Exercise 1 Updating dune-npde

As we update the dune-npde module during the semester, you need to get the current state before starting to solve a new programming exercise:

- Navigate to your dune-npde directory in a terminal
- Execute the commands

```
git stash
git pull
git stash pop
```

These git commands temporarily move your local changes to the stash, download the updates and apply your changes to the new version again.
(0 Points)

Exercise 2 Properties of energy functional in discrete spring system

In the lecture the equation for the total energy stored in the system at state u was derived

$$
\left.J^{(n)}(u)=J_{\mathrm{el}}^{(n)}+J_{\mathrm{f}}^{(n)}=\sum_{i=0}^{n} \frac{\kappa_{i}}{2}\left(\left\|u_{i+1}-u_{i}\right\|\right)-l_{i}\right)^{2}-\sum_{i=1}^{n} u_{i} \cdot f_{i}
$$

where $J^{(n)}: U \rightarrow \mathbb{R}$ and

$$
U=\underbrace{\mathbb{R}^{3} \times \mathbb{R}^{3} \times \cdots \times \mathbb{R}^{3}}_{n+1 \text { times }}
$$

This corresponds to a discrete approximation of the elastic and potential energy (see lecture for details).

Assume there exists $\varepsilon \in(0,1)$ such that

$$
\frac{\varepsilon}{2} \sum_{i=0}^{n}\left\|u_{i+1}-u_{i}\right\| \geq \sum_{i=0}^{n} l_{i}
$$

Show that the functional $J^{(n)}(u)$ is bounded from below, i.e.

$$
\begin{equation*}
\exists C \in \mathbb{R}: J^{(n)}(u) \geq C, \quad \forall u \in U \tag{1}
\end{equation*}
$$

To proof that proceed as follows:

1. At first show that:

$$
\begin{equation*}
J_{\mathrm{el}}^{(n)} \geq \alpha\left(\sum_{i=0}^{n}\left\|u_{i+1}-u_{i}\right\|\right)^{2}+\beta \quad(\alpha, \beta>0) \tag{2}
\end{equation*}
$$

2. Futhermore, prove that:

$$
\begin{equation*}
\|u\| \leq \sqrt{n+2}\left(\sum_{i=0}^{n}\left\|u_{i+1}-u_{i}\right\|+\left\|u_{0}\right\|\right) . \tag{3}
\end{equation*}
$$

3. Finally, use both results to show that

$$
J_{\mathrm{el}}^{(n)} \geq \frac{\alpha^{*}}{2}\|u\|^{2}+\beta^{*}, \quad\left(\alpha^{*}>0, \beta^{*} \in \mathbb{R}\right)
$$

The statement (1) is a combination of (22), (3) together with inequality for $J_{f}^{(n)}(u)$.
Helpful inequality:

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2}
$$

Exercise 3 Analytical Solution For Heat Transfer Equation

Consider the one-dimensional heat transfer equation

$$
\partial_{t} u-\partial_{x}^{2} u=0
$$

in the space-time domain

$$
D^{+}=\left\{(x, t) \in \mathbb{R}^{2} \mid 0<x<1,0<t<\infty\right\} .
$$

1. Show that the initial value problem with initial value $\left.u(x, t)\right|_{t=0}=f, f \in C^{1}([0,1])$ and boundary condition $u(0, t)=u(1, t)=0$ is solved by

$$
u(x, t)=\sum_{n=1}^{\infty} \tilde{f}_{n} e^{-n^{2} \pi^{2} t} \sin (n \pi x),
$$

where \tilde{f}_{n} denotes the n-th fourier coefficient of f. In order to do this you can use separation of variables $u(x, t)=v(x) \cdot w(t)$.
2. Show that

$$
\Phi=\frac{1}{\sqrt{4 t}} e^{-\frac{x^{2}}{4 t}}
$$

is a solution of heat trasfer equation.

Consider the one-dimensional heat transport equation

$$
\partial_{t} u-\partial_{x}^{2} u=0
$$

on the space-time domain

$$
D^{+}=\left\{(x, t) \in \mathbb{R}^{2} \mid 0<x<1,0<t<\infty\right\} .
$$

The program used to solve this exercise can be found in dune-npde/uebungen/uebung03 of your dunenpde module. It already calculates and prints the fourier coefficients

$$
a_{n}:=2 \int_{0}^{1} f(x) \sin (2 \pi n x) d x \quad b_{n}:=2 \int_{0}^{1} f(x) \cos (2 \pi n x) d x \quad(N \geq n \geq 0)
$$

of the function

$$
f(x, t)=\frac{1}{\sqrt{4 t}} e^{-\frac{(x-0.5)^{2}}{4 t}}
$$

for time $t_{0}=0.001$. The function uniformintegration() is used to determine the necessary integrals. This is allegedly done with a given precision, that can be set with parameter accuracy.

1. Describe how the function uniformintegration() works. Specify the circumstances under which you can actually estimate the quadrature error with accuracy.
2. The quadrature order of local gauss quadrature can be set in the configuration file uebung03.ini. Examine the convergence of occuring integrals. Does the convergence behaviour correspond to your expectatitons?
3. Implement a functor realizing the function

$$
g(x, t)=\frac{b_{0}}{2}+\sum_{n=1}^{N} e^{-n^{2} 4 \pi^{2}\left(t-t_{0}\right)}\left(a_{n} \sin (n 2 \pi x)+b_{n} \cos (n 2 \pi x)\right) .
$$

4. Implement a functor that calculates

$$
e(t)=\int_{0}^{1}(g(x, t)-f(x, t))^{2} d x
$$

using uniformintegration(). How does $e(t)$ change from $t=0.001$ to $t=0.02$? Create vtk files to visualize f and g for time step distance $\Delta t=0.001$ and explain your observations.

