Prof. Dr. Peter Bastian, Michal Tóth
IWR, Universität Heidelberg

Exercise 1 Tricomi Equation

Consider the Tricomi equation

$$
\partial_{y}^{2} u+y \partial_{x}^{2} u=0
$$

for a scalar-valued function u on the domain

$$
\Omega=[-1,1] \times[-1,1]
$$

Determine which class of equation it is.
This nonlinear equation can be used to model an object travelling at supersonic speed.
(2 Points)

Exercise 2 Weak differentiability

Continuous, piecewise-smooth functions in 1D are weakly differentiable (see example 5.31 in the lecture notes). The continuity of the function is crucial.

Consider the function

$$
f(x)=\left\{\begin{array}{rl}
-1 & x \in(-1,0] \\
1 & x \in(0,1)
\end{array}\right.
$$

and show that the weak derivative of f does not exist.
(2 Points)

Exercise 3 Projections

Let Y be a subspace of a normed vector space X. An operator $P: X \rightarrow X$ is said to be a projection on Y if

$$
P^{2}=P \quad \text { and } \quad \text { Range }(P)=Y
$$

Show the following:

1. P is a projection if and only if $P: X \rightarrow Y$ and $P=I$ on Y.
2. If P is a projection, then $X=\operatorname{Ker}(P) \oplus \operatorname{Range}(P)$, where \oplus denotes a direct sum.

Exercise 4 Operators on Hilbert space

Let H be a Hilbert space and Y a closed subspace of H. Define the map $P: H \rightarrow Y$ for each $v \in H$ as

$$
\forall y \in Y:(P(v), y)=(v, y)
$$

Let us prove that:

1. Operator P is linear and continuous.
2. For $v \in H$ it holds

$$
\|P(v)-v\|=\min _{y \in Y}\|y-v\| .
$$

Hint: Apply Lax-Milgram Theorem and Characterization Theorem.

Exercise 5 Riesz Theorem (constructive proof)

1. Find a constructive proof of Riesz Theorem:

Let $\left(V,(., .)_{V}\right)$ be a real Hilbert space and $v^{\prime} \in V^{\prime}$ an arbitrary linear form on V. Then there exists a unique $u \in V$ such that

$$
\left\langle v^{\prime}, w\right\rangle_{V^{\prime}, V}=(u, w)_{V} \quad \forall w \in V
$$

Moreover, $\left\|v^{\prime}\right\|_{V^{\prime}}=\|u\|_{V}$.

Hints:

(a) First prove the uniqueness (under the assumption of an existence) of u.
(b) Let $M=\left\{w \in V \mid\left\langle v^{\prime}, w\right\rangle_{V^{\prime}, V}=0\right\}$. Show that M^{\perp} is a one-dimensional subspace of V (or $v^{\prime}=0$ holds) and that $V=M \oplus M^{\perp}$ holds.
(c) Show that for $z \in M^{\perp}$ the vector u is given by

$$
u=\frac{\left\langle v^{\prime}, z\right\rangle_{V^{\prime}, V}}{\|z\|_{V}^{2}} z
$$

2. After proving Riesz Theorem, show the second part:

The map $\tau: V^{\prime} \rightarrow V$ mapping $v^{\prime} \in V^{\prime}$ to the corresponding $u \in V$ is linear and an isometry, i.e. $\left\|\tau v^{\prime}\right\|_{V}=\left\|v^{\prime}\right\|_{V^{\prime}}$.

