
Object-Oriented Programming for Scientific Computing WS20/21 Exercise Sheet 10
Dr. Ole Klein, Stefan Meggendorfer Submission date 17.02.2021
IWR, Heidelberg University

Exercise Sheet 10

Exercise 1: Variadic Templates: Tuples (10 points)
The lecture discussed a custom implementation of arrays using recursive data types:

• a zero-element array is simply an empty struct

• an (N +1)-element array is an N -element array (public inheritance) storing an additional element

• the number of elements N and the type of elements T are template parameters

• a templatized entry method returns the M -th entry, 0 ≤M < N , of the array

Back then we noted that tuples could also be implemented this way, but only if variadic templates are
available for the arbitrarily long list of stored types. With variadic templates having been introduced
in the lecture, you are tasked with implementing such a recursive variadic class template that defines
tuples.

Proceed as follows:

(a) Define a class template Tuple that accepts an arbitrary number of types, but don’t provide an
implementation. Every possible case is handled through a specialization, but you will see that
you need this general declaration, because otherwise you will not be able to match the template
parameter signatures.

(b) A tuple containing N + 1 variables of up to N + 1 different types consists of a variable of
the first type and a tuple of the remaining N variables with associated types (again via public
inheritance). Create a template specialization for the case N > 0, with an appropriate data
member, base class specification, and constructor.

(c) Write a method function template entry<int M>() that returns the M -th entry (0 ≤M < N).
Two cases are possible:

• M = 0: The zeroth entry is the data member, so we can simply return that.

• M 6= 0: The requested entry is part of the base class, so we forward the call and return what
the base class gives us.

Use SFINAE to differentiate between these two cases, and handle them separately. Note that we
don’t actually know the returned type in the second case. Even knowing the return type of the
direct base class is not enough, because the actual data member might be in some base class of
the base class. One possible solution would be an internal template metaprogram that extracts
the correct type. Is there a simpler solution?

(d) The class std::tuple has two different access methods: via index as above, or via requested
type, if the latter is unique across the tuple. Provide this functionality for the custom tuple class,
i.e., write a method function template entry<U>() that returns the entry of type U. There are
two possibilities:

• The data member has type U and that type doesn’t appear in the base class: simply return
the data member as above.

• The data member doesn’t have type U: hand the request over to the base class.

Use SFINAE to differentiate between these two cases, and handle them separately. Note that we
don’t cover the case where U appears more than once explicitly — it’s okay if this just results

Object-Oriented Programming Exercise Sheet 10, 17.02.2021 Page 2 / 2

in a compilation error. You will need information about contained types: write an internal class
template struct contains<U> that exports true if the tuple or its base classes contain a data
member of type U, else false. Use normal logic operators (&& and ||) in the SFINAE and internal
struct, or the C++17 class templates std::conjunction and std::disjunction if you want.

(e) Provide a base case, which is an empty tuple. Just as with the custom arrays, this is essentially
an empty struct, but you will have to provide a base case for the internal contains struct.

The complete implementation contains four different entry methods, and the SFINAEs make sure
that exactly one of them matches in any situation, whether an index is passed as parameter or a
type. Note that in contrast to our custom implementation, the class std::tuple uses a free function
template named std::get for access. The main reason is that our version becomes slightly awk-
ward to use within templates, where one has to specify that the method is, indeed, also a template:
t.template entry<2>() or similar.

Exercise 2: Concurrency with Threads (10 points)
Use threads to implement a parallelized scalar product of two vectors. You may use any vector class:
the numerical ones of the lecture, a std::vector, or even a plain old C-style array. Alternatively, you
may provide a function template to handle all these separate cases simultaneously.

Create the following four versions, each operating on a subset of the vector components:

(a) A version using mutexes and locks, directly adding the occuring products to the result.

(b) A second version using mutexes and locks, computing the local scalar product of the indices
belonging to the thread, and then adding those local products to the result.

(c) A variant of the first version, using atomics instead of mutexes.

(d) A variant of the second version, using atomics instead of mutexes.

The main program should divide any given pair of two vectors into segments of more or less equal size
and hand them two a matching number of worker threads. Test your four versions on large vectors,
and measure the required time. What happens for larger numbers of threads, or what do you expect
would happen, in case the number of parallel threads you can start is very limited?

Assume for a moment that the number of threads is so large that even the second and the fourth
version suffer from congestion (this is a real problem, albeit in the context of message passing on very
large super clusters). What could be done to alleviate the problem? You don’t need to implement the
solution.

In a real numerical program, the scalar product would be used for subsequent computations. An
example is the Conjugate Gradients method, where the expression for the step direction of the scheme
contains a scalar product. In a parallelized version of such a program, the threads would not just
compute the scalar product, but perform other operations before and after. It is obviously very
important to make sure that the scalar product has been fully computed before using the result in
other computations.

(e) Create a synchronization point (barrier) for the first two versions, e.g., using counters and
condition variables or something similar. After this point, have each thread print the scalar
product as a stand-in for further computations, and check that all threads report the same value.

(f) Inform yourself about memory order models and their consequences, and try to create a similar
barrier for the atomics versions, e.g., using atomic counter variables and a Boolean flag that uses
load and store. Print and check the results as above.

