
Object-Oriented Programming for Scientific Computing WS20/21 Exercise Sheet 1
Dr. Ole Klein, Stefan Meggendorfer Submission date 18.11.2020
IWR, Heidelberg University

Exercise Sheet 1
Note: You have two weeks for each of the exercise sheets (except maybe the last one). Your solutions
have to be commited to a GitLab repository for submission. Details about this process will be provided
in the first two weeks of the semester. Submissions of groups of up to three people are possible and
encouraged.

Exercise 1: Git Survival Skills (10 points)
This exercise serves as an introduction to Git and GitLab. Please perform the following tasks in a
private repository, and put only your observations and answers into the official repository of your
group. Below the lists of tasks is a list of Git commands that might be useful.

Perform the following tasks, and document which Git command you have used, briefly describing its
purpose:

(a) Create a new folder on your computer, and initialize a new Git repository inside.

(b) Put a text file into the repository (its contents don’t matter, you could take one of the source
files of the lecture), add it to the files tracked by Git, and commit your changes to the repository,
using a meaningful commit message.

(c) Check that your commit was successful by reading the log file, and take a look at the status of
your working directory.

(d) Change something in the text file, add and commit those changes, assume you had made a
mistake, and revert your commit (note that git revert is not the right command in this situa-
tion).

(e) Edit the file a second time, but stash your changes away to keep them save for using them at
some later point in time.

Create a GitLab account (about.gitlab.com) if you don’t have one. Find the “Projects” tab, and
press the “New Project” button. Enter a project name and set visibility to private. Follow the instruc-
tions under “Git global setup” and “Existing Git repository” to get your private project repository
on GitLab. Note that there are also options for completely new projects or existing (non-Git) folders.

(f) Use the URL on the project page to create another copy of your repository on your computer
(you can delete it afterwards).

(g) Browse your repository content under the “Files” tab, and perfom a quick edit to your text file,
commiting the change directly from GitLab.

(h) Change a different line on your computer. Pulling the newest version from GitLab should silently
incorporate both your changes.

(i) Edit the line you changed locally also on GitLab, but in a different way. This time, pulling
from GitLab should cause a merge conflict. Check the difference to your last clean version, and
try to resolve the conflict by either accepting one of the versions (“theirs”/“ours”) or using an
interactive merge tool. Resolving a conflict includes commiting the merged files and explaining
your reasoning and choices.

(j) Reapply the change you had stashed away, and check that the difference to your previous
repository state is what you would expect.

about.gitlab.com


Object-Oriented Programming Exercise Sheet 1, 18.11.2020 Page 2 / 2

This exercise has left out several important Git concepts, especially branches and tags, but should
suffice as a starting point for those who have not used Git before. There are also several tabs in
GitLab that might be useful, e.g. the “Commits” and “Graph” tabs under “Repository”, the “Issues”
and “Todos” tabs, and the “Wiki” tab. If and how you use these features is up to you.

List of example Git commands:

git add <file/folder>, git checkout --ours/--theirs <file>, git clone <url>, git commit,
git init, git log, git mergetool, git pull, git push, git reset HEAD~, git stash, git status,
git stash pop

Exercise 2: Basic Debugging (10 points)
You can find three C++ files for download on the lecture website, namely vector_broken.h,
vector_broken.cc and testvector.cc. These files contain several bugs. Try to find those bugs using
GDB.

Download the three files and compile them with debug information:

1 g++ -std=c++11 -Og -g -o testmatrix matrix_broken.cc testmatrix.cc

You can now start your program with GDB in TUI mode:

1 gdb -tui ./testmatrix

Entering layout split at the prompt (or la sp, almost all commands can be abbreviated) displays
the assembly code equivalent of the program, and layout src (or la sr) removes the assembly
window if you don’t need / want it.

The most important GDB commands, with their abbreviation and possible arguments, are probably

• break [b] <file:line, file:function> (enable breakpoint at specified location, file may be
omitted),

• backtrace [bt] (show hierarchy of called functions),

• continue [c] (continue running after break),

• next [n] (execute marked line),

• print [p] <expression> (print content of variable / object),

• step [s] (enter first function on marked line),

• run [r] <arguments> (start program with given arguments, if any),

• and watch <expression> (break if value of expression changes).

These commands are sufficient for this exercise, but you can find additional information at htt-
ps://beej.us/guide/bggdb/#qref or any other GDB reference card on the internet. Note that print
can be used to access members of objects, e.g. p a.b or p a->b, no need to step into some method
for that — even if the member b is private.

Use GDB to find and correct the bugs in the provided source code, and document which bugs you
found and how. There is a bug that is not covered by the tests, search for it. How would a test for
this bug look like? What is problematic about the specific choice of test matrices in testmatrix.cc,
what kind of bug are they unable to detect?

Note: the file testvector.cc does not contain bugs.

https://beej.us/guide/bggdb/#qref
https://beej.us/guide/bggdb/#qref

