Object-Oriented Programming for Scientific Computing WS20/21 Exercise Sheet 3
Dr. Ole Klein, Stefan Meggendorfer Submission date 02.12.2020
IWR, Heidelberg University

Exercise Sheet 3

Exercise 1: Matrix Class Implementation (20 points)

Note: this exercise will form the foundation for several of the upcoming exercises, so if you want to
work on only a subset of the sheet, it might be a good idea to start on this one.

In Scientific Computing the concept and use of matrices is crucial. Regardless of the field of expertise —
if it is in optimization, statistics, artificial intelligence, or the solution of partial differential equations
— we need matrices and solutions of linear systems of equations in nearly all applications.

In this exercise, we will implement a class Matrix in analogy to the class Vector from exercise sheet 1.
Take care of the following points:

(a) Class Matrix should have all functionality that class Vector has (constructors, methods, etc.).
(b) The entries should be stored in a container of type std: :vector<std: :vector<double>>.

(c) Instead of the number of elements int N in class Vector, class Matrix should contain the two
numbers int numRows and int numCols that represent the number of rows and the number of
columns respectively. Use numRows and numCols in all places where the member functions of class
Vector used N, and re-implement the functionality adapted to the use of a class that represents
matrix objects.

(d) Use the member function double& operator() (int i, int j) for accessing the (i,j)-th ele-
ment of objects of class Matrix.

(e) Use the member function std: :vector<double>& operator[] (int i) to return the i-th row
of a matrix object.

(f) Class Matrix should have an additional constructor that constructs square matrices.

In addition to the member functions mentioned above, implement free functions that provide
(g) the addition of two matrices,

(h) the multiplication of a matrix with a scalar,

(i) the multiplication of a scalar with a matrix,

(j) a matrix-vector multiplication, where vectors are of type std: :vector<double>,

(k) a matrix-vector multiplication, where vectors are of type Vector.

Write a test program that tests all functionality of class Matrix (construction, the different kinds of
multiplication, element access).

Exercise 2: Linked List (10 points)

Using the simple example of a chained list we will practice the interaction of constructors, destructors
and pointers.

We want to program a linked list which can store an arbitrary number of values of type int. Such a
list consists of an object of class List, which refers to a sequence of objects of class Node. The list
elements are stored in a component int value within each node, and a pointer Node* next points
to the next node. The end of the list is designated by the pointer next having the value nullptr.



Object-Oriented Programming Exercise Sheet 3, 02.12.2020 Page 2 / 2

(a)
(b)

()

1

10
11

12

What is special about a pointer having the value nullptr?

Implement the class Node. Make sure that all member variables are always initialized, especially
the next pointer.

Implement the class List with the following methods:

class List

{
public:

List O; // create an empty list
~List O; // clean up list and all nodes
Nodex first () comst; // return pointer to first entry
Node* next (const Node* n) const; // return pointer to node after n
void append (int i); // append a value to the end
void insert (Node* n, int i); // insert a wvalue before n
void erase (Nodex n); // remove n from the list

s

List must also store the beginning of the list, where would you place it in the class declaration?
The next pointer of class Node should be private to ensure that the list structure isn’t acciden-
tally changed outside of class List. The member value is public to allow read and write access
from outside the class. The line friend class List; has to be inserted into the declaration of
the class Node to give the List class access to the next pointer. Additionally make sure that the
destructor deletes all allocated Node objects.

Test your implementation with the following program:

int main ()

{
List list;
list.append(2);
list.append(3);
list.insert(list.first(), 1);

for (Node* n = list.first(); n != 0; n = list.next(n))
std::cout << n->value << std::endl;

}
What happens if one copies the list? And what happens if both lists are deleted?

int main ()

{
List list;
list.append(2);

List list2 = list;
}



