Note: Do not forget to update your dune installation as described in exercise sheet 2 .

Exercise 1 Crouzeix-Raviart A-posteriori error estimation

Let $\Omega \subset \mathbb{R}^{2}$ be a domain with Lipschitz boundary and $\left\{\mathcal{T}_{h}\right\}_{h}$ be a family of conform and shape regular simplex triangulations with maximum edge size h. Let \mathcal{F}_{h} denote the set of all edges of the mesh \mathcal{T}_{h}. For given \mathcal{T}_{h} we define following spaces

$$
P_{c, 0}^{1}=\left\{v_{h} \in C^{0}(\Omega),\left.\quad v_{h}\right|_{\partial \Omega}=0, \quad \forall t \in \mathcal{T}_{h}:\left.v_{h}\right|_{t} \in \mathbb{P}^{1}\right\}
$$

and

$$
P_{p t, 0}^{1}=\left\{v_{h} \in L^{1}(\Omega), \quad \forall t \in \mathcal{T}_{h}:\left.v_{h}\right|_{t} \in \mathbb{P}^{1}, \quad \forall e \in \mathcal{F}_{h}: \int_{e} \llbracket v_{h} \rrbracket_{e}=0\right\}
$$

where $\llbracket f \rrbracket_{e}$ is the jump of function f over edge e (if $e \subset \partial \Omega$ we define $\left.f\right|_{e}=0$). Only space $P_{c, 0}^{1}$ is a susbspace of $H_{0}^{1}(\Omega)$.
For space $V_{h}:=P_{p t, 0}^{1}$ the bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ is defined as

$$
a_{h}\left(u_{h}, v_{h}\right)=\sum_{t \in \mathcal{T}_{h}} \int_{t} \nabla u_{h} \cdot \nabla v_{h} d x
$$

together with the energy norm

$$
\left\|v_{h}\right\|_{V_{h}}:=\sqrt{a_{h}\left(v_{h}, v_{h}\right)} .
$$

The function $u \in H_{0}^{1}(\Omega)$ and $u_{h} \in V_{h}$ are solution of

$$
\forall v \in H_{0}^{1}(\Omega): \int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x
$$

and

$$
\forall v_{h} \in V_{h}: \sum_{t \in \mathcal{T}_{h}} \int_{t} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{\Omega} f v_{h} d x
$$

Show the a-posteriori error estimation:

$$
\left\|u-u_{h}\right\|_{V_{h}} \leq c\left(\sum_{t \in \mathcal{T}_{h}} e_{t}\left(u_{h}, f\right)^{2}\right)^{\frac{1}{2}}+2 \inf _{v_{h} \in P_{c, 0}^{1}}\left\|u_{h}-v_{h}\right\|_{V_{h}}
$$

where the constant c depends only on the shape regularity of the mesh (independent of h) and use

$$
e_{t}\left(u_{h}, f\right)=h_{t}\left\|f+\Delta u_{h}\right\|_{0, t}+\frac{1}{2} \sum_{e \in \partial t} h_{e}^{\frac{1}{2}}\left\|\llbracket \partial_{n} u_{h} \rrbracket\right\|_{0, e}
$$

with h_{e} and h_{t} denoting the length of e and the longest edge in \mathcal{T}_{h} respectively.

In the lecture a posteriori error estimator for the second order elliptic boundary problem was derived. In this exercise we consider the Laplace equation with Dirichlet boundary conditions:

$$
\begin{array}{rc}
-\Delta u=0, & x \in \Omega \\
u(x)=g(x), & x \in \partial \Omega
\end{array}
$$

on a polygon domain $\Omega \subset \mathbb{R}^{d}$ (not necessary convex). We restrict our estimation to P^{1} finite elements. Follow the lecture and derive the a posteriori error estimation for the error $e_{h}=u-u_{h}$. (4 Points)

Exercise 3 Residual estimation

In this exercise, we will solve reentrant corner problem using grid adaptation. We consider the Poissson problem in two space dimensions $\Delta u=0$ on domain Ω (see picture) with the exact solution in polar coordinates

$$
g(r, \varphi)=r^{\frac{2}{3}} \sin \left(\frac{2}{3} \varphi\right) .
$$

In uebungen/uebung12 of your dune-npde module you can find a program that solves this problem for conform P_{1} elements on the simplex mesh. Your task is to implement the a-posteriori error estimation for P_{1} elements and use it to the local mesh adaptation.

1. The code is almost complete. You should only complete the implementation of the function computeLocalError () in the file local_error.hh, that should compute the residual error indicators η_{t} from the lecture.
2. The function adaptGrid() adapts the mesh dependent on values in vector indicators. You can decide between two strategies which cells to refine. Describe the difference between these two strategies.
3. Choose one of the strategies and compare the achieved accuracy (with respect to the number of degrees of freedom) to results using global mesh refinement.
