with an initial value $u^0 \in \mathbb{R}^{3(n+1)}$. In each iteration a linear problem to determine u^i must be solved. Only the functions <code>assembleMatrix(..)</code> and <code>assembleRhs(..)</code>, which assemble the matrix and the right hand side of the linear problem, need to be implemented properly.

- 1. Complete the implementation and test it. The program is configured with the file *uebung02.ini*. The initial values correspond to a silicone-rubber fibre with a cross-section surface of 1 square millimeter. The fibre was stretched to a length of 2.5 times the initial length.
- 2. Test your solution and extend the program in a way that:
 - output contains y-coordinates of the spring-nodes
 - determine the mean and minimum values of y-coordinates
- 3. (*Bonus*): Do NOT use any *conditionals* in the matrix-iterator loop, that means the instructions which can create some jumps in compiled code (if, switch, ?:, std::max(..), etc.).

Hint: Use the function *Dune::printmatrix* for debugging. Use the DUNE documentation to find out what arguments it receives. (As the first argument, you can simply put *std::cout*)

(10 (+ 3) Points)