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Introduction Goals of the Lecture

Prerequisites and Objectives

Prerequisites
• Familiarity with at least one programming language

• At least procedural programming in C / C++

• Willingness to program in practice

Objectives
• Improved programming skills

• Introduction of modern programming techniques

• Strong focus on topics of relevance to Scientific Computing
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Introduction Goals of the Lecture

Course Outline

General course outline:

Short recapitulation of basics data types, functions, templates, classes, etc.

The C++ Standard Library input/output, containers, iterators, algorithms,
exceptions, etc.

Advanced topics dynamic polymorphism, RAII, template meta
programming, static polymorphism, SFINAE, etc.

C++11 features smart pointers, lambda expressions, variadic
templates, random numbers, chrono library,
threads, etc.

C++14 features generic lambdas, variable templates

C++17 features guaranteed copy elision, structured bindings, fold
expressions

Upcoming C++20 features modules, concepts, ranges, coroutines

The baseline for the lecture is the C++11 standard, with changes due to C++14
and C++17 taken into account. The new features of the upcoming C++20
standard will be introduced where appropriate.
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Introduction Formalities

Lecture Website

Link: conan.iwr.uni-heidelberg.de/teaching/oopfsc ws2020/

Content:

• Link to draft of official standard

• Literature recommendations and quick reference

• GitLab instructions (for exercises)

• Lecture slides (updated after each lecture)

• Exercise sheets (same as above)

MUESLI links (also listed on the lecture website):

• Registration: muesli.mathi.uni-heidelberg.de/user/register

• Course page: muesli.mathi.uni-heidelberg.de/lecture/view/1288
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Introduction Formalities

Exercises and Exam

Exercises:

• Will be completely online this semester (see homepage)

• Assistant: Stefan Meggendorfer 〈stefan.meggendorfer@iwr.uni-heidelberg.de〉
• New exercises every week: on the website after the lecture

• To be handed in right before the lecture on Wednesday

• Geared towards g++ and Linux

• Correction, grading etc. depends on course size

Exam:

• Probably in the last week of the semester (TBA)

• Mandatory for all participants

• 50% of the points in the exercises required for admission, plus active
participation in discussion
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Introduction Why C++?

Why C++?

A (non-exhaustive) list of programming languages for scientific computing:

Fortran (1957) old (think punchcards) but still very relevant today (e.g.,
numerical linear algebra, legacy physics/astronomy codes)

C (1972) widespread language for high-performance low-level programming
(operating systems, compilers, . . . )

C++ (1985) started as “C with classes”, newer iterations favor a style that is
closer to, e.g., Python

Python (1990) popular language with large ecosystem of numerical software
libraries

Julia (2012) relatively new language specifically designed for high-performance
scientific computing

There are also several domain specific languages (DSL) that are strong in their
respective domains, e.g.:
MATLAB (1984), R (1993)
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Introduction Why C++?

Why C++?

Each language has its advantages and disadvantages, so which should be used for
a course like this one?

Ideally, such a programming language for scientific computing . . .

• is general-purpose, so no DSL

• produces highly efficient and portable programs

• provides a large ecosystem of numerical / scientific libraries

• has proven its suitability over the years

• has a large following, which provides support and makes it unlikely that the
language will vanish

• can serve as a starting point to learn other, related languages

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 7 / 277



Introduction Why C++?

Why C++?

Fortran has a small community nowadays, is used for very specific applications,
and its writing style has little overlap with the other aforementioned languages.

C is basically a subset of C++, apart from some technicalities.

Python would be a really good choice, but it is easier to move from C++ to
Python than vice versa, and Python tends to hide some aspects of scientific
programming that should be taught.

Julia is a relatively new language that is not yet in wide-spread use.

. . . which leaves us with C++ as a solid choice.
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Introduction Why C++?

Versions of C++

The C++ language has evolved significantly over the last few years:

• “Classic” C++ code is officially known as C++98/03.

• Current versions of C++, i.e., C++11 with its relatively minor updates
C++14 and C++17, have quite a different feel.

• In general, modern C++ constructs should be preferred wherever possible.

• But: these are often not covered in introductory courses.

We therefore start the lecture with a quick review of C++98/03, which is then
used as starting point to discuss modern C++, how it evolved, and how it can be
used to produce more readable and more maintainable code.
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Introduction Why C++?

Evolution of C++
Classic C Style

// C-style fixed-length array
int fix[10] = {0,1,2,3,4,5,6,7,8,9};

// "fix" doesn't know its own size
for (int i = 0; i < 10; i++)

if (fix[i] % 2 == 0)
std::cout << fix[i] << " ";

std::cout << std::endl;

// C-style "variable-length" array
int* var = new int[n];
for (int i = 0; i < n; i++)

var[i] = i;

// "var" isn't a real variable-length array:
// adding elems requires copying (or tricks)

// "var" doesn't know its own size
for (int i = 0; i < n; i++)

if (var[i] % 2 == 0)
std::cout << var[i] << " ";

std::cout << std::endl;

// oops, forgot to delete array: memory leak!

• C-style arrays are just references
to contiguous blocks of memory
(basically pointers to first entry)

• They don’t follow value
semantics: copies refer to same
memory blocks

• Their length is not stored and
has to be specified explicitly,
inviting subtle errors

• Runtime fixed-length arrays
aren’t true variable-length arrays

• May lead to nasty memory leaks
if they aren’t explicitly
deallocated
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Introduction Why C++?

Evolution of C++
C++98/03

// C++ variable-length array
// from header <vector>
std::vector<int> var(n);
for (int i = 0; i < n; i++)

var[i] = i;

// std::vector is a real variable-length array
var.push_back(n+1);

// no need to remember size of "var"
for (int i = 0; i < var.size(); i++)

if (var[i] % 2 == 0)
std::cout << var[i] << " ";

std::cout << std::endl;

// very general (also works for maps, sets,
// lists, ...), but reeeally ugly
for (std::vector<int>::const_iterator it

= var.begin(); it != var.end(); ++it)
if (*it % 2 == 0)

std::cout << *it << " ";
std::cout << std::endl;

• C++ introduced
std::vector , a true

variable-length array, i.e.,
elements can be added and
removed

• Vectors have value semantics:
copies are deep copies

• A vector always knows its
current size, no need to keep
track

• Same performance as C-style
arrays (drop-in replacement)

• Can be used in generic code via
iterators (but leads to very
verbose code)
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Introduction Why C++?

Evolution of C++
C++11 / C++20

// C++ variable-length array
std::vector<int> var(n);
// C++11: fill using algo from <numeric> header
std::iota(var.begin(),var.end(),0);

// C++11: range-based for loop
// hides ugly iterators
for (const auto& e : var)

if (e % 2 == 0)
std::cout << e << " ";

std::cout << std::endl;

// C++11: lambda expression (ad-hoc function)
auto even = [](int i){return i % 2 == 0;};

// C++20: filters and transforms
for (const auto& e : var

| std::views::filter(even))
std::cout << e << " ";

std::cout << std::endl;

• C++11 introduced range-based
for loops, making

iterator-based code much more
readable

• C++20 will introduce filters
and transforms that can operate
on such loops, here in the
example based on a C++11
lambda expression (ad-hoc
function definition)
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Introduction Why C++?

Evolution of C++
C++11

// C-style fixed-length array
int fix[10] = {0,1,2,3,4,5,6,7,8,9};

// C++11: range-based for works with
// C-style arrays, but only for those
// with compile-time fixed length!
for (const auto& e : fix)

if (e % 2 == 0)
std::cout << e << " ";

std::cout << std::endl;

// C++11: modern array type from header <array>
std::array<int,10> fix2 = {0,1,2,3,4,5,6,7,8,9};

// no need to remember size of "fix2"
for (int i = 0; i < fix2.size(); i++)

if (fix2[i] % 2 == 0)
std::cout << fix2[i] << " ";

std::cout << std::endl;

• C++11 range-based for loops
can be used with legacy arrays,
since the compiler knows their
size implicitly

• However, this doesn’t work
when the length is
runtime-dependent!

• C++11 also introduced
std::array as a drop-in

replacement for fixed-length
C-style arrays, with known size
and value semantics like
std::vector
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Introduction Why C++?

Versions of C++

Which version of C++ should I learn / use?

C++98/03 remains relevant due to (a) vast collections of legacy codebases
resp. (b) programmers that still use old constructs and are set in
their ways.

C++11 is the current baseline and should be supported on virtually all
platforms and compute clusters by now.

C++14 is a minor update of C++11 and is also a safe choice. Most
software projects should accept C++14 code by now.

C++17 is a second minor update of C++11. This is perfectly fine for your
own code, but keep in mind that large projects may be restricted to
C++14 to support some architectures, see for example DUNE 1.

C++20 is the upcoming new version and will bring major changes. This will
become relevant in the near future.

1https://www.dune-project.org
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Fundamental Concepts of C++

Fundamental Concepts

The modern components of C++ are often built upon older constructs of the
language, may serve as superior replacements for some of them, or both.

These fundamental concepts are:

• variables and types

• pointers and references

• control structures

• functions and templates

• classes and inheritance

• namespaces and structure

They are taught in practically any introductory course that is based on C++. We
will quickly review them to make sure that everyone has the prerequisites for the
following lectures.
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Fundamental Concepts of C++ Variables and Data Types

Variables, Temporaries, Literals

C++, like any other programming language, concerns itself with the computation
and manipulation of data.

This data represents many different things, from simple numbers and strings, to
images and multimedia files, to abstract numerical simulations and their solutions.

Put simply, C++ knows three different categories of data:

Variables are names for locations where data is stored, e.g., int i = 5;

referring to an integer value in memory.

Temporaries represent values that aren’t necessarily stored in memory, e.g.,
intermediate values in compound expressions and function return
values.

Literals are values that are explicitly mentioned in the source code, e.g., the
number 5 above, or the string "foo" .
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Fundamental Concepts of C++ Variables and Data Types

Data Types

C++ is a strongly-typed language, which means that each such representation of
data, i.e., variable, temporary or literal, must have an associated data type.

This data type specifies how the underlying binary sequence encodes the data
(semantics), and more importantly ensures that it isn’t possible to accidentally
misinterpret data or use it in the wrong context (type safety).

C++ has a number of built-in data types and allows the introduction of
user-defined types based on certain rules. Each type is associated with a range of
valid values of that type.
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Fundamental Concepts of C++ Variables and Data Types

Fundamental Types

C++ provides a set of fundamental, or built-in, types, mostly inherited from C.

void :

A type that has no valid values. Represents “nothing” (e.g., as return type),
sometimes “anything” (when using pointers).

nullptr_t :

A type with one value, nullptr , indicating an invalid pointer. Introduced to

make pointer handling safer.
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Fundamental Concepts of C++ Variables and Data Types

Fundamental Types

bool :

Two values, true and false , for standard Boolean algebra (truth values).

char et al.:

ASCII characters, also similar types for unicode support ( wchar_t , char16_t ,

char32_t ).

int et al.:

Integer numbers, with different ranges ( short , int , long , long long ) and

signedness ( signed and unsigned ). signed is default and may be omitted.

Also a standard type for container sizes ( std::size_t ), one for pointer

differences ( std::ptrdiff_t ), and a very long list of fixed width types, like

std::int8_t , etc.
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Fundamental Concepts of C++ Variables and Data Types

Fundamental Types

float et al.:

Floating point numbers, with single precision ( float : 32 bit), double precision

( double : 64 bit), or extended precision ( long double : usually 80 bit).

Nowadays, double is used as default floating point type if there is not a good
reason to use something else.

Each of the integer and floating point types gives certain guarantees about the
representable range. These and other properties can be queried using
std::numeric_limits .
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Fundamental Concepts of C++ Variables and Data Types

Introducing New Types

These built-in types can be combined with four different mechanisms to produce
new type definitions. We already saw the first one, C-style arrays, the others are:

enum :

A user-defined set of constants:

enum Color = {red, blue, green};

These are actually integers behind the scenes, and may accidentally be used as
such: prefer → scoped enums.

struct :

The cartesian product of some types, i.e., the set of all possible tuples of values:

struct PairOfInts {int a; int b;};
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Fundamental Concepts of C++ Variables and Data Types

Introducing New Types

union :

The union set of some types, i.e., a type that can hold values from all specified
types:

union IntOrChar {int c; char d;};

Unions don’t store the type they currently contain, which is dangerous: consider
→ variants instead.

The resulting data types may then be used in further type definitions, e.g., structs
as members of other structs, or data types that are augmented with additional
components using → inheritance.
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Fundamental Concepts of C++ Variables and Data Types

Examples from DUNE

Whenever possible, we will have a quick look at real-world code from the DUNE
project2, preferably from the PDELab subproject3.

// classic enum defining boundary types for a domain

enum Type { Dirichlet=1, Neumann=-1, Outflow=-2, None=-3 };

// modern C++11 enum for DG finite element basis definition

enum class QkDGBasisPolynomial

{lagrange, legendre, lobatto, l2orthonormal};

// In C++, structs are actually just classes with

// public attributes, we therefore refer to class

// examples in that regard.

// DUNE currently contains no unions (which is a good thing!)

2https://www.dune-project.org
3https://www.dune-project.org/modules/dune-pdelab
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Fundamental Concepts of C++ Pointers and References

Pointers

Each type T , whether built-in or user-defined, has an associated type T*

(pointer to T ) defined, with the meaning “address of a value of type T in
memory”.

int i = 5;

int* p = &i;

int* p2 = new int;

*p2 = 4;

delete p2;

• An ampersand & in front of a variable produces its
address

• An asterisk * in front of a pointer dereferences the
pointer, providing access to the variable itself

• The keyword new can be used to acquire a slot in
memory that is unnamed, i.e., not associated with a
variable

It is imperative to release such memory with delete after it is no longer needed.
Doing so too early leads to nasty bugs, forgetting to do so causes memory leaks.
A possible solution are → smart pointers.
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Fundamental Concepts of C++ Pointers and References

References

In constrast to C, C++ introduces a second indirection that serves a similar
purpose: references T& . While pointers simply refer to some memory, and may be
modified to point to other locations, references are always an alias for an existing
entity.

int a = 5;

int& b = a; // b is an alias for a

b = 4; // this changes a as well

Note that the symbol & is used in two different contexts, first to take addresses
of variables and second to specify reference types. This is a bit unfortunate, but
can no longer be changed (both constructs have seen widespread use over the last
few decades).
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Fundamental Concepts of C++ Pointers and References

Rvalue References

The third kind of indirection in C++ is the rvalue reference T&& , introduced in

C++11. Ordinary references T& are now also known as lvalue references to
distinguish the two concepts.

The (oversimplified) definitions of lvalue and rvalue are:

lvalue could be on the lefthand side of an assignment, is an actual entity,
occupies memory and has an address

rvalue could be on the righthand side of an assignment, temporary and
ephemereal, e.g., intermediate values or literals

Such rvalue references are mostly restricted to two use cases: as forwarding
references in → range-based for loops, and as a vital component of the
implementation of → move semantics.
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Fundamental Concepts of C++ Pointers and References

Const-Correctness

The type of variables, pointers and references may be marked as const , i.e.,
something that can’t be modified. This guards against accidental modification
(bugs), and makes programmers’ intent clearer. Therefore, const should be used
wherever possible.

int i = 5; // may change later on

const int j = 4; // guaranteed to stay 4

const int& k = i; // k can't be modified

i += 2; // ... but this still changes k indirectly!

const int* p1 = &i; // pointer to const int

int const* p2 = &i; // same thing

int* const p3 = &i; // constant pointer to modifiable int

int const* const p4 = &i; // const pointer to const int

Read right-to-left: const modifies what’s left of it (think int const i ), but
the leftmost const may be put on the lefthand side for readability
( const int i ).
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Fundamental Concepts of C++ Control Structures

Selection (Conditionals)

Branches are a fundamental form of program flow control. An if statement
consists of a condition, some code that is executed if that condition is fulfilled,
and optionally other code that is executed if it isn’t fulfilled:

if (i % 2 == 0)

std::cout << "i is even!" << std::endl;

else

std::cout << "i is odd!" << std::endl;

There is also a switch statement, but if is used significantly more often.

switch(color) // the Color enum we introduced earlier

{

case red: std::cout << "red" << std::endl; break;

case blue: std::cout << "blue" << std::endl; break;

case green: std::cout << "green" << std::endl;

}
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Fundamental Concepts of C++ Control Structures

Repetition (Loops)

C++ provides two different kinds of loops, for and while loops. The former is
executed a fixed number of times4, while the latter is repeated until some
condition is met.

for (int i = 0; i < 10; i++)

std::cout << i << std::endl;

int j = 9;

while (j > 1)

{

std::cout << j << std::endl;

j /= 2; // half, rounded down

}

If j were one, the loop would be skipped completely. There is also a variant

do{...} while(...) that runs at least once.

4in practice — on a technical level, for and while are perfectly equivalent
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Fundamental Concepts of C++ Control Structures

Jump Statements

Sometimes code becomes more readable if certain parts of a loop can be skipped.
The continue statement can be used to skip the rest of the current loop

iteration, while break exits the loop prematurely:

for (int i = 0; i < 100; i++)

{

if (i % 2 == 0)

continue;

if (i > 10)

break;

// prints 1, 3, 5, 7, 9

std::cout << i << std::endl;

}

These two statements jump to the end of the current iteration resp. the loop, i.e.,
they are constrained. C++ also has an unconstrained goto jump statement, but

its use is strongly discouraged. There is one accepted use case: exiting several
nested loops simultaneously ( break would leave the innermost loop only).
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Fundamental Concepts of C++ Control Structures

Diagram: Loops and Branches

The two fundamental control structures:

if (A) B; [[else C;]]

start

cond. A
fulfilled?

else
present?B C

end

no

yes

yes

no

for (A;B;C) D;

start

A

cond. B
fulfilled?

D

C

end

yes

no

break

continue

The code

while (A) B;

is equivalent to

for (;A;) B;

and

do A while (B);

is equivalent to

A; while (B) A;
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Fundamental Concepts of C++ Functions

Subprograms (Functions)

A function is a subprogram that may be reused in different parts of the program,
which reduces verbosity and helps in structuring the code. Functions have a name,
zero or more arguments with fixed type, and a return type:

// expects one double argument, returns double

double square(double x)

{

return x * x;

}

// expects an int and a double as args, returns nothing

void printSquares(int a, double b)

{

std::cout << square(a) << " and " << square(b) << std::endl;

}

The special type void indicates a function that doesn’t return anything. Such
functions typically have side effects (I/O, or modifications to their arguments).
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Fundamental Concepts of C++ Functions

Call-by-Reference

C++ is one of the languages that always create copies of arguments when a
function is called (call-by-value). This means that local changes to these variables
don’t modify the originals. In some other languages, the local names refer to the
actual memory locations that were passed to the function (call-by-reference).

To emulate this behavior in C++, one passes a pointer or reference instead5:

// modifies its argument

void square(int* i)

{

*i = *i * *i;

}

// prefer references: code is more readable

void square(int& i)

{

i = i * i;

}

5There’s still a copy (of the pointer/reference), but it refers to the original location.
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Fundamental Concepts of C++ Functions

Call-by-Reference

Call-by-reference is also often used when a function should return more than one
value: one emulates this by modifying one or more reference arguments. C++17
and later standards provide → guaranteed copy elision and → structured bindings
as a better alternative.

For large entities (e.g., vectors, matrices) it often makes sense to pass them by
reference even if they should not be modified, since this avoids costly copy
operations (both in terms of runtime and memory use):

// directly access original vector,

// but guarantee that it isn't modified

int sum(const std::vector<int>& vec)

{

int out = 0;

for (int i = 0; i < vec.size(); i++)

out += vec[i];

return out;

}
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Fundamental Concepts of C++ Functions

Default Arguments

C++ supports default arguments for functions. Arguments with defaults may then
be omitted when calling the function6. This simplifies the function interface when
these arguments have certain values most of the time:

void print(const std::vector<int>& vec, std::string sep = ", ",

std::string pre = "(", std::string post = ")")

{

std::cout << pre;

for (int i = 0; i < vec.size() - 1; i++)

std::cout << vec[i] << sep;

if (!vec.empty())

std::cout << vec.back();

std::cout << post;

}

A call print(v) will then use a default layout, but other variants can be used if

desired.

6That’s why they always come last: to keep the call unambigious.
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Fundamental Concepts of C++ Functions

Function Overloading

C++ offers function overloading, i.e., using the same name for several different
functions, as long as each function call is uniquely determined by the arguments
(including handling of default arguments).

int maximum(int a, int b)

{

if (a > b)

return a;

return b;

}

// a default argument for c would have to be

// smaller than any possible integer

int maximum(int a, int b, int c)

{

return maximum(maximum(a,b),c);

}
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Fundamental Concepts of C++ Functions

Operator Overloading

C++ provides a large assortment of operators, i.e., tokens that are placed inline
to specify some operation, like assignment ( a = b ), arithmetics ( a + b ), or

comparison ( a < b ).

Most of these operators can also be defined for custom data types like
struct PairOfInts {int a; int b;}; . The definition works like that of an

ordinary function overload:

PairOfInts operator+(const PairOfInts& p1, const PairOfInts& p2)

{

return PairOfInts{p1.a + p2.a, p1.b + p2.b};

}

Given this definition, the following two expressions produce the same result:

// function call syntax

Pair p3 = operator+(p1,p2);

// operator syntax

Pair p4 = p1 + p2;
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Fundamental Concepts of C++ Functions

Function Pointers

In addition to the usual pointers, C++ also knows pointers to functions, e.g.,
int (*f)(int) , a pointer called f for functions expecting and returning int .

To simplify notation, the asterisk * and ampersand & may be omitted when
referring to function pointers and addresses of functions.

Using function pointers, functions may be used as arguments of other functions:

int square(int i)

{

return i * i;

}

int applyTwice(int f(int), int i) // optional "*" omitted

{

return f(f(i)); // no "*" allowed in call syntax

}

// computes pow(7,4), optional "&" omitted when taking address

std::cout << applyTwice(square,7) << std::endl;
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Fundamental Concepts of C++ Functions

Example from DUNE

I have found only one instance
of function pointers in DUNE
(but it’s hard to search for. . . ).

This code creates custom MPI
parallel operation handles for
given data types and binary
functions (specified as Type

and BinaryFunction template

parameters). The address of
operation is used to pass the

function the handle should
represent.

A C-style cast is used to remove
argument data types.

static MPI_Op get ()
{

if (!op)
{

op = std::shared_ptr<MPI_Op>(new MPI_Op);
MPI_Op_create((void (*)(void*, void*, int*,

MPI_Datatype*))&operation,true,op.get());
}
return *op;

}

static void operation (Type *in, Type *inout,
int *len, MPI_Datatype*)

{
BinaryFunction func;

for (int i=0; i< *len; ++i, ++in, ++inout) {
Type temp;
temp = func(*in, *inout);
*inout = temp;

}
}
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Fundamental Concepts of C++ Functions

The Main Function

The execution of a C++ program starts in the first line of a special function
called main , and ends when its last line is reached. Every C++ program has to
define exactly one such function.

The signature of the main function has to be one of

• int main() (this means command line arguments are ignored)

• int main(int argc, char** argv)

• int main(int argc, char* argv[])

The second and third variant have the same meaning: argc is the number of

arguments, and argv an array of C-style strings.

The return value of main is an error code — not returning anything is equivalent

to writing return 0; (implying success).
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Fundamental Concepts of C++ Templates

Templates

Often, one has to define the same functionality for several different data types.
This can become tedious, both during initial implementation and when fixing bugs.

C++ provides a language feature for this, where all the different versions are
auto-generated from a special construct, called a function template:

template<typename T>

T square(T x)

{

return x * x;

}

A function square<T> is then available for any type T that has a multiplication

operator * :

int i = square<int>(5); // int version

float f = square<float>(27.f) // float version

double d = square<double>(3.14) // double version
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Fundamental Concepts of C++ Templates

Templates

Function definitions aren’t the only use case for templates, one can also automate
the generation of data types. These are known as class templates, since structs are
a special case of classes in C++.

template<typename T>

struct Pair {T a; T b;};

Pair<int> ip; // a pair of ints

Pair<float> fp; // a pair of floats

// Pair<int> is a data type, and can be used as such

Pair<Pair<int>> ipp; // pair of pair of ints

Function templates and class templates were the only types of templates until
C++14, when → variable templates were introduced.
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Fundamental Concepts of C++ Templates

Non-Type Template Parameters

Typically, one uses template parameters to introduce abstract types T , but there
are also non-type template parameters. These can be used as compile-time
constants:

// simple fixed-length vector

template<typename T, int n>

struct Vector

{

enum {dim = n}; // knows its size

T vals[n];

}

An advanced use case for such non-type template parameters is → template meta
programming, where function values and number sequences can be precomputed
at compile time.
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Fundamental Concepts of C++ Templates

Template Template Parameters

In addition to types and values, one may also use templates themselves as
arguments for other templates, so-called template template parameters. These
can, e.g., be used to allow choosing between different implementations:

// accepts any template that expects a type and an int

template<template<typename,int> class V>

double norm(const V<double,3>& vec);

One such level of templates-in-templates can be a very powerful tool, but you
shouldn’t overdo it:

template<template<typename> class U, typename T>

struct Wrap {U<T> u;};

// just don't...

template<template<template<typename> class,typename> class W>

struct Meta {W<Pair,double> w;};

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 44 / 277



Fundamental Concepts of C++ Templates

Default Template Parameters

All three types of template parameters, i.e., types, non-type template parameters,
and template template parameters, can have defaults, just like function arguments:

// use our vector struct by default
template<template<typename,int> class V = Vector>

double norm(const V<double,3>& vec);

// generalization of our Pair struct
template<typename U, typename V = U>

struct Pair {U a; V b;};

// provides special case for square matrices
template<int n, int m = n>

struct Matrix
{

// "misuse" enum for defs at compile time
enum {dim1 = n};
enum {dim2 = m};

// ...
};

Parameters with defaults may be omitted, i.e., one can write Pair<int> (just as

before!), or Matrix<5> for square matrices.
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Fundamental Concepts of C++ Templates

Renaming Types

C and C++ provide the keyword typedef , which may be used to introduce new

names for types. It is actually a slight misnomer, since there is no real new
definition7: they are akin to C++ references, but on the conceptual level of data
types.

typedef unsigned long long int ull;

ull a = 12345678901234567890u; // huge unsigned int

While such new names can be introduced for any type, it is especially helpful for
the types from template instantiations:

typedef Pair<Vector<double,3>,Vector<double,2>> VecPair3D2D;

In C++11 and above, consider using → type aliases instead, as they are more
general and more readable.

7Note that typedef struct{int a; int b;} PairOfInts; is a valid definition, albeit a

rather convoluted one.
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Fundamental Concepts of C++ Templates

Example from DUNE

A template with template template parameter and default parameters introducing
• an inner template MatrixHelper

• two typedefs: size_type and type

• an → alias template named Pattern

template<template<typename> class Container = Simple::default_vector,
typename IndexType = std::size_t>

struct SparseMatrixBackend
{

typedef IndexType size_type;

//! The type of the pattern object passed to the GridOperator for pattern construction.
template<typename Matrix, typename GFSV, typename GFSU>
using Pattern = Simple::SparseMatrixPattern;

template<typename VV, typename VU, typename E>
struct MatrixHelper
{

typedef Simple::SparseMatrixContainer<typename VV::GridFunctionSpace,
typename VU::GridFunctionSpace,Container, E, size_type> type;

};
};
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Fundamental Concepts of C++ Templates

Function Template Parameter Deduction

The specification of template parameters is often redundant when using function
templates, because type template parameters are readily deduced from the
function arguments. If this is the case, they can be omitted, and the call looks like
a normal (non-template) function call:

template<typename T>

T square(T x)

{

return x * x;

}

int i = square(5); // short for square<int>

double d = square(27.); // short for square<double>

Note that sometimes this isn’t possible:

// can't deduce return type from call

template<typename T>

T generate();
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Fundamental Concepts of C++ Classes

Classes / Methods

The original name of C++ was “C with classes”, so classes, objects and
object-oriented programming are clearly an important part of C++.

While a classic C struct is simply an aggregation of data, C++ structs and classes
typically contain methods, functions that are closely linked to the data and part of
the type definition:

struct Vector2D
{

std::array<double,2> comp;

// const: method may be called for const vectors
double norm() const
{

return std::sqrt(comp[0]*comp[0] + comp[1]*comp[1]);
}

}

Vector2D v{{3,4}};
std::cout << v.norm() << std::endl; // prints 5
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Fundamental Concepts of C++ Classes

Access Specifiers

C++ provides three access specifiers:

private : accessible by the object itself and other objects of the same class

protected : like private , but additionally accessible in → derived classes.

public : always accessible

Sometimes it is helpful to exempt certain classes or functions from these
restrictions using a friend declaration. This should be used sparingly, since it
breaks encapsulation and exposes implementation details.

struct BankAccount

{

// full access -- maybe not the best of ideas?

friend class Customer;

private:

double balance; // hide this!

};
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Fundamental Concepts of C++ Classes

Encapsulation

The only difference between C++ structs and classes is default visibility: in a
struct, everything is public by default (but may be declared private ), and

vice versa for classes.

The hiding of implementation details using private is known as encapsulation

and is generally a good idea, mainly for the following reasons:

• ensures consistent state: in a plain struct, data is either const or open to
arbitrary, potentially nonsensical, changes

• facilitates modularity: private components are unknown outside of the

class itself, and may therefore be exchanged and modified at will

• improves communication of intent: anything marked public is part of the

intended interface
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Fundamental Concepts of C++ Classes

Constructors

Data that was declared private is inaccessible outside of the class, so we need

special public methods to initialize such data. These methods are called

constructors. In C++, they have the same name as the class they belong to and
are the only functions without return type.

class Vector2D
{

std::array<double,2> comp;

public:

Vector2D() : comp{0,0} {};

Vector2D(double a, double b)
: comp{a,b}

{};

// ...
};

This (incomplete) class provides two
constructors, one for arbitrary points,
and one for the origin.

Why not use default arguments instead?
Because then one could omit b while
supplying a (design decision).
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Fundamental Concepts of C++ Classes

Constructors

There are three types of constructors with special names:

• The default constructor T() without arguments: called, e.g., when mass

producing vector entries during initialization

• The copy constructor T(const T&) : has the task of creating a copy of the
object specified in the function call

• The move constructor T(T&&) : like the copy constructor, but may
cannibalize the original object (which should be left in some valid default
state)
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Fundamental Concepts of C++ Classes

Converting Constructors

Any constructor that is not marked as explicit is a so-called converting

constructor, and is called for implicit type conversions8. Assume we have defined

Matrix(double); // diagonal matrix, or constant matrix?

operator*(double, const Matrix&); // scaling

operator*(const Matrix&, const Matrix&); // matrix multiplication

but not operator*(const Matrix&, double) . Then a call a * 2. , with a

a Matrix , will call Matrix(2.) followed by matrix multiplication. This may
lead to unexpected results.

If such conversions aren’t intended, the constructor has to be marked:

explicit Matrix(double); // no implicit type conversions

8type promotions, like from int to double when needed
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Fundamental Concepts of C++ Classes

Conversion Operators

Closely linked to constructors are conversion operators. While converting
constructors are used to convert to the class type, these operators are used to
convert from the class type to some other specified type, mainly when

• the target type is a fundamental type

• the target type is some class provided by an external library

In both cases it is impossible to simply provide the right constructor for the target
type.

Here, conversion operators can be employed instead:

struct Vector

{

operator Matrix(); // implicit promotion to column matrix

explicit operator double(); // only explicit conversion

...

}
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Fundamental Concepts of C++ Classes

Delegating Constructors

Function overloading can be used to forward function calls to other versions of the
same function, e.g., to swap function arguments, or as in the maximum function
we introduced, or as a form of mutual recursion.

Similarly, one may define delegating constructors which call other constructors:

// constructor for square matrices uses general constructor

Matrix(int n)

: Matrix(n,n) // no further entries allowed

{}

Rules:

• The delegating constructor may not initialize anything itself (only call this
second constructor)

• The calls cannot be recursive (at some point, initialization has to take place)

• The function body is executed after the other constructor has finished
(thereby allowing local modifications)
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Fundamental Concepts of C++ Classes

Destructors

Destructors are the counterpart to constructors: they clean up data when an
object goes out of scope and its lifetime ends. Most of the time explicitly declaring
a destructor isn’t necessary, but it is vitally important if, e.g., memory was
allocated by the object:

class IntStorage
{

int n;
int* data;

public:

IntStorage(int n_)
: n(n_), data(new int[n])

{};

// copies are neither forbidden
// nor handled correctly
// --> segmentation fault waiting to happen

~IntStorage()
{

delete data;
}

};

The name of the constructor is the class
name with a tilde ~ as prefix.

The correct use of destructors leads
directly to the technique of → Resource
Acquisition is Initialization (RAII).
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Fundamental Concepts of C++ Classes

Default Methods

For any type T , the compiler automatically generates several methods for us if
applicable:

• default constructor T()

• default destructor ~T()

• copy constructor T(const T&)

• copy assignment T& operator=(const T&)

• move constructor T(T&&)

• move assignment T& operator=(T&&)

In each case, the method is not created automatically if that is impossible, e.g., if
the class is storing some reference, or if there are user-defined versions.
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Fundamental Concepts of C++ Classes

Default Methods

In the case of the default constructor T() , the presence of any user-defined
constructors prevents its creation.

The move constructor and move assignment operator aren’t created if any of the
other mentioned methods except the default constructor has been user-defined.

The assignment = default as in

T() = default

can be used to explicitly state that not providing some method is actually
intended and not a mistake, or force the generation of the default constructor in
the presence of other constructors.
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Fundamental Concepts of C++ Classes

Rules of Zero and Five

The rule of zero states that it is often a good idea to implement at most some
custom constructors and none of the aforementioned methods. This is concise and
perfectly appropriate when the class is just a collection of data with some
methods.

However, sometimes it is necessary to provide replacements for these methods,
e.g., because the default copy methods perform flat copies of pointer structures.

The rule of five9 states that if a user-defined copy constructor, copy assignment
operator, move constructor, move assignment operator, or destructor is present,
then it is very likely that all five should be explicitly defined: if one of these
methods has to be specialized, then the underlying reason is typically relevant for
all of them.

9formerly known as “rule of three”, before move semantics were introduced
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Fundamental Concepts of C++ Classes

Deleted Methods

Returning to the IntStorage object, we have two different options:

• provide user-defined copy/move constructors and assignment operators to
enable deep copy semantics

• simply prohibit the creation of copies of such objects

Let’s go with the second option for the sake of argument. Before C++11, one
would have implemented the methods to prevent their automatic generation, and
then declared them private . Any attempt to copy such an object would then

trigger a compilation error, but the construct is a rather poor choice in terms of
communicating intent.

Since C++11, one can declare methods as deleted, preventing their automatic
creation:

T(const T&) = delete;

T& operator=(const T&) = delete;
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Fundamental Concepts of C++ Classes

Mutable Members

In C++, declaring an object const doesn’t mean that its representation (byte
sequence) has to be immutable, just that any such changes are invisible from the
outside. The keyword mutable marks members as modifiable in const

methods:

class Matrix
{

mutable bool detValid = false;
mutable double det;

public:

double determinant() const
{

if (!detValid)
{

det = calcDet(); // expensive (private) helper function
detValid = true;

}
return det;

}
}

Note that any method that modifies the matrix has to set detValid = false !
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Fundamental Concepts of C++ Classes

Static Members

The keyword static indicates that something belongs to the abstract definition,
not the concrete instance:

• In functions definitions, static variables belong to the function itself, not
the current function call (and therefore persist across function calls)

• In class definitions, static variables and methods belong to the class itself,
not the created objects (i.e., they are shared between all objects of this class)

In functions, static variables can serve as function “memory”, e.g., in function

generators. In classes, static members can be used to, e.g., count the number
of instantiated objects, manage a common pool of resources (memory, threads,
. . . ), or provide small private helper functions.
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Fundamental Concepts of C++ Classes

The Singleton Pattern

A design pattern using static is the singleton pattern, which creates a class
that provides exactly one instance of itself and prevents the creation of further
such objects.

This pattern tends to be overused. It should be restricted to situations where

• the notion of two such objects doesn’t make sense under any circumstance

• the single instance needs to be accessible from everywhere in the program

Standard applications concern the centralized management of system resources:

• a centralized logging facility, printing queues, or network stacks

• thread and memory pools, or the graphical user interface (GUI)
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Fundamental Concepts of C++ Classes

The Singleton Pattern

Realization of the singleton pattern in C++:

class Singleton
{

public:
Singleton& getInstance()
{

// kept alive across function calls
static Singleton instance;
return instance;

}

// prevent creation of copies
Singleton(const Singleton&) = delete;
void operator=(const Singleton&) = delete;

private:
// only callable within getInstance()
Singleton(){...}; // hide constructor

};

// in user code:
Singleton& singleton = Singleton::getInstance();

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 65 / 277



Fundamental Concepts of C++ Classes

Example from DUNE

An application of the singleton pattern in DUNE:

class MPIHelper
{

public:
...

DUNE_EXPORT static MPIHelper&
instance(int& argc, char**& argv)

{
// create singleton instance
static MPIHelper singleton (argc, argv);
return singleton;

}

...
private:
...

MPIHelper(int& argc, char**& argv)
: initializedHere_(false)
{...}
MPIHelper(const MPIHelper&);
MPIHelper& operator=(const MPIHelper);

};

• Conceptually, there can be
only one instance of the
Message Passing Interface
(MPI).

• Its initialization and
finalization functions must
be called exactly once, the
singleton pattern
guarantees this.

• Copy constructor and
assignment operator have
been hidden instead of
deleted (pre-C++11 style).
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Fundamental Concepts of C++ Inheritance

Inheritance

Quite often, there is a natural relationship between several classes based on their
purpose:

• Several matrix classes (dense vs. sparse, small vs. millions of entries, local vs.
parallely distributed, hierarchically blocked or not,. . . )

• Different algorithms for maxtrix inversion / decomposition

• A range of solvers for nonlinear problems, spatial discretizations, time
stepping schemes. . .

This relationship can be expressed using inheritance:

• Extend and augment existing classes

• Collect and maintain common code in base classes

• Express and enforce interfaces through → abstract base classes (ABCs)
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Fundamental Concepts of C++ Inheritance

Inheritance

Inheritance establishes a relationship between classes, one derived class and an
arbitrary number of base classes (typically just one).

struct A1 {int a};

struct A2 {int a};

struct B : A1, A2 // B inherits from A1 and A2

{

int b;

B(int c1, int c2, int c3) : b(c1), A1::a(c2), A2::a(c3)

};

The class B is an extension of both A1 and A2 , and contains three ints (two

a s, and one b ), since it inherits all data members and methods from A and B .

Inside of B the two different a s have to be accessed via A1::a and A2::a ,
because the simple name a would be ambiguous.
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Fundamental Concepts of C++ Inheritance

Class Hierarchies

Derived classes may themselves have derived classes, leading to a hierarchy of
data types:

struct A {int i};

struct B : A {int j}; // B IS-A A

struct C : B {int k}; // C IS-A B (and therefore an A)

Again, i can be accessed in C , possibly under the name B::A::i if i alone
would be ambiguous.

Conceptually, this hierarchy always forms a tree:

struct D : B, C {int l}; // contains two independent A and B each

B::j and C::B::j are two independent variables! We will see more about this

when discussing the → Deadly Diamond of Death and → virtual inheritance.
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Fundamental Concepts of C++ Inheritance

Access Specifiers in Inheritance

Access specifiers can also be used when specifying inheritance relationships, as in

class A : public B {...};

If this access specifier is omitted, it defaults to public for structs and private

for classes10.

Access rights combinations for inherited methods and data members:

. . . is inherited. . . public ly protected ly private ly

public public protected private

protected protected protected private

private — — —

10This is the reason why “ : public ” is typically used instead.
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Fundamental Concepts of C++ Inheritance

Public Inheritance

Public inheritance models the subtype relationship from entity-relationship
models: a derived class object IS-A base class object, in the sense that it fulfills
the same interface.

Possible examples of this are:

• A Circle IS-A Shape

• A DiagonalMatrix IS-A Matrix

• A NewtonSolver IS-A NonlinearSolver

An object of the derived class is expected to be a perfect replacement for objects
of the base class. This puts additional responsabilities on the person implementing
the derived class, e.g., code operating on pointers and references of the base class
should continue to work for those pointing to objects of the derived class.
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Fundamental Concepts of C++ Inheritance

The Liskov Substitution Principle

In principle, the subtype (derived class) should exhibit the same behavior as the
supertype (base class). However, this is hard to verify in general. The Liskov
Substitution Principle (LSP) defines some constraints that are meant to aid in this
task.

Methods that share a name with one of the methods of the base class (and
thereby override them) should not lead to surprising behavior:

Contravariance of arguments The method may also accept supertypes of the
original arguments11.

Covariance of return types The method may return a subtype of the original
return type12.

Exception safety The method may only throw the original
→ exceptions or subtypes thereof.

11not available in C++
12in C++ only in the context of → dynamic polymorphism
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Fundamental Concepts of C++ Inheritance

The Liskov Substitution Principle

Additionally, the following things should hold:

Preconditions The subtype may not strengthen preconditions (put additional
constraints on the environment where its methods are called).

Postconditions The subtype may not weaken postconditions (leave conditions
unfulfilled that are always fulfilled by the supertype).

Invariants The subtype must honor invariants of the supertype (things
that are generally true for its objects)

History constraint The subtype may not allow state changes that are impossible
from the viewpoint of the supertype.

In short, the base class part of the derived class should perform according to
expectations. private members becoming inaccessible in the derived class helps

in this regard.
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Fundamental Concepts of C++ Inheritance

Is a Square a Rectangle?

According to the LSP, it depends on the concrete implementation whether a
Square is indeed a Rectangle:

• If squares and rectangles are immutable (unchangable after their creation), or
only provide a methods for scale adjustments and rotation/translation, then a
Square can be a Rectangle.

• If changing the length of a Square would also change its width, then
assumptions about the supertype Rectangle would be violated.

• Keeping the width constant instead means it fails at being a Square.

• Therefore, Squares cannot be Rectangles if the length and width of
rectangles can be controlled independently.

Again: Is a DiagonalMatrix a Matrix?
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Fundamental Concepts of C++ Inheritance

Protected/Private Inheritance

Private inheritance implements one class in terms of another:

• the members of the base class become private members of the derived class

• this is invisible from outside of the class

• the derived class may access the public interface of the base class

Mostly equivalent to just storing the base class as a private member instead,
except for so-called empty base class optimization.

Protected inheritance works the same, but the inheritance is visible to children of
the derived class as well. Seldom used and few applications.
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Fundamental Concepts of C++ Inheritance

Examples from DUNE

DUNE currently contains
• of course a large number of instances of public inheritance,
• exactly one instance of protected inheritance,
• and a small handful of cases with private inheritance.

class MacroGrid
: protected DuneGridFormatParser

{...}

template <int block_size, class Allocator=std::allocator<bool> >
class BitSetVector : private std::vector<bool, Allocator>
{...}

template<int k>
struct numeric_limits<Dune::bigunsignedint<k> >

: private Dune::Impl::numeric_limits_helper
<Dune::bigunsignedint<k> > // for access to internal state of bigunsignedint

{...}

• MacroGrid and descendants may access internal DuneGridFormatParser

• BitsetVector is implemented using std::vector , but one may not be
used as replacement for the other
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Fundamental Concepts of C++ Code Structure

Code Structure

We have now reviewed the fundamental building blocks of C++, and finish this
section with a short look at code structure. C++ supports a range of tools that
can be used to structure code bases and make large collections of code more
maintainable:

• header files and the accompanying header guards to structure the concrete
file layout and maintain code dependencies

• source files to provide implementations separate from declarations, thereby
guaranteeing stable interfaces while allowing modification of implementation
details

• namespaces to structure code on the conceptual level and prevent name
clashes between different libraries

C++20 will introduce → modules as known from other programming languages,
which will significantly improve importing other C++ libraries and exporting one’s
own constructs as a library.
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Fundamental Concepts of C++ Code Structure

Header Files

By convention, C++ code is separated into two different types of files:

• header files (.hh), containing declarations and interfaces

• source files (.cc), containing definitions and implementations

Both types of files are needed to build a given code project, but only the header
files are necessary when writting code that should link against some external
library.

Templates typically go against this convention, with their complete definition put
into header files: the definition is needed during template instantiation, and
without it dependent code could only use a given, fixed set of predefined and
preinstantiated variants.
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Fundamental Concepts of C++ Code Structure

Header Guards

The #include preprocessor statement simply includes raw text from header
files, recursively if necessary:

• Typically, header files are included several times within a program (e.g.,
<iostream> , <vector> , etc.).

• This would lead to redefinitions, and therefore compilation errors.

• Even without such errors, reparsing of these files would lead to long parse
times, especially when considering header files including other header files.

Therefore, use header guards:

#ifndef HEADER_HH // only read file if not yet defined...

#define HEADER_HH // ...and define to prevent second read

... // actual header content (only parsed once)

#endif // HEADER_HH // reminder what is closed here

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 79 / 277



Fundamental Concepts of C++ Code Structure

Namespaces

The one definition rule (ODR) of C++ demands that names are unambiguous:

• local definitions take precedence over those from enclosing scopes

• providing two differing definitions for the same name with the same visibility
is forbidden

This leads to problems when

• a certain name should be reused in different parts of a very large program

• by coincidence, two (or more) external libraries define the same name

Solution: encapsulate libraries, sublibraries, and independent project parts using
namespaces.
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Fundamental Concepts of C++ Code Structure

Namespaces

A simple namespace example:

namespace Outer

{

namespace Inner

{

struct Data{};

}

}

In this example, the struct Data is known as

• Data , Inner::Data , or Outer::Inner::Data in the innermost scope

• Inner::Data or Outer::Inner::Data in the outer scope

• only Outer::Inner::Data in the rest of the program
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Fundamental Concepts of C++ Code Structure

Example from DUNE

In DUNE, a namespace called
(fittingly) Dune encapsulates
the whole project. This
namespace is used for the core
modules.

Downstream modules like
PDELab typically introduce
subnamespaces, e.g.,
Dune::PDELab , for their own

classes and functions. This way,
these modules may use names
that would otherwise collide with
each other or parts of the core
modules.

#ifndef DUNE_PDELAB_NEWTON_NEWTON_HH
#define DUNE_PDELAB_NEWTON_NEWTON_HH
...
namespace Dune
{

namespace PDELab
{

// Status information of Newton's method
template<class RFType>
struct NewtonResult : LinearSolverResult<RFType>
{

...
}
...

} // end namespace PDELab
} // end namespace Dune
#endif // DUNE_PDELAB_NEWTON_NEWTON_HH
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The Standard Library

The Standard Library

The Standard Library is a set of classes and functions that is part of the C++
language standard. It provides most of the common “tools of the trade”: data
structures and associated algorithms, I/O and file access, exception handling, etc.
The components are easily recognized because they are in the std namespace.

Large parts of the Standard Library were already available in C++98/03 and are
based on the Standard Template Library (STL), which is the library where
common container classes like std::vector originate from. For this reason, it is
still sometimes called “the STL”.

Other parts were introduced in C++11 and later standards, often originating in
the Boost C++ Libraries, a well-known set of open-source libraries that provide
advanced utility classes and templates.
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The Standard Library

The Standard Library

We are going to discuss the following older parts of the Standard Library in detail:

• input and output streams

• containers (a.k.a. data structures) and iterators

• algorithms and functors

• companion classes (pair and tuple)

• exceptions

C++11 additions like → smart pointers, → random number generation,
→ threads, and → regular expressions will be discussed at a later point, and the
same holds for the → filesystems library from C++17.

Note that one usually has to include a certain header for a library feature to be
available, e.g., #include <iostream> for I/O, or #include <vector> for

std::vector .
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The Standard Library Input / Output

Input / Output

C++ provides stream-based I/O: each stream is an abstraction for some source
and/or destination of data, and each such stream is used in the same way,
whether it represents standard C I/O, the content of a file, or simply the content
of some string.

The relevant types are:

[i,o,io]stream generic input, output, or bidirectional I/O stream

[i,o,io]fstream specialization for reading / writing files

[i,o,io]sstream sprecialization for strings as data sources/sinks

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 85 / 277



The Standard Library Input / Output

Input / Output

There are four predefined global variables for standard C I/O:

cin standard C input stream

cout standard C output stream

cerr standard C error stream, unbuffered

clog standard C error stream, buffered

For larger programs it is good practice not to write to these streams directly, since
extraneous output can make it difficult to use the software in new contexts and
other projects. Instead, one writes into intermediate stream objects, which may
then redirect the data at their discretion.

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 86 / 277



The Standard Library Input / Output

Input / Output

The standard way of using streams are the well-known << and >> operators,
maybe with some I/O modifiers like floating-point formatting. Additionally, there
are also special types of → iterators available that make a more or less seamless
interaction with container classes possible.

If it should be possible to read and/or write an object from/to a stream
(serialization13), one has to specialize the stream operators.

• Use free functions, because the stream is the left-hand side operand

• friend declaration, because we need access to the object internals

struct Streamable
{

// ...

// return streams to facilitate operator chaining
friend std::istream& operator>>(std::istream& is, const Streamable& s);
friend std::ostream& operator<<(std::ostream& os, const Streamable& s);

};

13https://isocpp.org/wiki/faq/serialization
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The Standard Library Input / Output

Example from DUNE

//! Print a std::array

template<typename Stream, typename T,

std::size_t N>

inline Stream& operator<<(Stream& stream,

const std::array<T,N>& a)

{

stream<<"[";

if(N>0)

{

for(std::size_t i=0; i<N-1; ++i)

stream<<a[i]<<",";

stream<<a[N-1];

}

stream<<"]";

return stream;

}

This code defines an output
format for std::array as

long as the stored type T

itself can be printed.

The stream is returned to
the caller, which enables
operator chaining as in

std::cout << a1

<< " "

<< a2

<< std::endl;
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The Standard Library Container Classes

Sequential Containers

C++ provides three different types of containers (data structures): sequences,
container adaptors, and associative containers. They are the C++ versions of
common and well-known data structures (array, linked list, tree, hash map, etc.).

The elements of container objects all have the same type, specified as a template
parameter. This restriction can be somewhat lifted through → dynamic
polymorphism. Since C++17 one may also use a → variant, or the → std::any

class as element type.

The simplest type of container is a sequence, where the elements are associated
with an integer index (either explicitly or implicitly).
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The Standard Library Container Classes

Sequential Containers

C++ provides the following sequences:

array array with fixed size and random access

vector array with variable size and random access

deque double-ended queue with random access

list doubly linked list

forward list singly linked list

std::vector<int> a(3,5); // array [5,5,5]

std::vector<int> b{3,5}; // array [3,5]

std::list<double> c; // empty doubly-linked list
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The Standard Library Container Classes

Container Adaptors

In C++, a container adaptor implements some data structure in terms of another.
Three such adaptors are provided:

stack LIFO (last in, first out) structure

queue FIFO (first in, first out) structure

priority queue a priority queue (surprise!)

std::stack<double> a; // stack based on deque

std::stack<int,std::vector> b; // stack based on vector

std::queue<int,std::list> c; // queue based on list
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The Standard Library Container Classes

Associative Containers

In contrast to sequential containers, which are indexed by integers, associative
containers may have an arbitrary index type. This index is associated with a value,
and the container can be searched for this key, producing the value if the key is
found.

C++ knows four sorted associative containers:

set key is unique and identical to its associated value

multiset like set, but key may appear multiple times

map key is unique, value is pair of index and some mapped type

multimap like map, but key may appear multiple times

The keys of these sorted containers need to be equipped with a strict weak
ordering relation. The containers are typically implemented using red-black trees.
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The Standard Library Container Classes

Associative Containers

Additionally, C++ also provides unsorted associative containers. While the sorted
ones typically use trees internally, the unsorted ones are usually based on hash
tables.

Each sorted container has an unsorted counterpart:
unordered set, unordered multiset, unordered map, and unordered multimap.

These unsorted containers are more universally applicable, since they don’t need
the underlying ordering relation. However, the elements appear in random order
(based on the hash function in practice).

Unsorted containers tend to be faster than sorted containers but may be worse if
there are many collisions in the hash function. For certain applications the
guaranteed worst-case performance of sorted containers may be an important
feature.
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The Standard Library Container Classes

Complexity Guarantees

An important part of the container library are the accompanying complexity
guarantees. Any implementation of C++ has to provide methods with certain
upper bounds on performance. For the most part, these follow naturally from the
default underlying data structures.

• Accessing an element of a vector is in O(1), and adding an element at the
end is amortized14 O(1), worst-case O(N), where N is the number of
elements.

• Accessing an element of a list is in O(N), and adding or deleting elements
is O(1) anywhere in the list.

• Operations on sorted associative containers are typically in O(logN).

• For unsorted associative containers this is replaced with amortized O(1),
worst-case O(N).

A table with all the container methods is available online15, and complexity
guarantees are linked from there.

14averaged over many method calls
15https://en.cppreference.com/w/cpp/container
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The Standard Library Container Classes

Sequence Test: Vector vs. List

Task by J. Bentley and B. Stroustrup (Element Shuffle):

• For a fixed number N, generate N random integers and insert them into a
sorted sequence.
Example:
• 5
• 1, 5
• 1, 4, 5
• 1, 2, 4, 5

• Remove elements at random while keeping the sequence sorted.
Example:
• 1, 2, 4, 5
• 1, 4, 5
• 1, 4
• 4

• For which N should a list be used, and in which cases a vector ?
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The Standard Library Container Classes

Sequence Test: Vector vs. List

Source: B. Stroustrup

Potentially suprising results:

• Despite random insertion /
deletion, vector is faster by
an order of magnitude

• Linear search for both
containers, despite bisection
being available for vector (!)

• Search completely dominates
move required by vector

• Non-optimized list performs
one allocation / deallocation
per element (!)

Use vector as default — and if not, back up assumptions with measurements
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The Standard Library Iterators

Iterators

The main way to interact with containers is via iterators, which are generalizations
of the pointer concept, i.e., objects that can be dereferenced ( * ) and advanced

( ++ ). For each container type T , there is:

• an associated type T::iterator , for read / write access to the container

• an associated type T::const_iterator , providing read-only access

• a method begin() , which returns an iterator pointing to the first element

• a method end() , returning an iterator one position past (!) the last element

• equivalent methods cbegin() and cend() for read-only access

The element order is defined by the index for sequences, the keys for sorted
containers, and the hash function for unsorted containers. There are also
additional types / methods that reverse this order ( rbegin() , rend() , etc.).
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The Standard Library Iterators

Iterators

Using iterators, one can write functions that work for different containers:

template<typename T>

void print(const T& cont)

{

for (typename T::const_iterator it

= var.begin(); it != var.end(); ++it)

std::cout << *it << " ";

std::cout << std::endl;

}

• The keyword typename is used inside templates to specify that a dependent

name (identifier that depends on at least one template parameter) refers to a
type, since the compiler could mistake it for a variable name, etc.

• The prefix increment operator is usually more efficient than the postfix one,
since there is no need for temporary iterator copies.
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The Standard Library Iterators

Iterators

The properties of iterators depend on the underlying container:

array, vector, deque Bidirectional ( ++ / -- ), random access (i.e., instant jumps
of arbitrary stride possible)

list Bidirectional, no random access (must follow pointer chain)

forward list Forward direction only, neither backward direction nor
random access

sorted assoc. cont. See list

unsorted assoc. cont. See forward_list 16

The iterators provide their properties in the form of iterator tags (public
members), which may be used to, e.g., write more efficient → template
specializations of algorithms for iterators that provide random access.

16mainly because their order is arbitrary anyways
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The Standard Library Algorithms

Algorithms

The Standard Library provides a large number of algorithms17 that are tailored to
these different iterator categories, and automatically make full use of the
capabilities of the container they are operating on.

Example algorithms:

for each apply some function to each element (lifting)

count if count elements with certain properties

find if find first element with such property

copy if insert applicable elements into other container

shuffle randomly re-order container contents

sort sort container according to some criterion

Try to use predefined algorithms instead of writing your own function templates

17full list: https://en.cppreference.com/w/cpp/algorithm
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The Standard Library Algorithms

Algorithms

Many of these algorithms expect some criterion, transform, or operation, which
has to be supplied as a functor (function object): an object that has an

operator() with the required number of arguments.

The Standard Library provides some default functors, e.g., std::less :

// possible implementation of std::less
template<typename T>

struct less
{

// first set of () is operator name
bool operator()(const T& lhs, const T& rhs) const
{

return lhs < rhs;
}

}

User-implemented functors can be used to customize the provided algorithms, or
one can use → lambda expressions or function pointers instead.
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The Standard Library Companion Classes

Companion Classes

The Standard Library also provides a number of class templates that are not
containers, but serve similar purposes as containers and are often used in
conjunction with them.

std::pair<T,U> :

The official version of the Pair struct we defined ourselves. Contains a

T first and a U second .

std::tuple<T...> :

Generalization of std::pair to general tuples using → variadic templates.

Member access through a std::set function, which expects either the type of
the component as template parameter, or its index if the former is ambiguous.

C++17 adds → optional, → variant, and → any to the list.
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The Standard Library Exceptions

Exceptions

C++ knows several different mechanisms for error handling:

assert :

Runtime check of some condition that should always be fulfilled (sanity check).
Aborts the program if condition evaluates to false .

static_assert :

Compile-time check with similar purpose, see → template meta programming.
Produces compilation error if condition is not met.

Exceptions:

Error handling mechanism for situations that should not be the norm, but may
sporadically occur during normal operation: memory exhausted, file not found,
matrix is singular, solver failed to converge. . .
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The Standard Library Exceptions

Exceptions

An exception is an arbitrary object that can be interpreted as an alternative return
value, delivered using a mechanism that differs from the standard return . The
Standard Library provides some predefined exceptions for convenience, like
std::domain_error and std::range_error , and new exceptions may be

defined by inheriting from std::exception .

double nthroot(double x, int n)
{

if (n % 2 == 0 && x < 0)
// throw statement: execution of function is stopped here...
throw std::domain_error("even powers require non-negative argument");

...
}

try // try block: register for treatment of potential exceptions
{

double y = nthroot(-5.,2);
}
catch(std::domain_error e) // catch block: ...program control jumps here
{

// try to do something better than just printing a message in practice
std::cout << "nthroot failed, message: " << e.what() << std::endl;

}
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The Standard Library Exceptions

Exceptions

Points to consider:

• Exceptions are for error conditions that can’t be handled locally

• A return always returns to the immediate caller, but a throw unwinds

the call stack until a matching catch block is found

• If none is found at all, the program is aborted (should be avoided if possible)

• All function calls between the throw statement and the catch block are
stopped prematurely

This means that local resources have to be handled in those intermediate
functions (allocated memory, open file handles, ongoing communication) during
stack unwinding. An elegant mechanism to do this automatically is → RAII.
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Advanced Topics

Advanced Topics

After having reviewed the basic building blocks of C++, i.e., the fundamental
concepts and at least parts of the Standard Library, we discuss more advanced
topics:

• template specializations

• interactions between templates and inheritance

• Resource Acquisition is Initialization (RAII)

• template metaprogramming

• dynamic polymorphism (virtual functions)

• static polymorphism (CRTP)

• Substitution Failure is not an Error (SFINAE)
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Advanced Topics Template Specialization

Template Specialization

The main idea of templates is the reduction of code duplication through
generalization, but sometimes there are special cases that should / have to be
treated differently. This can be done by providing an explicit template
specialization:

// make sure that int pointers are safe

template<> // empty set of remaining parameters

struct Pair<int*> {int* a = nullptr; int* b = nullptr;};

For class templates18, C++ additionally allows partial template specialization,
where the template parameters are constrained but not fully specified:

// make sure pointers are safe

// note local change in meaning for U and V!

template<typename U, typename V>

struct Pair<U*,V*> {U* a = nullptr; V* b = nullptr;};

Which version is chosen for a given instantiation, e.g., Pair<int*,int*> ?
18and variable templates since C++14
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Advanced Topics Template Specialization

Template Specialization

// 1) base template: general version
template<typename U, typename V = U>

struct Pair;

// 2) partial specialization: U = V
template<typename U>

struct Pair<U,U>;
// or shorter: Pair<U>

// 3) partial specialization: pointers
template<typename U, typename V>

struct Pair<U*,V*>;

// 4) full specialization: int pointers
template<>

struct Pair<int*,int*>;
// again, alternatively Pair<int*>

C++ always chooses the most
specialized version:

• Pair<int*,int*> and

Pair<int*> are (4), the latter via
default argument in (1)

• Pair<int,int> and Pair<int>

are both (2)

• Pair<int*,double*> is (3)

But Pair<double*,double*> and

Pair<double*> are ambiguous, both
(2) and (3) would fit!

Avoid overlapping specializations — they cause compiler errors when triggered
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Advanced Topics Template Specialization

Template Specialization

Things are slightly more complicated for function templates. Assume for a
moment that we have a function template for matrix-vector products:

template<typename Mat, typename Vec>

Vec multiply(const Mat& mat, const Vec& vec);

If we had a class called SparseMatrix for sparse matrices, i.e., matrices where

almost all entries are zero, this generic function would likely be very inefficient for
such a matrix. It makes sense to provide a partial template specialization:

template<typename Vec>

Vec multiply<SparseMatrix,Vec>

(const SparseMatrix& mat, const Vec& vec);

Unfortunately, this isn’t possible in C++.
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Advanced Topics Template Specialization

Template Specialization

A full specialization would be allowed, and we could even omit the parameters:

template<>

VectorClass multiply<SparseMatrix,VectorClass>

(const SparseMatrix& mat, const VectorClass& vec);

// short version

template<>

VectorClass multiply

(const SparseMatrix& mat, const VectorClass& vec);

Alas, we would have to specialize for any of possibly many vector classes we would
like to use together with SparseMatrix .

But why is that the case? Why can’t we simply provide a partial specialization?
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Advanced Topics Template Specialization

Dimov/Abrahams Example

Consider the following two code snippets19:

// (1) first base template
template<typename T> void f(T);

// (2) second base template (overloads)
template<typename T> void f(T*);

// (3) full specialization of (2)
template<> void f(int*);

// (1') first base template
template<typename T> void f(T);

// (3') full specialization of (1')!
template<> void f(int*);

// (2') second base template (overloads)
template<typename T> void f(T*);

(2) and (2’) could be both a simple overload for, or a specialization of, (1) resp.
(1’). In C++, the former is the case.

Now, consider the call f(p) for an int* p . This calls (3) as expected, but (2’)

for the second snippet20! Why?

Because in C++, overloads are resolved using base templates and normal
functions, and then specializations are taken into account!

19see http://www.gotw.ca/publications/mill17.htm
20interactive version: link to godbolt.org
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Advanced Topics Template Specialization

Dimov/Abrahams Example

As we have seen, even full function template specializations can lead to
counterintuitive results, which may explain why partial ones are currently not part
of the language.

This is a common issue with C++, where a newer feature (here: templates) has to
take older ones (here: overloading) into account. The growth of C++ can be
likened to onion layers, or strata of subsequent civilizations, and newer additions
have to interact with well-established features.

This is also the reason why objects have an implicit self-reference pointer called
this , and not a reference with that name: references were introduced after

classes.

A particularly involved example we will consider throughout the lecture is
compile-time template selection, which started with → SFINAE, is supported via
→ enable_if in C++11, → enable_if_t in C++14, and

→ if constexpr in C++17, and will be a standard application of → concepts

in C++20.
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Advanced Topics Template Specialization

Template Specialization (cont.)

Conclusions drawn from the aforementioned observations:

Class template specializations

These are perfectly fine, whether explicit (full) or partial specializations.

Function template specializations

Partial specializations are forbidden, use a helper class with partial specialization
or incorporate the function as a method instead. Explicit specializations may
interact in counterintuitive ways and are completely unnecessary: all types are fully
specified, so simply provide a normal function overload instead.

“Use specializations for class templates, and overloads for function templates”
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Advanced Topics Template Specialization

Template Specialization (cont.)

What about our motivating example, the sparse matrices?

We have the following options:
• Use overloading for one of the arguments, and templates for the other:

template<typename Vec>

Vec multiply(const SparseMatrix& mat, const Vec& vec);

// + versions for each alternate matrix class

• Variant: make the multiply function a method for each of the matrix

classes, maybe with some default that can be inherited from some base class.
• Hand computation over to some helper class template, which may freely use

partial specialization:

template<typename Mat, typename Vec>

Vec multiply(const Mat& mat, const Vec& vec)

{

return multHelper<Mat,Vec>::multiply(mat,vec);

}
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Advanced Topics Templates and Inheritance

Classes and Templates: Interactions

The combination of object-oriented programming (inheritance) and generic
programming (templates) leads to complications during name lookup that have to
be studied in detail. C++ treats dependent and independent base classes in
different ways.

Independent base classes are those base classes that are completely determined
without considering template parameters, and independent names are unqualified
names that don’t depend on a template parameter.

• Independent base classes behave essentially like base classes in normal
(non-template) classes.

• If a name appears in a class but no namespace precedes it (an unqualified
name), then the compiler will look in the following order for a definition:

1 Definitions in the class
2 Definitions in independent base classes
3 Template arguments

• This order of name lookup can lead to surprising results.

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 115 / 277



Advanced Topics Templates and Inheritance

Classes and Templates: Interactions

#include <iostream>

struct Base {typedef int T;};

template<typename T>

struct Derived : Base

{

T val;

};

int main()

{

Derived<double> d;

d.val = 2.5;

std::cout << d.val << std::endl;

}

• This program prints 2 , not

2.5 as it may seema

• T is not defined in the
class, but in the
independent base class

• Therefore, the template
argument is ignored, and T

is int ! Main issue: this
can’t be seen when looking
at Derived !

• Use different naming
schemes for types and type
placeholders (template
parameters)

alink to godbolt.org
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Advanced Topics Templates and Inheritance

Classes and Templates: Interactions

Dependent base classes are those that are not independent, i.e., they require the
specification of at least one template argument to be fully defined.

• The C++ standard dictates that independent names appearing in a template
are resolved at their first occurrence.

• The strange behavior from the last example relied on the fact that
independent base classes have higher priority during name lookup than
template parameters.

• However, for names defined in a dependent base class, the resolution would
depend on one or more template parameters, unknown at that point.

• This would have consequences when an independent name would have its
definition in a dependent base class: it would have to be looked up before
that is actually possible.
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Advanced Topics Templates and Inheritance

Classes and Templates: Interactions

template<typename T>
struct Base {int n;};

template<typename T>
struct Derived : public Base<T>
{

void f()
{

// (1) Would lead to type resolution
// and binding to int.
n = 0;

}
};

template<>
struct Base<bool>
{

// (2) Template specialization wants to
// define variable differently.
enum {n = 42};

};

void g(Derived<bool>& d)
{

d.f(); // (3) Conflict
}

1 In the definition of class
Derived<T> , the first access to n

in f() would lead to binding n to

int (because of the definition in
the base class template).

2 Subsequently, however, the type of
n would be modified into

something unchangeable for the
type bool as template parameter.

3 In the instantiation (3) a conflict
would then occur.
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Advanced Topics Templates and Inheritance

Classes and Templates: Interactions

In order to prevent this situation, C++ defines that independent names won’t be
searched in dependent base classes. Base class attribute and method names must
therefore be made dependent, so that they will only be resolved during
instantiation (delayed type resolution).

Instead of simply writing n = 0; , use:

• this->n = 0; (implicitly dependent through this pointer)

• Base<T>::n = 0; (explicitly mentions template parameter)

• or import n into the current namespace:

template<typename T>

struct Derived : Base<T>

{

// name is now dependent for whole class

using Base<T>::n;

...

};
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Advanced Topics RAII: Resource Acquisition is Initialization

Multiple Resource Allocation

Often, especially in constructors, resources must be allocated several times in
succession (opening files, allocating memory, entering a lock in multithreading):

void useResources()

{

// acquire resource r1

...

// acquire resource r2

...

// acquire resource rn

...

// use r1...rn

// release in reverse

// release resource rn

...

// release resource r1

...

}

• If acquiring r_k fails,

r_1,...,r_(k-1) have to be
released before cancellation is
possible, otherwise a resource leak is
created.

• What should be done if allocating
the resource throws an exception
that is caught outside? What
happens to r_1,...,r_(k-1) ?
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Advanced Topics RAII: Resource Acquisition is Initialization

Multiple Resource Allocation

Common variant of this problem:

class X

{

public:

X();

~X();

private:

A* pointerA;

B* pointerB;

C* pointerC;

};

X::X()

{

pointerA = new A;

pointerB = new B;

pointerC = new C;

}

// How can we guarantee that

// pointerA is freed if

// allocating pointerB or

// pointerC fails?
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Advanced Topics RAII: Resource Acquisition is Initialization

RAII

In C++, the correct solution for this problem is called “Resource Acquisition is
Initialization” (RAII), which:

• is based on the properties of constructors and destructors and their
interaction with exception handling.

• is actually a misnomer: “Destruction is Resource Release” (DIRR) would be
more appropriate, but the acronym RAII is now too well-known to change it.

RAII is a specific way of thinking about resources that originated in C++ and
provides an elegant alternative to strategies used in Java or Python, etc. (and has
a really unfortunate name for something so central. . . ).
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Advanced Topics RAII: Resource Acquisition is Initialization

RAII: Rules for Constructors and Destructors

Central rules that enable RAII:

1 An object is only fully constructed when its constructor is finished.

2 A compliant constructor tries to leave the system in a state with as few
changes as possible if it can’t be completed successfully.

3 If an object consists of sub-objects, then it is constructed as far as its parts
are constructed.

4 If a scope (block, function. . . ) is left, then the destructors of all successfully
constructed objects are called.

5 An exception causes the program flow to exit all blocks between the throw

and the corresponding catch .

The interplay of these rules, especially the last two, automatically frees resources
before leaks can happen, even when unexpected errors occur.
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Advanced Topics RAII: Resource Acquisition is Initialization

Example Implementation

template<typename T>
class Ptr
{

public:
Ptr()
{

pointerT = new T;
}

~Ptr()
{

delete pointerT;
}

T* operator->()
{

return pointerT;
}

private:
T* pointerT;

};

class X
{

// no constructor and destructor
// needed, the default variant
// is sufficient
private:

Ptr<A> pointerA;
Ptr<B> pointerB;
Ptr<C> pointerC;

};

int main()
{

try
{

X x;
}
catch (std::bad_alloc)
{

...
}

}

(This is actually a simple mock-up of → smart pointers)

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 124 / 277



Advanced Topics RAII: Resource Acquisition is Initialization

Example Implementation

Basic principle:

• The constructor X() calls the constructors of pointer{A,B,C} .

• When an exception is thrown by the constructor of pointerC , then the

destructors of pointerA and pointerB are called and the code in the

catch block will be executed.

• This can be implemented in a similar fashion for the allocation of other
resources (e.g. open files).

Main idea of RAII:

• Tie resources (e.g., on the heap) to handles (on the stack)21, and let the
scoping rules handle safe acquisition and release

• Repeat this recursively for resources of resources

• Let the special rules for exceptions and destructors handle
partially-constructed objects

21heap: anonymous memory, freely allocatable; stack: automatic memory for local variables
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Advanced Topics Template Metaprogramming

Template Metaprogramming

Template metaprogramming refers to the use of templates to perform
computations at compile-time. This comes in basically two flavors:

• Compute with numbers as usual, but during the compilation process

• “Compute” with types, i.e., automatically map some types to other types

The former precomputes results to speed up the execution of the finished program,
while the latter is something that is impossible to achieve during runtime.

Template metaprogramming can’t make use of loops and is therefore inherently
recursive when performing nontrivial computations, and may become arbitrarily
complex (it is Turing complete!). We will only look at some small introductory
examples.

→ SFINAE can be seen as a special case of template metaprogramming.
→ Constant expressions can often serve as a modern replacement for template
metaprogramming, especially since loops in constexpr functions have been

added in C++14.
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Advanced Topics Template Metaprogramming

Compile-Time Computations

An example of compile time single recursion to compute the factorial:

template<int N>

struct Factorial

{

enum {value = Factorial<N-1>::value * N};

};

// base case to break infinite recursion

template<>

struct Factorial<0>

{

enum {value = 1};

};

In modern C++, this can be simplified significantly using → variable templates,
because one doesn’t need enums or static attributes for the values anymore.
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Advanced Topics Template Metaprogramming

Recursive Type Construction

Automated type generation using template metaprogramming:

template<typename T, int N>
struct Array : public Array<T, N-1>
{

template<int M>
T& entry()
{

return Array<T, M+1>::val;
}

// hide implementation detail
protected:

T val;
};

// empty base case
template<typename T>

struct Array<T,0>
{};

// use like this:
Array<double,3> a;
a.entry<0>() = 0;
a.entry<1>() = 1;
a.entry<2>() = 2;

• Recursive definition: array of N elements
is array of N − 1 elements plus
additional value

• Helper method for element access

• Nice feature: going beyond array bounds
triggers compilation error

• Storing different types as in
std::tuple would require → variadic

templates and be significantly less
straight-forward to implement

• Also see dune-typetree, a library for
compile-time construction and traversal
of tree structuresa

aLink: gitlab.dune-project.org/staging/dune-typetree

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 128 / 277

https://gitlab.dune-project.org/staging/dune-typetree


Advanced Topics Dynamic Polymorphism

Dynamic Polymorphism

Inheritance is based on new code utilizing old code: we augment an existing class
with new data/methods, and these can make use of the interface and/or
implementation of the base class.

The main idea behind dynamic polymorphism (subtyping) is trying to make the
inverse work: have old code utilize new code, i.e., we want to inject new behavior
into classes and function without modifications to existing code.

Here, the concept polymorphism (greek: “many forms”) refers to several functions
sharing a common interface, with the concrete variant that is chosen depending
on the provided arguments. The desired injection of new behavior is achieved by
making this selection independent of the function call site.
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Advanced Topics Dynamic Polymorphism

Types of Polymorphism

There are different types of polymorphism:

• Static polymorphism, with the function being chosen at compile-time:
• Ad-hoc polymorphism, in the form of function and operator overloading
• Parametric polymorphism, in the form of templates and specializations
• “True” → static polymorphism, trying to emulate dynamic polymorphism

using template metaprogramming

Also known as early binding, i.e., during program creation.

• Dynamic polymorphism, with the function being chosen at runtime (also
known as late binding).

In C++, static polymorphism is multiple dispatch (the combination of types
determines the chosen variant), while dynamic polymorphism is always single
dispatch22 (only depends on the object itself, not the method arguments).

22Dynamic multiple dispatch exists, e.g., in the Julia language.
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Advanced Topics Dynamic Polymorphism

Slicing

Using the copy constructor or assignment operator of a base class on some object
results in slicing: anything belonging to the derived class is cut away, and only the
base class part is used in the assignment.

Something similar happens when a base class pointer or base class reference
referring to an object of the derived class is created: only the base class methods
and attributes are accessible through such pointers and references. If the derived
class redefines certain methods, then the base class version is used anyways, i.e.,
the pointer/reference type dictates behavior, not the type of the object itself.
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Advanced Topics Dynamic Polymorphism

Polymorphic Types

Polymorphic types are classes that have at least one method defined as
virtual . For such methods, the type of the object itself determines which

version is actually called, not the type of references or pointers:

struct Base

{

virtual void foo() {...};

};

struct Derived : public Base

{

void foo() override {...};

}

Derived d;

Base& b = d;

b.foo(); // calls foo() of Derived

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 132 / 277



Advanced Topics Dynamic Polymorphism

Polymorphic Types

• In C++, methods have to be explicitly declared as virtual for this to work.
In some other languages this behavior is actually the default, e.g., in Java.

• There is no reason to redeclare the same method as virtual in derived

classes, this happens automatically. But one may use override to state
that this method should override a base class method, and will get a
compilation error if this doesn’t actually happen.

• Without the override qualifier the compiler would silently introduce an
overload if the signature doesn’t match, and consequently the base class
method might be called when that isn’t expected to happen.
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Advanced Topics Dynamic Polymorphism

Implementation Detail: vtables

Using polymorphic types, i.e., virtual functions, incurs a certain runtime cost: the
concrete version to use for a certain function call has to be decided at runtime,
because it depends on the actual type of the object pointed / referred to (that’s
the whole point).

A standard way of implementing virtual functions is via vtables (dispatch tables):

• Each class with at least one virtual method stores hidden static tables of
virtual functions (“vtables”), one for each base class with virtual methods,
and potentially one for the class itself.

• These tables contain function pointers to the right method versions.

• Each object of such a class contains hidden pointers to the relevant vtables.

• These are inherited from the base class and therefore remain after slicing,
etc., but are redefined to point to the local version of the tables.
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Advanced Topics Dynamic Polymorphism

Implementation Detail: vtables

struct Base1
{

// creates entry in vtable
virtual void foo1();

}

struct Base2
{

// creates entry in vtable
virtual void foo2();

}

struct Derived : Base1, Base2
{

// changes entry in vtable
void foo2() override;
// creates entry in vtable
virtual void bar;

}

Derived d;
Base2& b2 = d;
// follow two pointers for call here
// (p. to table and p. to function)
b2.foo2();

• The class Derived contains three
implicitly defined static tables, one for itself,
and one for the two base classes each.

• The table from Base1 is copied, but that

of Base2 is changed locally, with its entry

pointing to Derived::foo2 instead.

• The call b2.foo2() accesses the vtable
through the hidden pointer, and then uses
the function pointer to Derived::foo2 it
finds there.

• Cost for lookup: follow two pointers
(relevant when the method is very simple
and called very often)

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 135 / 277



Advanced Topics Dynamic Polymorphism

Virtual Destructors

Polymorphic types can be stored in containers and similar classes via pointers to
base classes, and retain their specialized behavior. This makes it possible to use
containers for heterogeneous collections of objects, as long as they all have a
common base class.

However, the container would trigger the destructor of the base class when it goes
out of scope, not the destructors of the derived classes. For this reason it is
common practice to declare a public virtual destructor when at least one other
virtual method is present, to ensure that the destructors of the derived classes are
called.

Note that this suppresses the automatic generation of copy/move constructors
and operators, but normally directly copying polymorphic types isn’t a good idea
anyways.
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Advanced Topics Dynamic Polymorphism

Copying Polymorphic Types

If a polymorphic object is copied when accessed through a base class pointer, the
base class constructor is used. This means that unintended slicing occurs: only the
base class part is copied, and virtual method calls revert back to the version of the
base class.

The desired behavior would usually be a full copy of the object, i.e., based on its
true type and consistent with dynamic polymorphism. This would require
something like a “virtual constructor” that constructs the correct type. But
constructors can’t be virtual, because they are not tied to objects — they are part
of the class itself, like static methods.

The standard solution to this problem is:

• explicitly forbid copying (and moving) polymorphic objects

• provide a special clone method, that serves the purpose of such virtual
constructors, but operates on the level of pointers

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 137 / 277



Advanced Topics Dynamic Polymorphism

Copying Polymorphic Types

class Base
{

// define copy/move constructors
// and operators here

public:
virtual Base* clone() const
{

return new Base(*this);
}

// virtual destructor
virtual ~Base() {}

};

class Derived : public Base
{

// as above

public:
Derived* clone() const override
{

return new Derived(*this);
}

};

• Calling the clone method on a

Base pointer will create a copy of
the correct type and return a
pointer to it.

• Using covariant return types (see
LSP) we may return a pointer to
the actual type.

• This pattern doesn’t follow RAII at
all. This can be changed using
→ smart pointers, but then a
pointer to the base class has to be
used throughout, since smart
pointers of covariant types are not
themselves covariant.
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Advanced Topics Dynamic Polymorphism

Abstract Base Classes

Abstract base classes (ABCs) are base classes that have at least one method
declared as purely virtual, i.e., declared as a virtual function, but without actually
providing a default implementation:

struct ABC

{

virtual void foo() = 0; // pure virtual: no definition provided

virtual ~ABC() {} // virtual destructor

};

Abstract base classes are used to define interfaces, because of the following two
properties:

• It is impossible to instantiate objects of such a class, because at least one
method is missing a definition.

• Every derived class has to provide such a definition to become instantiable.
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Advanced Topics Dynamic Polymorphism

Example from DUNE

template<class X, class Y>
class Preconditioner {

public:
//! \brief The domain type of the preconditioner.
typedef X domain_type;
//! \brief The range type of the preconditioner.
typedef Y range_type;
//! \brief The field type of the preconditioner.
typedef typename X::field_type field_type;

//! \brief Prepare the preconditioner. (...)
virtual void pre (X& x, Y& b) = 0;

//! \brief Apply one step of the preconditioner (...)
virtual void apply (X& v, const Y& d) = 0;

//! \brief Clean up.
virtual void post (X& x) = 0;

...

//! every abstract base class has a virtual destructor
virtual ~Preconditioner () {}

};

Abstract base class for
preconditioners:

• defines some types

• declares some methods,
but doesn’t provide
implementations

• includes virtual
destructor
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Advanced Topics Dynamic Polymorphism

Multiple Inheritance

Multiple interfaces can be combined by inheriting from several ABCs:

// VectorInterface: interface for vector types

// FunctionInterface: interface for functors

class Polynomial : public VectorInterface, FunctionInterface

{

// define any methods required by the ABCs

}

VectorInterface might define (but not implement) all the usual methods for

vector arithmetics, while FunctionInterface would require an appropriate

operator() .

In the above code example, FunctionInterface is not a template, and
therefore would describe the usual functions of a single real variable, but it
wouldn’t be difficult to provide a class template as ABC instead. This would also
cover more general functions (and technically define a parameterized family of
ABCs).
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Advanced Topics Dynamic Polymorphism

Multiple Inheritance

Multiple inheritance is simple for ABCs, because they typically don’t contain data.
Therefore, the interface conditions are simply restated, i.e., this form of multiple
inheritance is perfectly fine.

Multiple inheritance of base classes containing data, however, may lead to
duplication of data members. To avoid this, virtual inheritance can be used: the
derived class contains one copy of the base class per non-virtual derivation, and a
single one for all virtual derivations combined.

This diamond pattern, sometimes called Deadly Diamond of Death, typically leads
to code that is hard to maintain and may contain subtle bugs:

• Forgetting one of the virtual specifiers silently creates a second copy of
the base class data.

• Accessing the data in this second unmaintained version by accident will make
the state of the derived object inconsistent.
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Advanced Topics Dynamic Polymorphism

Example from DUNE

In practice, the diamond pattern is discouraged because of the resulting high
maintenance cost. However, earlier versions of PDELab contained a Newton
method based on this pattern that may serve as demonstration.

A Newton method consists of:

• a basic algorithm

• steps that must be performed at the start of each Newton iteration
(e.g. reassembly of the Jacobi matrix)

• a test whether the process has converged

• optionally a linesearch to enlarge the convergence area

Each of these intermediate steps is outsourced to a separate class, so you can
replace all the components independently.

The common data and virtual methods are placed in a base class.
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Advanced Topics Dynamic Polymorphism

Example from DUNE

// data to operate on, iteration count, etc.
class NewtonBase
{...};

// perform linear solve, compute step direction
class NewtonSolver : public virtual NewtonBase
{...};

// check termination criterion
class NewtonTerminate : public virtual NewtonBase
{...};

// perform line search strategy
class NewtonLineSearch : public virtual NewtonBase
{...};

// local linearization (jacobian), thresholds, etc.
class NewtonPrepareStep : public virtual NewtonBase
{...};

// combine above classes into one complete class
class Newton : public NewtonSolver, public NewtonTerminate,

public NewtonLineSearch, public NewtonPrepareStep
{...};

The actual implementation combined this with templatization on all levels.
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Advanced Topics Static Polymorphism

Static Polymorphism

Just as dynamic polymorphism refers to the ability of code to adapt to its context
at runtime, with dynamic dispatch on the type of objects, static polymorphism
refers to polymorphism at compile-time with similar goals.

We have already discussed two versions of such static polymorphism:

• function and operator overloading

• templates and their specializations

Older code may then be adapted to new types by adhering to the relevant
interfaces. But there is also a specific pattern for static polymorphism that mimics
virtual function calls, but resolved at compile-time: base class templates using the
curiously recurring template pattern.
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Advanced Topics Static Polymorphism

Static Polymorphism

In the Curiously Recurring Template Pattern (CRTP), some class is used as a
template parameter of its own base class. This is actually valid C++, because the
full definition of the derived class isn’t required at that point, only during
instantiation.

template<typename T>

class Base

{

// access to members of T through template parameter

...

};

class Derived : public Base<Derived>

{

...

};

Also sometimes called Upside-Down Inheritance, because class hierarchies can be
extended through different base classes using specialization.
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Advanced Topics Static Polymorphism

Static Polymorphism

template<typename T>
struct Base
{ // base class: provide interface, call impl.

static void static_interface()
{

T::static_implementation();
}
void interface()
{

static_cast<T*>(this)->implementation();
}

};

struct Derived : public Base<Derived>
{ // derived class: provide implementation

static void static_implementation();
void implementation();

}

// call this with Derived object as argument
template<typename T>

void foo(Base<T>& base)
{

Base<T>::static_interface();
base.interface();

}

• static_cast converts pointer
types at compile-time, is
type-safe (i.e., only works if
Base object is actually part of

a T object)

• Base class provides interface
definition like in ABCs

• Avoids cost of virtual functions

• Not a full replacement for
dynamic polymorphism, e.g., no
common base class as needed
for STL containers
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Example from DUNE

Mixin to define finite element Jacobian in terms of residual evaluations, with Imp

being both template parameter and derived class:

template<typename Imp>
class NumericalJacobianVolume
{
public:

...

//! compute local jacobian of the volume term
template<typename EG, typename LFSU, typename X, typename LFSV, typename Jacobian>
void jacobian_volume (const EG& eg, const LFSU& lfsu, const X& x,

const LFSV& lfsv, Jacobian& mat) const
{

...
asImp().alpha_volume(eg,lfsu,u,lfsv,downview);
...

}

private:
const double epsilon; // problem: this depends on data type R!
Imp& asImp () { return static_cast<Imp &> (*this); }
const Imp& asImp () const { return static_cast<const Imp &>(*this); }

};
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SFINAE

We have already discussed how the compiler chooses between several available
template specializations: it picks the “most specialized” version for which the
template parameters lead to successful instantiation.

During this selection process, other (more specialized) versions may have to be
tried out, but ultimately rejected when substituting the parameters with the given
types fails. Therefore:

“Substitution Failure is not an Error” (SFINAE)

Failing to instantiate one of the specializations doesn’t terminate the compilation
process, that happens only when the pool of possible choices has been exhausted
and no viable specialization was found, or several that are equally suitable.
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SFINAE

SFINAE, the programming technique with the same name, provides a mechanism
to select between different template specializations at will, and achieves this by
triggering substitution failures on purpose.

The main tool for this is a small template metaprogram named enable_if ,
which provides a type definition or doesn’t, depending on some external condition:

// possible implementation of enable_if

// ``false case'' --> no dependent type defined

template<bool B, class T = void>

struct enable_if {};

// ``true case'' --> dependent type is defined

template<class T>

struct enable_if<true, T> {typedef T type;};
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Picking Numerical Solvers

Assume we have a set of numerical problems, say, ProblemA , ProblemB , and

maybe others, and also a set of solvers for such problems, Solver1 , Solver2 ,
and potentially some others. We decide to manage the different combinations
using a common interface:

template<typename Problem,

typename Solver = Problem::DefaultSolver>

void solve(...)

{

// instantiate Problem and configure it

// instantiate appropriate Solver

// apply Solver to Problem

// postprocessing, etc.

}

This works fine as long as every problem class defines an appropriate solver default.
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Picking Numerical Solvers

There are two points to consider:

• The default solver is only a suggestion and another one may be chosen by the
user. This includes solvers that compile fine but are maybe not numerically
stable for the given problem!

• Maybe we want to eliminate the Solver template parameter altogether,
instead automatically choosing a suitable solver from our collection for any
problem that is passed to the solve function.

For this to work, we have let our different solve variants know about certain
“properties” of the problem classes, and maybe also of the solver classes. These
can then be used to mask those combinations we don’t want to be used via
SFINAE.
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Solving Linear Systems

To discuss a smaller application in more detail and show how SFINAE is actually
used, let us assume we have several matrix classes available, and some of them
provide a method named multiplyWithInverse that solves

Ax = b

in a very specialized and efficient way23, and others don’t. We want to make use
of this functionality when it is available, of course, i.e., we have to check whether
the method exists.

We need the following ingredients:

• A traits class template that checks for the existance of the above method

• The aforementioned enable_if to potentially define a type, depending on
the “return value” of the traits class

• Different solve functions, picking the right one with SFINAE

23e.g., some precomputed matrix decomposition, a specialized spectral method, etc.
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Solving Linear Systems

Traits class for existance of method, adapted from Jean Guegant’s example24:

template <class T1, class T2>
struct hasMultiplyWithInverse
{

// Truth values at compile time
typedef struct{char a; char b;} yes; // size 2
typedef struct{char a;} no; // size 1

// Helper template declaration
template <typename U, U u> struct isMethod;

// Picked if helper template declares valid type, i.e. if signature matches:
// - const C1 as implicit first argument to method [(C1::*) ... const]
// - non-const reference to C2 as second argument, and void as return type
template <typename C1, typename C2>

static yes test(isMethod<void (C1::*)(C2&) const, &C1::multiplyWithInverse>*) {}

// Catch-all default (templatized C-style variadic function)
template <typename,typename> static no test(...) {}

// Export truth value (as enum, alternatively as static const bool)
// Trick: sizeof works without actually calling the function
enum {value = (sizeof(test<T1,T2>(0)) == sizeof(yes))};

};

24https://jguegant.github.io/blogs/tech/sfinae-introduction.html
Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 154 / 277

https://jguegant.github.io/blogs/tech/sfinae-introduction.html


Advanced Topics SFINAE: Substitution Failure is not an Error

Solving Linear Systems

Two versions of the solve function, one of them being selected by SFINAE:

template<typename M, typename V>
typename std::enable_if<hasMultiplyWithInverse<M,V>::value>::type
solve(const M& m, V& v)
{

// implement specialized version here, can use multiplyWithInverse
}

template<typename M, typename V>
typename std::enable_if<!hasMultiplyWithInverse<M,V>::value>::type
solve(const M& m, V& v)
{

// implement general version here, has to avoid multiplyWithInverse
}

Standard placements of enable_if :

• Additional template parameter, hidden by assigning default value

• Additional function argument, hidden by assigning default value

• Return type of function (chosen above)
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SFINAE (cont.)

Central steps to make this form of SFINAE work:

• Use template specialization to determine at compile time whether some type
has a certain method or not

• Use this inside enable_if to trigger substitution failures on purpose

• Guide compiler to select correct specialization (i.e., remove ambiguity)

The SFINAE code presented above is valid C++98/03. C++11 and later
standards introduced several features that make SFINAE significantly simpler, or
help avoid it altogether:

• → Constant expressions, e.g., to avoid the sizeof trick/hack

• Predefined → type traits, to simplify writing conditionals

• Mapping between values and their types (→ decltype/declval)
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SFINAE (cont.)

A simplified version based on C++11, extracting type information using decltype:

template<typename T1, typename T2>

struct hasMultiplyWithInverse

{

template<typename T, typename U = void> // (1)

struct Helper

{enum {value = false};};

template<typename T> // (2)

struct Helper<T,decltype(&T::multiplyWithInverse)>

{enum {value = true};};

// matches (2) if function exists, else matches (1)

enum {value = Helper<T1,void (T1::*)(T2&) const>::value};

};

By the way, T1::* is a so-called pointer to member, which are, e.g., the types of
pointer stored in the vtables we discussed.
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Example from DUNE

The product of two functions on a numerical grid can be defined if

• both have the same dimensionality (i.e., scalar product of vector fields)

• or one of them is a scalar function (i.e., simple scaling)

Base template, handling the first case (also an example of CRTP):

//! Product of two GridFunctions
template<typename GF1, typename GF2, class = void>
class ProductGridFunctionAdapter :

public GridFunctionBase<
GridFunctionTraits<

typename GF1::Traits::GridViewType,
typename GF1::Traits::RangeFieldType, 1,
FieldVector<typename GF1::Traits::RangeFieldType, 1> >,

ProductGridFunctionAdapter<GF1,GF2> >
{

static_assert(unsigned(GF1::Traits::dimRange) ==
unsigned(GF2::Traits::dimRange),
"ProductGridFunctionAdapter: Operands must have "
"matching range dimensions, or one operand must be "
"scalar-valued.");

...
};
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Example from DUNE

Specializations for the two different semi-scalar cases, using SFINAE:

//! Product of two GridFunctions
template<typename GF1, typename GF2>
class ProductGridFunctionAdapter<GF1, GF2,

typename std::enable_if<
GF1::Traits::dimRange == 1 && GF2::Traits::dimRange != 1
>::type> :

public GridFunctionBase<typename GF2::Traits, ProductGridFunctionAdapter<GF1,GF2> >
{

...
};

//! Product of two GridFunctions
template<typename GF1, typename GF2>
class ProductGridFunctionAdapter<GF1, GF2,

typename std::enable_if<
GF1::Traits::dimRange != 1 && GF2::Traits::dimRange == 1
>::type> :

public ProductGridFunctionAdapter<GF2, GF1>
{
public:

ProductGridFunctionAdapter(GF1& gf1, GF2& gf2)
: ProductGridFunctionAdapter<GF2, GF1>(gf2, gf1)

{ }
};

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 159 / 277



C++11 Features

C++11 Features

C++11 was a major update that fundamentally changed the “look and feel” of
C++ programs. Several minor improvements of C++11 have been directly
incorporated into the previous sections, e.g., rvalue references, defaulted/deleted
methods, delegating constructors, etc. We will now discuss further topics in
greater detail:

• automatic type deduction

• compile-time evaluation

• move semantics

• smart pointers

• lambda expressions (closures)

• variadic templates

• threads and concurrency

• assorted new features and libraries
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Automatic Type Deduction

Quite often, the type of a variable is can be inferred from the surrounding code,
e.g., from:

• the type of literals

• the return type of functions

C++11 introduces the keyword auto , which instructs the compiler to
automatically deduce the type from context:

auto i = 27; // int literal -> i is int

auto j = 5u; // unsigned literal -> j is unsigned

auto x = 5.4; // x is double

auto y = 2.9f; // y is float

auto z = foo(); // type of z is return type of foo()

Qualifiers may be added if needed, e.g., const auto& to refer to constant
references instead.
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Automatic Type Deduction

Benefits of automatic type deduction:

• More concise code, very similar to code from weakly-typed languages

• No need for complicated lines to extract type information

• No need for tricks when the required types vary between template
instantiations

// very verbose piece of code

// only works for types T with these exact dependent types

typename T::grid_type::element_type::dof_type dof = ...

// ==> auto is more concise and more general

Drawbacks of automatic type deduction:

• May have to look up function signatures, because resulting type may depend
on some far away function definition (may make code harder to read)

• Doesn’t work if another type is desired (type promotions and automatic
conversions)
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Trailing Return Type

C++11 also introduces trailing return types, using the auto keyword:

// deferred definition of return type

auto multiply(const Matrix& m, const Vector& v) -> Vector

{ ... }

This is particularly useful when the return type should be automatically deduced
from the arguments:

// return type is whatever sum of types X and Y produces

auto foo(X x, Y y) -> decltype(x + y)

{ ... }

Here decltype produces the type that auto would deduce for its argument.

Trailing return types become mostly irrelevant in C++14 and above, because
these standards can deduce the return type from return statements.
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Example from DUNE

Trailing return types remain useful for SFINAE on trailing return types: the
existance or nonexistance of a certain operation is tested using the function
arguments. This is a direct precursor of concepts as they are introduced by
C++20.

template<class A, class B>
auto dot(const A & a, const B & b)

-> typename std::enable_if<!IsVector<A>::value
&& !std::is_same<typename FieldTraits<A>::field_type,
typename FieldTraits<A>::real_type> ::value, decltype(conj(a)*b)>::type

{return conj(a)*b;}

// same for a*b instead of conj(a)*b

template<typename A, typename B>
auto dot(const A & a, const B & b)

-> typename std::enable_if<IsVector<A>::value, decltype(a.dot(b))>::type
{return a.dot(b);}

template<class A, class B>
auto dotT(const A & a, const B & b) -> decltype(a*b)
{return a*b;}
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Compile-Time Evaluation

We have already discussed template metaprogramming as a way to perform
computations at compile-time. C++11 introduced constant expressions using the
keyword constexpr , making such computations significantly simpler.

In C++11 these computations are
rather restricted, e.g., constexpr

functions must

• not call non- constexpr

functions

• consist of a single return line

Later standards lift some of the
restrictions, e.g., the latter one
above.

// template metaprogramming factorial
template<int N>

struct Factorial
{

enum {value = Factorial<N-1>::value * N};
};

// base case to break infinite recursion
template<>

struct Factorial<0>
{

enum {value = 1};
};

// equivalent constexpr function
constexpr int factorial(int n)
{

return (n > 0) ? (factorial(n-1) * n) : 1;
}
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Move Semantics

Before C++11, C++ knew essentially two types of semantics for entities:

value semantics: assignment creates a new, independent entity (behavior for
normal variables)

reference semantics: assignment creates an alias (behavior for references, and
pointers through indirection)

Programmers can choose between these two types of semantics for their own
classes: the behavior is defined by the copy constructor and assignment operator
producing

• a deep copy (value semantics)

• or a shallow copy (reference semantics)

C++11 introduced a third type of semantics, move semantics. Here, assignment
creates neither a copy nor an alias, but moves the resources from one object to
the other.
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Move Semantics

Move semantics are based on rvalue references: while a normal, classical reference
T& is an alias for a separate, persistent entity, an rvalue reference T&& refers to,

e.g., temporary values that don’t have to be kept around for a later point in time.
More precise, but maybe also more confusing, categorizations (lvalue, prvalue,
xvalue, glvalue, and rvalue) are available online25.

The contents of such rvalue references may therefore be used to initialize other
variables by simply reusing the memory, eliminating the need for explicit copies
and associated memory allocations.

The function std::move() can be used to create rvalue references to variables,
thereby explicitly marking them as movable. After such an explicit move, the
original variable is typically in a valid but unspecified state.

25See https://en.cppreference.com/w/cpp/language/value_category
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Move Constructors and Assignment

User-defined data types need move constructors and assignment operators to
make use of this efficient form of transfer. They are auto-generated as long as all
attributes are movable and the user provided neither copy nor move constructors /
assignment operators.

struct Foo

{

int i;

Foo(Foo&& other)

: i(std::move(other.i))

{}

Foo& operator=(Foo&& other)

{

i = std::move(other.i);

return *this;

}

• Move constructors / assignment
operators are quite similar to copy
constructors / assignment
operators.

• The members of rvalue references
aren’t rvalues themselves, therefore
they have to be moved explicitly.

• The methods should leave the donor
in an arbitrary valid state (e.g.,
assign nullptr to any pointer

members).
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Forwarding References

There are two locations where the two ampersands && don’t actually denote an
rvalue reference, but rather a forwarding reference, or universal reference:

• the construct auto&& in → range-based for loops

• the argument T&& in a function template parameterized by T

In these special situations, what looks like an rvalue reference is actually
something that can bind to both lvalues and rvalues. These special references
serve the following purposes:

• Accept both lvalue references to container contents and rvalue references to
values that are generated on-the-fly in loop iterations

• Perfect forwarding: forward both lvalue and rvalue arguments to other
functions without having to implement a long list of template specializations
(which would cover cases / combinations)
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Smart Pointers

We have seen that manual memory management can lead to bugs that are quite
severe, and that in C++ the standard solution to this problem is RAII. C++11
introduced smart pointers, replacements for raw pointers that offer automatic
memory management based on RAII.

This is an application of the one responsibility principle: introducing wrapper
classes means that the user-defined class itself doesn’t have to concern itself with
memory management.

There are three different types of smart pointer:

• unique_ptr (exclusive ownership)

• shared_ptr (shared ownership, reference counting)

• weak_ptr (non-owning handle)
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Unique Pointers

The class unique_ptr (for unique pointer) provides memory management with

exclusive ownership: it manages an internal raw pointer and prevents any copies of
the stored address, which means that the allocated memory will be freed exactly
once.

// create a unique pointer

std::unique_ptr<int> p(new int);

// * and -> work as expected

*p = 8;

// unique pointers can't be copied, only moved

auto p2 = std::move(p);

// p is now empty (i.e., invalid)
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Unique Pointers

Unique pointers have the following functionality:

• Conversion to bool to check for validity (replaces nullptr comparison)

• A method get() for access to the raw pointer (e.g., for passing the stored

object to legacy code)

• Methods for releasing the stored raw pointer, or replacing it with another one

There is also a special unique_ptr version for arrays that doesn’t have

dereference operators and instead provides an operator[] that forwards to the

array. This can be used to manage the lifetime of C-style arrays with a drop-in
replacement, while still being able to hand the raw array to legacy code.
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Shared Pointers

While unique pointers have exclusive ownership, the class shared_ptr (for

shared pointer) provide memory management with shared ownership, as the name
implies. Shared pointers can be used to, e.g., provide pointers to several different
objects to share some common central resource or facility. Reference counting
guarantees that the managed object stays alive while there is at least one shared
pointer storing its address.

std::shared_ptr<int> p(new int);

*p = 5;

auto p2 = p;

*p2 = 7; // also changes contents of p

// allocated int stays around as long as either

// p or p2 point to it (or any other copy in

// some function or object)
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Shared Pointers

Shared pointer provide the same methods as unique pointers, and additionally
have a use_count() method that reports the total number of pointers sharing

the resource. There is also again an operator[] for the array case, but only

from C++17 onwards.

Internally, shared pointers store two raw pointers:

• a raw pointer to the stored object, so that dereferencing has basically the
same cost as for raw pointers

• a raw pointer to a manager object (control block), which is responsible for
bookkeeping tasks (reference counting)

The manager object in turn also stores a pointer to the managed object, because
it has to manage its lifetime (and grants access to weak pointers, as we will see).
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Shared Pointers

shared
object

control
block

shared: 3

shared ptr 1

shared ptr 2

shared ptr 3

• Solid arrows represent pointers for direct
access to the shared object

• Dashed arrows represent pointers used in
reference counting and management

• The shared count is incremented when a
shared pointer constructor is called

• It is decremented when a shared pointer
destructor is called

• The shared object can be destroyed once the
shared count reaches zero
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Weak Pointers

The third kind of smart pointer is called weak_ptr , and strictly speaking these

weak pointers aren’t pointers at all: they are non-owning observers of shared
resources, and can’t be dereferenced. Instead, if the shared object is still valid, i.e.,
there is at least one shared_ptr to it, a lock() can be called to gain

temporary access through a shared pointer.

std::shared_ptr<int> p(new int);

std::weak_ptr<int> w = p; // link w to p

// w is not expired, since p exists

if (! w.expired())

{

// create shared pointer

auto p2 = w.lock();

// resource is kept alive through p2

...

}
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Weak Pointers

shared
object

control
block

shared: 3
weak: 2

shared ptr 1

shared ptr 2

shared ptr 3

weak ptr 1

weak ptr 2

• The control block maintains a second
counter, the weak count, which keeps track
of the number of weak pointers

• Locking a weak pointer increases the shared
count, because the shared pointer
constructor is called

• The method expired() returns true

when the shared count has reached zero,
and false otherwise

• The shared object is destroyed once the
share count reaches zero, while the control
block is only destroyed once both counts
reach zero

• This allows weak pointers to still query the
status after all shared pointers are gone
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Smart Pointer Creation Functions

There is also a creation function make_shared , and from C++14 onward a

companion make_unique . These functions forward their arguments to the

constructor of the stored object, thereby eliminating the last bit of raw pointer
handling by hiding the new call.

auto p = std::make_shared<double>(7.);

In contrast to the shared_ptr constructor call, this function allocates space for

the stored object and the manager object in one go. This means the two ways of
constructing shared pointers are not fully equivalent:

• The function make_shared uses less allocations, and may therefore be
faster than the constructor call.

• For make_shared , the space occupied by the stored object is linked to that
of the manager object due to the joint memory allocation.

In other words, the destructor of the managed object is called when the last
shared pointer vanishes, but the memory becomes available again when all shared
and weak pointers are gone.
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Smart Pointer Use Cases

Each type of pointer is for a specific set of use cases:

unique_ptr Pass around object that doesn’t have to be available at different

locations simultaneously, capture raw pointers from legacy code
that have to be managed.

shared_ptr Pass around object that has to be available at different locations,

share object ownership and manage lifetime collaboratively.

weak_ptr Non-owning, observe shared object and its lifetime, may lock if

temporary access is required.

raw pointers For interfaces with legacy code, implementation details of classes
that are safely encapsulated, and sometimes used in modern code
to mark pointers as explicitly non-owned.
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Smart Pointer Use Cases

If explicitly managed raw pointers are completely avoided, then each type of
pointer has a clear purpose, and for each managed object there are two sets of
pointers:

Owning Pointers Either a single unique_ptr or one or more shared_ptr ,

which own the object and manage its lifetime.

Non-owning Pointers An arbitrary number of weak_ptr and raw pointers, which

don’t own the object. The former can check object validity,
while it has to be guaranteed by the calling code for the
latter. This also means that raw pointers should never be
returned or stored, only used and passed along to other
functions.
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Pitfalls When Using Shared Pointers

With modern compilers, using shared pointers has surprisingly little overhead:
dereferencing them has basically the same cost as directly using pointers. The
creation, destruction, and storage of shared pointers, however, creates a certain
overhead:

• Each set of such pointers requires storage for two raw pointers per shared
pointer, and additionally for a central control block

• Creating and destroying shared / weak pointers is more expensive than using
raw pointers, due to reference counting

However, these overheads are usually not significant, and a small price for the
guaranteed proper memory management.
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Pitfalls When Using Shared Pointers

shared ptr 2

shared ptr 3shared ptr 1

shared ptr 0

While shared pointers are usually quite safe,
subtle bugs may be introduced when loops are
created:

• Such loops occur in ring buffers, doubly
linked lists, and similar constructs

• If all external shared pointers go out of
scope, the loop becomes unreachable

• But the control blocks keep the loop alive,
because there is always at least one
remaining shared pointer per manager object

• One can replace one or all of the internal
shared pointers by weak pointers to prevent
this silent memory leak
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Pitfalls When Using Shared Pointers

Another pitfall occurs when an object tries to return a shared pointer to itself,
e.g., during the construction of the loops we just discussed. One might be
tempted to simply return a shared pointer wrapping the this pointer:

return std::shared_ptr<Foo>(this);

However, this would create a separate set of shared pointers, and the two distinct
control blocks would result in calling delete twice. There is actually an official
workaround for this: derive from a special class, and then call a special method.

struct Foo : public std::enable_shared_from_this<Foo> // CRTP

{

auto get_ptr() {return shared_from_this();}

}
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Pitfalls When Using Shared Pointers

The class enable_shared_from_this works like this:

• The shared pointer constructor is specialized for classes that inherit from this
class, and places a weak_ptr in the base class object.

• The method shared_from_this() accesses this weak pointer, locks it, and
returns the resulting shared pointer.

• The original shared pointer and the new one use the same manager object,
therefore the problem is avoided.

Before C++17, calling shared_from_this() on an object that isn’t actually
stored in a shared pointer lead to silent undefined behavior, but since C++17 this
case thankfully throws an appropriate exception.
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Lambda Expressions (Closures)

We have already discussed functors: objects that provide an operator()

method, which can therefore be called like functions. The main benefit of functors
over simple function pointers is their flexibility, based on their constructors and
internal attributes one may:

• provide some form of parameterization (constructor arguments)

• have internal state / function memory (data members)

• grant access to local variables (by passing them to the constructor)

C++11 introduced a framework to generate such functors automatically from
short descriptions called lambda expressions. These expressions are treated as if
the equivalent functor class had already been provided, and are therefore a
convenient way to provide ad-hoc function definitions (closures).
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Lambda Expressions (Closures)

A lambda expression consists of the following components:

• a capture list in brackets, specifying which local variables (if any) should be
made available within the expression

• a list of function arguments in parentheses, as usual

• a trailing return type, but without auto in front

• a function body in braces, as usual

int a = 4;

int b = 5;

// store function object in local variable

auto f = [a,&b] (int x) -> int {b += a*x; return a-x;};

std::cout << f(3) << std::endl; // 4 - 3 = 1

std::cout << b << std::endl; // 5 + 4*3 = 17
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Lambda Expressions (Closures)

The capture list may:

• be empty, thereby defining an anonymous function that is not a closure (i.e.,
nothing is captured26)

• mention the variables that should be captured, with a & in front of those
that should be captured by reference instead of value

• start with a single = , followed by zero or more captures by reference

• start with a single & , followed by zero or more captures by value

In the last two cases, any variables that is used in the expression is automatically
captured by-value (for = ) resp. by-reference (for & ).

int a = 1, b = 2, c = 3;

// captures b by-reference, a and c by-value (if actually used)

auto f = [=,&b] () -> void {...};

// captures a by-value, b and c by-reference (if actually used)

auto g = [&,a] () -> void {...};

26Technically, compile-time constant expressions are available, anyway.
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Lambda Expressions (Closures)

Behind the scenes, each lambda expression defines a local functor class, with an
automatically generated, unknown name that is guaranteed to not clash with any
names that are actually present in the code.

• Such local classes, i.e., classes defined within functions and other classes, are
actually a general concept in C++. Typically, they are only used to provide
private helper classes as implementation detail of some other class.

• Local classes can access the static local variables of the surrounding scope,
therefore variables marked constexpr and static are always available.

• Anything else that is needed inside the expression has to be captured
explicitly or with a capture default ( = or & ).

• The constructor is auto-generated from the intersection of the capture list
and the set of variables that are needed for the lambda body, while the body
itself and the arguments are used for the definition of operator() .
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Example from DUNE

Two vector norms, implemented as STL algorithms over some internal container,
using lambda expressions as operations / predicates:

typename Dune::template FieldTraits<E>::real_type one_norm() const
{

typedef typename Dune::template FieldTraits<E>::real_type Real;
return std::accumulate(_container->begin(),_container->end(),Real(0),

[](const auto& n, const auto& e) {
using std::abs;
return n + abs(e);

});
}

typename Dune::template FieldTraits<E>::real_type infinity_norm() const
{

if (_container->size() == 0)
return 0;

using std::abs;
typedef typename Dune::template FieldTraits<E>::real_type Real;
return abs(*std::max_element(_container->begin(),_container->end(),

[](const auto& a, const auto& b) {
using std::abs;
return abs(a) < abs(b);

}));
}
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Variadic Templates

C++11 introduced template parameter packs, which are placeholders for an
arbitrary number of template parameters (type parameters, non-type parameters,
or template template parameters, but not mixed). In the case of type template
parameters, these may be accompanied by a function parameter pack containing
the corresponding values.

Parameter packs may be used to create templates that accept an arbitrary number
of template parameters, so-called variadic templates:

// arbitrary number of int parameters

template<int... args>

class Foo { ... };

// arbitrary number of type parameters, plus arguments

template<typename... Ts>

void bar (Ts... args)

{ ... };

We have already discussed such a variadic template, namely std::tuple .
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Variadic Templates

The code of a variadic function template has to be written in a way that it treats
a variable number of parameters, and the standard way of achieving this is via
specifying the first parameter (the “head”) separately, and then using recursion.

The remaining list of parameters / arguments (the “tail”) can be used within the
function body: one replaces

• the parameter list typename... Ts with Ts... and

• the argument list Ts... args with args... .

The ellipsis ... may also be placed after any expression containing these packs,
instead of directly behind them.

Every expression containing at least one such pack is subject to pack expansion:
at instantiation, the expression is replaced by a comma-separated list of copies of
itself, with the pack replaced by each one of its constituents in turn.
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Variadic Templates

An implementation of Horner’s method, efficiently evaluating a given polynomial:

a0 + a1 · x + a2 · x2 + · · · = a0 + x · (a1 + x · (a2 + x · · · · ))

// this is an overload, not a specialization!
template<typename T>

double eval_poly(double x, T head)
{

return head;
}

// general case: used when the pack is non-empty
template<typename T, typename... Ts>

double eval_poly(double x, T head, Ts... tail)
{

// pack expansion: insert remaining coefficients
return head + x * eval_poly(x,tail...);

}

// evaluates f(x) = 3 + 5x + 2x^2
eval_poly(x,3,5,2);
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Variadic Templates

For the sake of demonstrating a bit of the power of pack expansion, we may
choose to multiply each of the remaining coefficients with x instead. This makes
the algorithm significantly less efficient, of course: it implements the naive way of
evaluating polynomials, after all.

template<typename T>

double eval_poly(double x, T head)

{

return head;

}

template<typename T, typename... Ts>

double eval_poly(double x, T head, Ts... tail)

{

// pack expansion: remaining coefficients times x

return head + eval_poly(x, x * tail...);

}
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Variadic Templates

One can even expand several packs in the same expression, leading to quite
powerful constructs:

template<typename... Ts1>

struct Left

{

template<typename... Ts2>

struct Right

{

using Zip = std::tuple<std::pair<Ts1,Ts2>...>;

};

};

// defines the pairing [(A,X),(B,Y),(C,Z)]

using Zip = Left<A,B,C>::Right<X,Y,Z>::Zip;
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Concurrency and Parallel Computing

Moore’s Law states that the number of transistors in integrated circuits doubles
roughly every two years (i.e., exponential growth). This typically translates to a
similar increase in computational power and available memory. However, there are
clear physical limits to this growth (atom size, speed of light).

The computational power of single CPU cores has been stagnant for some years,
and instead multi-core systems have become dominant: most modern computers
have CPUs with multiple cores, not just compute clusters, but also personal
laptops and desktops, and even smart phones.

As a consequence, concurrency and parallel computing are no longer just means to
accelerate computations: nowadays, a solid understanding of parallel programming
techniques is important to make full use of the resources a computer provides.
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Concurrency and Parallel Computing

There is a wide variety of compute architectures available today. A simplified
categorization might be:

• Multi-core CPUs with associated main memory on a single machine, every
core has full access to the system memory (uniform memory architecture,
UMA), concurrent programming using threads (separate execution flows
within one program)

• Clusters, i.e., tightly interconnected computers as a unit, each with its own
CPU and memory (non-uniform memory architecture, NUMA), parallel
programming based on message passing to exchange memory contents and
computation results

While message passing requires external liberaries, concurrency using threads is
provided natively by C++11 and above.
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Concurrency with Threads

C++ had thread suppport before C++11, of course, but the availability and
characteristics of these threads where dependent on the architecture and
operating system, e.g., POSIX threads (pthreads) under UNIX and Linux. C++11
provides a unified interface to thread creation and management, thereby
increasing interoperability and platform independence of the resulting code.

Note that there is typically still the need to choose an appropriate thread backend,
e.g., using the -pthread compiler flag to use POSIX threads.

There are two different ways of writing such concurrent programs:

• low-level code based on threads, using mutexes and locks to manually
manage thread interactions and data exchange

• higher-level code based on tasks, using futures and promises to abstract away
most of the interdependencies
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Concurrency with Threads

We have discussed smart pointers as handles for memory. A std::thread object
is also a handle, but one that represents an executing subprogram.

• The first argument of its constructor is a function pointer, functor, lambda
expression or similar. This is the function the thread will execute, and may be
interpreted as the “main function” of the subprogram.

• The remaining arguments are passed to this function using perfect
forwarding. There may be an arbitrary number of them, because the
constructor is a variadic template.

• Threads can’t be copied, only moved, because there may be only one
representation of the running subprogram (compare unique_ptr ).

• Calling the detach() method releases the thread, letting it run indendently

from the main program, while calling join() halts the main program until

the thread is done and ready to be assimilated.

• The destructor aborts the program via terminate() if neither join() nor

detach() have been called beforehand.
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Concurrency with Threads

Thread-based programs have a special thread-local namespace named
std::this_thread , which provides a number of functions for thread control:

• The function get_id() returns a number that identifies the thread itself.

The thread handle std::thread has a method get_id with the same

information, but this is inaccessible from within the running thread, of course.

• The function yield() signals the operating system and suggests that other

threads should be allowed to run, e.g., because the current thread would be
mostly idle anyway.

• The functions sleep_for and sleep_until can be used to let the thread

wait for some time without resorting to resource-intensive busy-waiting.

The two sleep functions expect a duration resp. time point from the C++11
→ chrono date and time library.
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Concurrency with Threads

int val = 0;

// lambda as first argument, no explicit function arguments

// val captured by-reference through the lambda

std::thread t([&](){

for (int i = 0; i < 10; i++)

{

std::cout << ++val << std::endl;

// blocks thread execution for given duration

std::this_thread::sleep_for(std::chrono::seconds(1));

}

});

// could do something else here in the meantime

// wait for thread to finish execution

t.join();
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Mutexes and Locks

If two or more threads share some resources, race conditions may occur: the result
of read and write operations on shared memory may depend on their exact order
of execution. A well-known example is a lost update:

• Two threads read a value from memory, increment it, and store the result.

• If these two sets of operations don’t overlap, then everything is fine: the value
is incremented twice.

• If there is an overlap, then only one of the increments is stored, and the
program doesn’t produce the expected results.

This form of race condition can be prevented through mutual exclusion (mutexes):
only one thread at a time may enter the critical section where the shared resource
is accessed, thereby eliminating any potential for such overlaps.
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Mutexes and Locks

Calling the lock() method on a mutex stops execution if another thread has

currently locked the same mutex, while unlock() releases the lock, allowing the
next thread to enter the critical section:

void count(int id, int steps, int& val, std::mutex& mut)
{

for (int i = 0; i < steps; i++)
{

mut.lock(); // ensure exclusive access to val
std::cout << id << ": " << ++val << std::endl;
mut.unlock(); // allow other threads to access

std::this_thread::sleep_for(std::chrono::seconds(1));
}

}

int val = 0; std::mutex mut;
// pass val and mut as references using perfect forwarding
std::thread t1(count, 0, 10, std::ref(val), std::ref(mut));
std::thread t2(count, 1, 10, std::ref(val), std::ref(mut));
t1.join(); t2.join();
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Mutexes and Locks

Mutexes aren’t exception-safe, and shouldn’t be used directly. Instead, they are
usually wrapped in a lock_guard object, which locks the mutex in its

constructor and unlocks it in its destructor, even if an exception is triggered:

void count(int id, int steps, int& val, std::mutex& mut)
{

for (int i = 0; i < steps; i++)
{

// additional scope to keep lock_guard lifetime short
// (should not stay around for the sleep period)
{

// constructor locks the mutex
std::lock_guard<std::mutex> lock(mut);
std::cout << id << ": " << ++val << std::endl;

} // destructor unlocks the mutex

std::this_thread::sleep_for(std::chrono::seconds(1));
}

}

In short, lock guards use RAII to ensure exception-safe mutual exclusion.
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Mutexes and Locks

There is a number of related methods and classes:

• Mutexes have a non-blocking method trylock() : the thread doesn’t wait,

instead it can do other work and maybe retry later.

• The class recursive_mutex can lock multiple times, e.g., when the same
resource is needed simultaneously in a number of related functions / methods.

• There are timed variants timed_mutex and recursive_timed_mutex ,
which are able to wait for a certain time instead of indefinitely.

• The class unique_lock is a more flexible replacement for lock_guard .

• Condition variables ( condition_variable ) can be used to wait on a lock,

until another thread wakes one or all waiting threads using notify_one()

or notify_all() . This can be used to create synchronization barriers and

organize a structured transfer of data.
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Atomics

An alternative to mutexes and locks is the use of atomics. Data types can be
made atomic by wrapping them in a std::atomic<T> , which provides special
uninterruptible methods for the usual operations. This solves the lost update
problem, because read—modify—write cycles are carried out as single operations.

Atomics can utilize highly efficient special CPU instructions on modern
architectures, or, if these aren’t available, fall back to using internal locks. In the
latter case they are basically wrappers that hide the explicit use of mutual
exclusion. There are also special memory order models that can guarantee a
certain order of memory operations across different threads. These are quite
powerful, but using them is not as straight-forward as the explicit use of flags and
condition variables.
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Atomics

Examples of atomic operations for std::atomic<T> :

• Methods load and store for reading and writing. These have the

conversion operator operator T and assignment operator= as aliases.

• Methods compare_exchange_weak and compare_exchange_strong ,

which replace an atomic value if it is safe to do so.

• If T is an arithmetic type, special atomic updates like fetch_add ,

fetch_sub , etc., which have the aliases operator+= , operator-= ,

operator++ , and so on.

The methods are named after the special CPU instructions they represent, lending
themselves to a more explicit coding style, while the operator aliases make it
possible to write code that looks more or less like normal C++ code operating on
thread-local variables.
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Atomics

The method compare_exchange_weak has the following signature:

bool replaced = atom_v.compare_exchange_weak(expected, desired);

If atom_v contains expected , it is replaced by desired , else expected is

replaced by the value stored in atom_v . This can be used in a loop, checking the
value until the update succeeds:

while (!atom_v.compare_exchange_weak(e,d))

{

// react to fact that atom_v actually contains value in e

...

}

The method compare_exchange_strong works the same, and additionally

guarantees that updates are only performed if actually needed, while the weak
version may cause spurious updates27.

27See https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange
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Concurrency with Tasks

Many programming tasks allow a certain amount of concurrency on two different
levels: fine-grained interaction, and the separate handling of subtasks.

Explicit use of threads is often a good choice when:

• there is extensive communication and exchange of data between the threads

• the threads operate collaboratively, maybe even executing the same code on
different sets of data, exchanging intermediate results

Task-based concurrency is an additional layer of abstraction for cases where:

• the program can be decomposed into more-or-less independent sub-tasks

• each such task has well-defined sets of prerequisites it needs and results it
will produce

Of course, threads and tasks may also be combined, resulting in two simultaneous
levels of concurrency.
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Concurrency with Tasks

B C

D

E F

A

G

start

end

• Most scientific programs have setup (A) and
output/cleanup (G) phases which have to be
executed in sequence.

• Between these two phases, a certain number
of tasks, here (B) to (F), have to be
performed. Some of these have to be
performed in order, but others may allow a
certain degree of flexibility and parallel
computation.

• Tasks may be algorithms or sub-algorithms,
like some matrix factorization, or the
solution of some nonlinear system, but also,
e.g., background I/O operations.
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Promises and Futures

At the heart of task-based programming are promise—future pairs: a promise
represents the result some task will ultimately produce, while a future represents,
well, the future inputs another task is waiting for. As such, promises and futures
serve a similar purpose to pipes and data streams: unidirectional transport of data.

A std::promise<T> object has the following functionality:

• Create an associated future with get_future

• Store a result through method set_value , signaling task completion

• Store an exception instead using set_exception , signaling task failure

• Two methods that set a result resp. an exception at thread exit instead, so
that local cleanup can be taken care of
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Promises and Futures

A std::future<T> object provides the following:

• Methods wait , wait_for , and wait_until , which block execution and
wait for the result, either indefinitely or for a certain time

• A method valid , as a non-blocking way of checking for task completion

• A method get , which returns the stored value if the future is ready, or

throws the stored exception if one was set

• A method share , moving the internal shared state to a shared_future

If T is not a reference type, then get returns the stored value as an rvalue

reference. Consequently, the method get may be called exactly once in this

case28.

The class std::shared_future can be used to provide the stored value to

multiple threads. In constrast to a normal future, its get method returns

const T& and keeps the internal state valid.
28This makes it possible to return large objects from tasks using move semantics.
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Promises and Futures

A matrix-vector product, handed over to a new thread:

void matvec (const Matrix& mat, const Vector& vec,

std::promise<Vector> promise)

{

Vector res = mat * vec;

promise.set_value(std::move(res));

}

std::promise<Vector> promise;

std::future<Vector> future = promise.get_future();

// hand over matrix-vector pair, promise must be moved

std::thread t(matvec,mat,vec,std::move(promise));

// could do something else here

future.wait(); t.join(); // wait, then clean up

Vector res = future.get();
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Packaged Tasks

A packaged task ( std::packaged_task ) is a convenient wrapper around

functions and function-like objects, like functors and lambda expressions. Calling
the packaged task as if it were a function executes its content concurrently,
including low-level tasks like thread creation and destruction. The function return
value is provided using a promise—future pair.

// packaged task with trivial job, defined through a lambda

std::packaged_task<int(int,int)>

task([](int a, int b){return a*b;});

// future object that will contain return value

std::future<int> future = task.get_future();

// execute task, i.e., run function

task(3,4);

// could do something else here

future.wait(); // wait for task to finish

int res = future.get(); // extract result
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Asynchronous Execution

Packaged tasks may manage their own threads, or have a thread explicitly
assigned to them, but they still have to be started manually. There is an
additional construct that is even more abstract and high-level: std::async , a

function providing asynchronous execution. The first argument of this function is
an execution policy:

std::launch::async : launch a new thread that executes the task, similar

to packaged_task

std::launch::deferred : execute the task on the current thread, but defer it
until the result is actually needed for the first time
(lazy evaluation)

default (if omitted): bitwise OR of async and deferred , which

enables the async call to choose between the two

options, i.e., start a new thread if that is convenient
at some point in time, or wait until the result is
needed
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Asynchronous Execution

The std::async function returns a future that will contain the result:

std::future<Foo> future = std::async(expensiveFunction,args);

// do something else here

// wait for thread if one was spawned (asynchronous)

// or compute result here if none was created (deferred)

Foo result = future.get();

Futures from std::async are special: their destructor blocks and forces the

contained function to run even if get was never called. This means that

functions for side effects (e.g., background I/O) are guaranteed to actually run,
and to be finished when the future is destroyed, with the async trying to run the

function at a suitable moment29.

29A void future std::future<void> can be used in this case.
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Types of Initialization

Before C++11, C++ provided several different initialization mechanisms with
somewhat inconsistent notation:

Value: written T(); , default constructor for nameless objects,
componentwise value init. for array types, zero-initialization otherwise

Direct: written T t(args...); , constructor call for classes, conversion

operator or narrowing conversion otherwise

Copy: written T t = other; or T t(other); , copy constructor, etc.

Aggregate: written T t = {args...}; , direct assignment of array entries, or of

struct components if struct is simple enough30

Reference: written T& ref = t; , creation of reference

Importantly, the default constructor call is T t; , not T t(); , and using this
expression for built-in types leaves them uninitialized!

30See https://en.cppreference.com/w/cpp/language/aggregate_initialization for
exact specification.
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Types of Initialization

These forms of initialization remain valid in C++11 and above, but there is also a
new mechanism that has a more consistent notation and is more flexible:
initialization using braced lists T t{args...}; . The braces can contain zero,

one or more than one argument.

Zero arguments:

Value initialization, using the default constructor for class types. Consistent
notation for all types, and fundamental types are zero-initialized.

One Argument, same or derived type:

Direct initialization, possibly with slicing. No narrowing conversions allowed for
fundamental types except for literals that are representable, i.e., no silent
conversion from double to int or similar.
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Types of Initialization

A different argument, or more than one:

Aggregate initialization for arrays and simple structs, else forwarded to a
constructor taking a std::initializer_list<T2> if available, e.g., to mimic
aggregate initialization, else forwarded to a matching constructor. No narrowing
conversions allowed for arguments.

int a; // usual notation leaves a uninitialized

int b(); // zero-init., doesn't work with classes

int c{}; // zero-init., notation consistent with classes

std::vector<int> v(5,2); // vector [2,2,2,2,2]

std::vector<int> w{5,2}; // vector [5,2] (initializer_list)
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Range-Based Loops

C++11 introduced range-based for loops as they exist in other high-level
languages:

std::array<int,5> arr = {1,2,4,8,16};

for (const int& m : arr)

std::cout << m << std::endl;

This is a more concise replacement for, and in fact built upon, the for loop
using iterators:

for (typename std::array<int,5>::const_iterator it = arr.begin();

it != arr.end(); ++it)

std::cout << *it << std::endl;
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Range-Based Loops

Range-based for loops can also be used with user-defined classes. One just has
to define three things:

• An iterator type, the one that would be used in the old-fashioned loop

• A begin method / free function for the start of the range

• An end method / free function denoting the end of the range

This means that anything that supports loops based on iterators also works with
range-based loops.

One can implement the usual begin / end container methods, or use the free

functions instead, e.g., if the class can’t be modified for some reason. The iterator
type has to support the expected operations, of course: pre-increment, dereference
operator * , not-equal-to operator != , and a public destructor, just like for the
explicitly iterator-based loop.
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Range-Based Loops

The type definition in range-based for loops is an ideal candidate for the auto

keyword, since the type of the elements is usually clear from context. This leads to
two standard versions of such loops, one for const and one for non-const access:

// const version

for (const auto& element : range)

{ ... }

// non-const version

for (auto&& element : range)

{ ... }

As discussed, this auto&& is a forwarding reference: it decays to a normal lvalue
reference when accessing the contents of some container, but also accepts values
that are generated on-the-fly, e.g., through some generator function.
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Range-Based Loops

A braced initialization list can be assigned to std::initializer_list<T> if

and only if all of its entries have the same type (which is then used as T ), and
such an initializer list can serve as a range. In fact, iterating over such a list is how
the corresponding constructors are implemented.

This means we can use braced lists not just for initialization, but also for
range-based loops:

// iterate over some powers of two

for (const auto& i : {1,2,4,8,16})

{ ... }

// iterate over the vowels

for (const auto& c : {'a','e','i','o','u'})

{ ... }
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Type Aliases and Alias Templates

In C++11 and above, the keyword using provides an alternative to typedefs,

which is more general and can also be used to give names to partial template
specializations / instantiations.

// type alias instead of classical typedef
using Number = int; // replaces ``typedef int Number''

// partial specialization or instantiation
template<typename T>

using Vector3D = Vector<T,3>; // defines ``Vector3D<T>''

// alias template
template<typename U, typename V>

using Matrix = Long::Namespace::SpecialMatrix<U,V>;

// variadic alias template
// (can also be used to just omit the arguments!)
template<typename... T>

using Foo = Bar<T...>; // Foo is alias of Bar

Of course, simply importing names like in using std::cout; or similar is still

possible as well.
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Initializers and Inheriting Constructors

C++11 simplifies writing classes:

• Initializers may now also be used for normal (i.e., non- static ) attributes.
The assigned value is used if the constructor doesn’t explicitly define the
member.

• The constructors of base classes may now be imported with a using

directive, just like one could import normal methods before. This
automatically produces forwarding constructors for the derived class.

struct Base {Base(int a, double b, bool c);};

struct Derived : public Base

{

int i = 0; // used if constructor doesn't assign anything

// defines Derived(int,double,bool) and potentially others

using Base::Base;

};
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Scoped Enums

Classic C enums are simply names for integer constants. This means they can be
used where

• some simple integer expression or

• another completely unrelated enum

is expected, potentially leading to subtle bugs.

C++11 introduced scoped enums, which are type-safe and can only interact with
enums of the same type:

enum OldColor {RED, BLUE, GREEN}; // old C-style enum

int i = RED; // perfectly fine assignment

enum class Color {red, blue, green}; // scoped enum

Color col = Color::red; // no implicit conversion to int

using Color::green; // local shorthands may be defined
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Exception-Free Functions

Previous versions of C++ included a facility for specifying what kind of exceptions
a function might throw. This was deemed too complicated and error-prone, and
therefore C++11 switched to specifying that a function will never throw
exceptions, used for optimization purposes. There are two versions:
• A simple noexcept qualifier, stating that exceptions are never thrown

• A noexcept qualifier with Boolean argument, typically using an operator

with the same name

// never throws an exception

int five() noexcept {return 5;}

// doesn't throw if both addition and scaling of type T don't

template<typename T>

T scale_and_add(const T& t1, double a, const T& t2)

noexcept(noexcept(a * t1) && noexcept(t1 + t2))

{

return a * t1 + t2;

}
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Type Traits

As seen in our discussion of template metaprogramming and SFINAE, it can be
quite handy to have certain properties of data types available at compile time.

C++11 and above provide a set of such type traits in header <type_traits> :

• Type properties (e.g., is_integral , is_floating_point , is_class ,

is_const ,. . . )

• Type relationships (e.g., is_same , is_convertible )

• Type modifications (e.g., remove_const , remove_pointer )

• Transformations (e.g., enable_if , conditional , common_type )

• Constants ( integral_constant , true_type , false_type )

These have been defined using the same template tricks we have discussed.

For most of these traits, C++17 introduces an equivalent → variable template,
e.g., is_integral_v , and a mayor use case are → concepts as introduced by

C++20.
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Time Measurements

The chrono date and time library is a replacement for the old C-style date and
time utilities, with proper type support and automatic unit conversions. The
chrono library has its own namespace std::chrono , where it provides:

• A system_clock class for wall time: equivalent to C-style time, usually

Unix Time (UTC), can be nonmonotonic due to, e.g., NTP synchronization.

• A steady_clock class for time measurements: monotonic (time always

moves forward), e.g., time since last system reboot.

• A time_point class template, representing time points for each of the

clocks (template parameter).

• A duration class template, representing durations (time point differences).

Time measurements should always use steady_clock , because the system clock

may perform jumps backward in time (e.g., during synchronization) or into the
future (e.g., when waking from suspend state).

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 228 / 277



C++11 Features Assorted New Features and Libraries

Time Measurements

Time measurements using the library tend to be a bit verbose, because durations
have to be explicitly cast to time units:

auto start = std::chrono::steady_clock::now();

// perform some computations, measure elapsed time

auto end = std::chrono::steady_clock::now();

auto ms = std::chrono::duration_cast<std::chrono::milliseconds>

(end - start).count();

std::cout << "duration in ms: " << ms << std::endl;

std::cout << "duration in s: " << ms/1000. << std::endl;

The cast converts the internal unit of the clock (ticks) to one of the usual units,
e.g., milliseconds or seconds. The units provided by C++11 range from
nanoseconds to hours, while days, weeks, months and years are introduced by
C++20.
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Random Number Generation

The legacy C pseudo-random number generator (PRNG) rand() can be of
rather poor quality. Before C++11, this meant that people had to either make do
with subpar random numbers, or rely on some external library. C++11 and above
provide a set of very well-known PRNGs in header <random> , e.g.:

• The Mersenne Twister (Matsumoto and Nishimura)

• “Minimal standard” linear congrual engine (Park et al.)

• RANLUX generator (Lüscher and James)

The generation of random numbers is divided into three distinct steps:

• Seeding the aforementioned engines, using true random numbers (entropy) or
simply system time if the latter is sufficient

• Generation of uniformly distributed pseudo-random integers using the engines

• Transformation of these values into discrete or continuous target distributions
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Random Number Generation

std::random_device rd; // entropy source

std::mt19937 gen{rd()}; // seed Mersenne Twister

std::normal_distribution<> dist{}; // standard normal dist

std::vector<double> vals(1000);

for (auto& e : vals)

e = dist(gen); // draw value using generator

Predefined distributions include:

• uniform distributions (integer and real)

• Bernoulli distributions (Bernoulli, binomial, etc.)

• Poisson distributions (Poisson, exponential, Gamma, etc.)

• normal distributions (normal, lognormal, chi-squared, etc.)
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Custom Literals

C++ provides a large number of predefined literals, e.g.:

integers binary (prefix 0b ), octal (prefix 0 ), decimal or hex (prefix 0x ),

postfix u for unsigned, l for long, ll for long long

floating-point number followed by optional exponent separated with e , postfix

f for float, l for long, double if omitted

auto a = 0b100101 // binary encoded integer

auto b = 123u // unsigned int

auto c = 0xCAFEul // unsigned long, hex encoded

auto x = 3.141f // single-precision float

auto y = 1e10 // double-precision with exponent

All letters in these literals are case insensitive. There are also literals for different
types of characters and strings (UTF-8, UTF-16, . . . ).
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Custom Literals

Since C++11, custom literals can be defined, based on two ingredients:

• A user-defined suffix, which has to start with an underscore

• A literal operator for this suffix, defining how a given numerical value or
character sequence should be interpreted

// compute in meters, allow specifications in foot and inch

constexpr long double operator"" _inch (long double x)

{return 0.0254 * x;}

constexpr long double operator"" _ft (long double x)

{return 0.3048 * x;}

// compute in radian, allow specifications in degrees

constexpr long double operator"" _degs (long double x)

{return M_PIl / 180 * x;} // long double pi constant

auto x = 47_inch; auto y = 3_ft; auto z = 90_degs;
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Raw Literals and Regular Expressions

A bit less relevant for scientific computing, but still quite useful, are the new text
manipulation capabilities introduced by C++11. Raw string literals can be used to
specify arbitrary texts without the need to escape any characters, like quotation
marks or newline characters:

// delimiter "foo" is arbitrary, needed to allow ")" in text

// can use any symbol instead, e.g., "|", "!", or "@"

auto raw_string = R"foo(This is a

multi-line string

containing "quotation marks"

and \literal\ backslashes)foo";

Such raw literals can be particularly useful when writing regular expressions in one
of the pattern matching grammars provided by the regex library31.

31See https://en.cppreference.com/w/cpp/regex.
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C++14 Features

C++14 was a comparatively minor update, but it is nevertheless brought several
improvements to the language, mainly regarding constructs introduced in C++11:

• improvements to constant expressions

• generic lambda expressions

• variable templates

• return type deduction

• assorted other improvements and additions
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Improvements to Constant Expressions

Except for possibly some checks ( static_assert ) and local definitions

( using / typedef ), C++11 constexpr functions are basically a single return
statement.

C++14 lifts many restrictions and consequently makes constant expressions much
more powerful. The body of a constexpr function may now contain normal

C++ code, as long as:

• Every variable has literal type, i.e., it is either built-in or has a matching
constexpr constructor and destructor.

• Every such variable is immediately initialized.

• All functions that are called are themselves marked constexpr .

• The code doesn’t contain try / catch blocks (exception handling).

The second and fourth restriction are lifted by C++20, where constexpr

exceptions are introduced.

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 236 / 277



C++14 Features Improvements to Constant Expressions

Improvements to Constant Expressions

Most importantly, constexpr functions may now contain branches and loops:

constexpr int factorial(int n)

{

int out = 1;

for (int i = 2; i <= n; i++)

out *= i;

return out;

}

Just like liberal use of the const keyword prevents bugs and helps the compiler
during optimization, large parts of programs may now be marked constexpr .

These parts will then be evaluated at compile-time where appropriate.

This means we can write whole subprograms that are run at compile-time, instead
of relying on complex template metaprograms for such tasks.
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Generic Lambda Expressions

C++14 introduced generic lambda expressions: lambda function arguments may
now be declared auto , as in:

auto add = [] (auto x, auto y) {return x+y;};

The anonymous functor introduced by this lambda expression doesn’t provide a
single operator() , instead it defines an appropriate operator() function

template:

• Each occuring auto introduces an (anonymous) template parameter, say,

T1 , T2 , . . .

• These parameters are independent: there is no mechanism to specify that two
types are the same or have some other relationship

• Any time the lambda is called with a certain argument type combination for
the first time, the operator() function template is instantiated with these
types.
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Variable Templates

Before C++14, templates came in two different flavors, function templates
introducing a parameterized family of functions, and class templates introducing a
parameterized family of classes or structs.

C++14 introduced variable templates, i.e., variables that may have several
variants existing at the same time, parameterized by some types or values.
Variable templates can have the same template parameters as other templates,
including template parameter packs, but they themselves can’t be used as
template template parameters.

// no longer a struct with internal enum or similar

template<int N>

constexpr int factorial = factorial<N-1> * N;

template<>

constexpr int factorial<0> = 1;
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Variable Templates

Potential use cases of variable templates:

• Cleaner representation of template metaprogramming, as seen in the example.

• Provide different versions of some generator object, e.g., for pseudo-random
numbers, one for each data type.

• Make named constants (e.g., from C enums and macros) type-aware and
usable as templates.

The Message Passing Interface (MPI) specifies data types through certain integer
constants, make those available for the C++ type system:

template<typename T> constexpr MPI_Datatype MPIType;

template<> constexpr MPI_Datatype MPIType<int> = MPI_INT;

template<> constexpr MPI_Datatype MPIType<float> = MPI_FLOAT;

template<> constexpr MPI_Datatype MPIType<double> = MPI_DOUBLE;

...

This way, generic code can pick the right MPI data type automatically.
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Return Type Deduction

In many cases the trailing return type of lambda expressions is optional, and can
be deduced from the return statement instead:

auto f = [] (int i) {return 2*i;}; // returns int

C++14 extends this mechanism from lambdas to normal functions:

• The return type of lambdas may be omitted, and the return type of normal
functions can be “ auto ” without trailing return type.

• In both cases the return type is deduced using the return statement. Multiple
return statements with conflicting types cause a compilation error.

• The deduced type is always a value type, like with auto in general.

Reference types can be specified using auto& , const auto& , etc. (as a
trailing return type in the case of lambdas).
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Return Type Deduction

This leads to two convenient ways to write functions returning tuples or structs.
We don’t have to repeat the tuple information several times, doing so once in the
return type or return statement is enough:

// type deduction: don't specify return type,

// has to be fixed somewhere in the function body

auto createTuple()

{

return std::tuple<int,double,bool>{7,3.2,true};

}

// new init version: specify return type,

// can return simple braced list

std::tuple<double,char,int> buildTuple()

{

return {5.6,'c',27};

}
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Deprecated Attribute

Sometimes legacy code has to be kept around for backwards compatibility, but
shouldn’t be used anymore for various reasons. Such code can be marked with the
[[deprecated]] attribute, optionally including some reason:

[[deprecated("Use more efficient newFoo() function instead.")]]

void foo() { ... }

The attribute is placed:

• before function declarations / definitions (see above)

• before the class or struct name: struct [[deprecated]] Foo { ... };

• before variable declarations: [[deprecated]] int i;

Templates, individual template specializations, and whole namespaces can be
marked as deprecated in similar fashion.
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Type Traits: Helper Types

Template metaprograms based on type traits can become quite verbose: each such
traits class introduces a dependent type named type or a Boolean value named

value , and these have to be written out to specify the resulting type or value.

C++14 introduced helper types like enable_if_t :

template< bool B, class T = void>

using enable_if_t = typename enable_if<B,T>::type;

This can help make SFINAE easier to read, for example. Additionally, there is now
a constexpr operator() for the Boolean values:

std::enable_if<typename std::is_same<T1,T2>::value>::type>

std::enable_if_t<std::is_same<T1,T2>()>> // C++14 version

They could also have introduced helper variables for the Boolean values using
variable templates, but that didn’t happen until C++17.
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C++17 Features

C++17 is again a rather small update. The following points are noteworthy
additions to the language:

• Guaranteed copy elision

• Compile-time branches

• Structured bindings

• Additional utility classes

• Fold expressions

• Class template argument deduction

• Mathematical special functions

• The filesystems library

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 245 / 277



C++17 Features Guaranteed Copy Elision

Guaranteed Copy Elision

In C++, exchanging data with a function through arguments and return values
typically requires copies:

• copies of the arguments are created in the scope of the function that is called

• a copy of the return value is created in the scope of the calling function (a
nameless temporary), and then a second copy is necessary during assignment

Such copies can be memory-intensive and time-consuming, and therefore we often
avoid them using references:

• Arguments are passed as const references to avoid copies.

• Return values are replaced by non- const references as arguments: instead
of returning something, the function simply modifies its argument.

// computes out = mat * vec

void foo(const Mat& mat, const Vec& vec, Vec& out)

{ ... }
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Guaranteed Copy Elision

The modification of reference-type arguments is efficient, but it makes it harder to
see intent and parse the signature: the return values are effectively hidden among
the arguments.

Before C++17, the compiler was allowed to eliminate copies that happened when
function values were returned, but there was no guarantee for this to happen. This
was one of the main reasons for using reference-type arguments to communicate
results: there is no need to trust the optimization phase of the compiler. There
were two different kinds of possible optimization, called NRVO and RVO.

Named Return Value Optimization (NRVO):

This is the elimination of copies when a named, local object is returned by the
function. In cases where this is possible, the compiler removes any copy and move
operations and instead constructs the object directly into the storage where it
would end up after copying or moving anyway.
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Guaranteed Copy Elision

Temporaries and Return Value Optimization (RVO):

This is the elimination of copies when a nameless temporary is used in an
assignment. The creation of the temporary is essentially skipped, and the storage
of the assignee is used instead. The compiler may perform this optimization in
several different contexts, and its application to unnamed return values is called
RVO.

To summarize, returning a local variable or temporary and assigning its value to
another variable caused up to two copies before C++17, which could be
optimized away under certain circumstances:

named return value: NRVO for the return value, then elimination of the
temporary that is used in the assignment

nameless return value: elimination of the two temporaries inside and outside of
the function (with the former being RVO)
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Guaranteed Copy Elision

The C++17 standard contains a fundamental change with significant
consequences, that is at the same time almost invisible:

• C++17 introduced the notion of temporaries as values that only exist within
the technical specification, and are not actually represented in memory.

• As a consequence, the temporaries we discussed are never created, and there
is no need to optimize them away. This is called guaranteed copy elision.

• This eliminates both copies for unnamed return values, and at least one of
those for named return values.

In C++17 and above, using return values should almost always be preferred over
modifying reference arguments. This holds even for multiple return values, thanks
to → structured bindings.
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Compile-Time Branches

C++17 introduced compile-time branches using if constexpr :

• The branch condition is evaluated at compile-time when the constexpr

keyword is used. Therefore it must also be constexpr , of course.

• The non-matching branch is discarded (if present), and will not be compiled.
It will not cause any compilation errors, even if its content doesn’t make
sense for a given set of template parameters.

• Non-matching branches don’t take part in return type deduction, i.e.,
different branches may return different types.

// C++17 Boolean helper variable template

if constexpr (std::is_same_v<T1,T2>)

{ ... } // code for case where types coincide

else

{ ... } // code for when T1 and T2 differ
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Compile-Time Branches

Compile-time branches can replace
template specializations and function
template overloads, and in particular:

• create recursive template
metaprograms without base case
specializations

• eliminate a subset of SFINAE
applications, providing a much more
readable replacement

// replacement for SFINAE:
// * select function body based on type T
// * deduce return type from chosen branch

template<typename T>
auto foo(const T& t)
{

// integer case
if constexpr (std::is_integral_v<T>)
{ ... }
// floating point case
else if constexpr (std::is_integral_v<T>)
{ ... }
// default case
else

// have to make the assert depend on T
// here, else it would fire in any case
static_assert(not std::is_same_v<T,T>,

"only integers and floating point!");
}
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Compile-Time Branches

An implementation of nested loops of depth N, with N being a compile-time
constant, based on if constexpr :

template<std::size_t N, typename Callable, std::size_t K = N-1>
void metaFor(std::array<size_t,N>& indices,

const std::array<size_t,N>& bounds, Callable&& callable)
{

static_assert(K < N, "K must be smaller than N");
if constexpr (K == 0)

for (std::size_t i = 0; i < bounds[0]; i++)
{

indices[0] = i;
callable(indices);

}
else

for (std::size_t i = 0; i < bounds[K]; i++)
{

indices[K] = i;
metaFor<N,Callable,K-1>(indices,bounds,

std::forward<Callable&&>(callable));
}

}
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Structured Bindings

C++17 added two new constructs, structured bindings and a version of if with

initializer, similar to that of for loops.

Structured bindings make multiple return values possible by assigning names to
components of an object:

auto [x,y,z] = f(); // f returns object with three components

This works with C arrays, C-style structs, std::array , std::pair and

std::tuple . x , y and z are then references of the entries / data members.

Such bindings can be convenient in range-based for loops over maps:

for (auto&& [first,second] : map)

{...}
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Structured Bindings

The if with initializer works similar to a for loop:

if (auto [x,y,z] = f(); x.isValid())

{...}

else

{...}

This avoids polluting the surrounding scope, just like the first entry of the for

loop declaration.

C++20 introduces a similar initializer for range-based for loops. It may be used
to, e.g., initialize the range of the loop, or provide a local index counter variable.
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Utility Classes

The two Standard Library class templates std::pair and std::tuple are

now accompanied by std::optional , std::variant , and std::any .

std::optional<T> :

A type-safe wrapper that may or may not contain a value of type T . Follows
value semantics, but access uses * and -> operators anyways.

std::variant<T...> :

A type-safe replacement for union . Provides several safe ways to check / access

the currently held value, e.g., std::get like std::tuple .

std::any :

An implementation of type erasure, std::any can store objects of arbitrary

types. Basically a type-safe, resource owning replacement for void* .
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Utility Classes

Comparison of Standard Library utility classes:

Class Semantics Copies Validity Types

std::tuple value copyable always valid fixed set

std::shared_ptr reference ref.-counted nullable fixed type

std::unique_ptr reference move only nullable fixed type

std::optional value copyable nullable fixed type

std::variant value copyable always valid fixed set

std::any value copyable always valid arbitrary

• All the classes own and manage their data

• Two vector replacements (shared vs. non-shared)

• Two aggregate types (Cartesian product vs. union set)

• Two relaxations on the requirements on C++ variables (optional value vs.
arbitrary type)

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 256 / 277



C++17 Features Fold Expressions

Fold Expressions

C++17 introduces fold expressions, which can automatically expand a parameter
pack (the argument with ellipsis in variadic templates) and apply operators
inbetween.

template<typename... Args>

int sum(Args&&... args)

{

return (args + ... + 0);

}

template<typename... Args>

void print(Args&&... args)

{

(std::cout << ... << args) << std::endl;

}

This can be used with 32 predefined binary operators, including all arithmetic and
logic operators.
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Fold Expressions

Call a function for each argument, despite not knowing the number of arguments
beforehand (folds using the comma operator):

template<typename Func, typename... Args>

void callForAll(const Func& f, Args&&... args)

{

( f(args), ...);

}

Folds can be expanded to the left (right fold, ellipsis on the right) or to the right
(left fold, ellipsis on the left), and each version can have an initial value (binary
fold) or not (unary fold).

This means: The one operation that is written explicitly is actually the last to be
executed, not the first, since the fold is realized using recursion.
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Improvements for Templates

C++17 brings some improvements for templates:

• class template argument deduction

• type deduction for non-type template parameters

Before C++17, only the parameters of function templates could be deduced,
those of class templates had to be written out. From C++17 onwards, class
template arguments can be omitted as long as they can be deduced from the
constructor function call:

std::pair p{1,7.3}; // deduces std::pair<int,double>

std::tuple t{true,'c',2}; // deduces std::tuple<bool,char,int>

std::vector v{1,2,3,4}; // deduces std::vector<int>
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Imrpovements for Templates

Quite often, templates require both a type parameter and one or more non-type
parameters of that type. Examples are:

• Constants for template metaprogramming across different types

• A type as parameter, with associated default values, initial values, etc.

In C++17 and above, type deduction can be used in this context:

template<typename T, T t> // redundancy

struct OldConstant {enum {value = t};};

template<auto t> // type deduction

struct NewConstant {enum {value = t};};

This makes it possible to omit the redundant type information in instantiations,
e.g., NewConstant<5> . The type of the parameter is available using decltype ,

should it be needed.
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Mathematical Special Functions

C++ provides a number of mathematical functions, which are of course quite
relevent in Scientific Computing:

exponential: exponential function and logarithms, e.g., ln

power: square and cubic root, arbitrary powers

trigonometric: sine, cosine, tangent, etc.

hyperbolic: hyperbolic sine (sinh) and cosine (cosh), etc.

others: e.g., gamma function (generalized factorial)

C++17 added special functions for, e.g., cylindrical and spherical harmonics:

• Orthogonal polynomial bases (Legendre, Hermite and Laguerre)

• Cylindrical and spherical Bessel functions

• Cylindrical and spherical Neumann functions

• Beta function and Riemann zeta function
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Filesystems Library

The filesystems library32 introduced capabilities that C++ was sorely missing,
because they were either nonexistent or non-portable:

• Representation of directory paths, files, and file types

• Queries (file existence, file size, permissions, etc.)

• Handling of directories and files

• Creation of hard links and symbolic links

• Access to current directory

• Special path for temporary files

The library provides a unified framework that is portable across operating systems.
Some filesystems don’t provide certain features, e.g., the old FAT system doesn’t
know symbolic links. In these cases appropriate exceptions are thrown.

32See https://en.cppreference.com/w/cpp/filesystem.
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C++20 Features

C++20 Features

C++20, the upcoming new standard, is a major update similar to C++11, and
will drastically change the way modern C++ is written. Additions to the language
include:

• Module support

• Concepts

• Ranges as entities

• Coroutines

• Mathematical constants

• A modern text formatting framework
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Modules

The traditional C++ compilation process is based on that from C, and inherits
the following drawbacks:

• Header files are recursively combined into one large text document.

• Header guards are necessary to prevent redefinitions and conflicts.

• Preprocessor macros remain active across header boundaries.

• Consequently, the order of header includes may be important.

C++20 introduces modules, which are separate units that can be used to divide
code bases into logical parts. The result of importing such a module is
well-defined, and macro definitions are kept within their module and are unable to
influence the content of other modules.
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Modules

A module is a source file, just like those including the main function of programs,
which contains a number of export and import statements:

export module MyModule; // module declaration

import <iostream>; // import statements:

import <vector>; // replacement for includes

// not visible outside the module

void myInternalFunction() { ... };

// can be made available by importing the module

export void myFunction() { ... };

Modules are a replacement for the practice of using header files to represent
libraries, which then include all the headers the library requires or provides.
Namespaces are orthogonal to modules, and can be used in conjunction with
modules or across them.
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Concepts

C++20 introduces concepts, which are named requirements for template
parameters. Their definition is very similar to that of constexpr Boolean

variable templates:

template<typename T>

concept Number = std::is_integral_v<T>

|| std::is_floating_point_v<T>;

But in contrast to simple variable templates, one can also require that certain
methods and operators exist and produce a certain type:

template<typename T>

concept EqualityComparable = requires(T a, T b)

{

{ a == b } -> std::same_as<bool>;

{ a != b } -> std::same_as<bool>;

};
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Concepts

The main benefit of concepts is the fact that requirements for template
parameters can be checked early, instead of triggering convoluted error messages
somewhere within the instantiation process.

Ideally, a C++ concept should express the identity and essence of a certain
category of types, e.g., the mathematical concepts of vectors and matrices, etc.
Unfortunately, most such properties are hard to write down and can’t be checked
by the automatic compilation process:

• existence of neutral elements

• commutative, associative, and distributive properties

• . . .

This means that one can often only check the interface and existence of
operations in practice.
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Concepts

Templates can specify restrictions in several ways:

// verbose form, can be used for ad-hoc (i.e., unnamed) concepts

template<typename T>

auto twice(T i) requires std::integral<T>

{return 2*i;}

// shorter version, concept has to be defined beforehand

template<std::integral T>

auto square(T i)

{return i*i;}
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Concepts

The type deduction for function arguments of generic lambda expressions is now
also available for normal functions:

// usual template declaration

template<typename T1, typename T2>

auto foo(const T1& a, const T2& b);

// equivalent declaration using auto keyword

auto bar(const auto& a, const auto& b);

As with generic lambdas, each use of the auto keyword introduces an
independent, new template parameter. But type relationships between the
arguments can also be modelled in this form: simply specify an appropriate
concept based on decltype .
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Concepts

This new way of writing templates can be combined with concepts, and the result
is an elegant and easy to read way of function template selection:

// used for types that represent integers

void foo(const std::integral auto& t)

{ ... }

// used for types that represent real numbers

void foo(const std::floating_point auto& t)

{ ... }

// default: used for any other type

void foo(const auto& t)

{ ... }

This is a good replacement for many SFINAE constructs.
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Ranges

A direct application of C++20 concepts is the range concept, which represents
sequences. This includes the usual container classes, but also, e.g., infinite
sequences based on generator functions (using lazy evaluation).

Ranges can be filtered and transformed, producing new ranges in the process:

for (const auto& e : v | std::views::filter(even))

{ ... } // do something for each element that is even

The STL algorithms can now operate on ranges instead of iterator pairs:

// old version, kept for backward compatibility

int n = std::count(v.begin(), v.end(), 7);

// new version based on the range concept

int m = std::ranges::count(v, 5);
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Concurrency with Coroutines

C++ adds coroutines to the language, which are special functions for cooperative
(non-preemptive) multitasking. Coroutines are subprograms, similar to normal
functions and threads, but with significant differences:

• Functions are subprograms that are always executed in one go from start to
finish, and that don’t store any information between invocations. Exactly one
function is executed at any given time, and functions waiting for other
functions to finish form a call stack, with the main function at the bottom.

• Threads are subprograms that are run independently. They are also executed
as a unit, but may be interrupted at any time (preemptive multitasking).
Execution continues where it was interrupted, and synchronization using, e.g,
mutexes and locks is necessary because there is no well-defined execution
order.

Dr. Ole Klein (IWR) Object-Oriented Programming Winter Semester 2020/21 272 / 277



C++20 Features Concurrency with Coroutines

Concurrency with Coroutines

Coroutines differ from functions and threads in the following ways:

• A coroutine may voluntarily yield at any time, handing the execution flow
over to another coroutine.

• Coroutine instances can have internal state, similar to functors, and this state
is preserved when they yield.

• They can have multiple reentry points, i.e., the execution of a coroutine
doesn’t have to continue at the point where it was stopped.

• There is no need for synchronization, because coroutines are collaborative
and only one of them runs at any given time.

The support for coroutines in C++20 isn’t as fleshed out as that for threads:
there are no predefined coroutines yet, only the facilities that are needed for their
implementation.
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Concurrency with Coroutines

Implementing a coroutine is somewhat similar to writing a functor class or using
tasks with their promise—future pairs, yet significantly more verbose, at least for
now. Let’s consider a small generator semicoroutine33.

First, we need a promise object, similar to those we know from task-based
programming, then a handle, comparable to a future object, and finally a function
definition:

template<typename T>
struct GeneratorPromise
{

using Handle = std::coroutine_handle<GeneratorPromise<T>>;

auto initial_suspend() {return std::suspend_always{};}
auto final_suspend() {return std::suspend_always{};}
auto get_return_object() {return Handle::from_promise(*this);}
auto yield_value(const T value){current_value = value; return std::suspend_always{};}
void unhandled_exception() {std::abort();}

T current_value;
};

33A semicoroutine is a simple coroutine that can only yield to its caller.
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Coroutines

template<typename T>
struct Generator
{

using Handle = std::coroutine_handle<GeneratorPromise<T>>;
using promise_type = GeneratorPromise<T>;

// appropriate constructors and destructor
// to forbid copies but handle moves cleanly
...

T operator()() {return handle.promise().current_value;}
bool next() {handle.resume(); return !handle.done();}

Handle handle;
};

Generator<int> sequence(int start = 0, int step = 1) noexcept
{

auto value = start;
for (int i = 0;; ++i)
{

co_yield value;
value += step;

}
}

• The generator is
used by storing the
return value of the
function and calling
its next()

method to obtain
numbers.

• The two structs can
be reused to define
other generators,
simply by writing
another function
that also returns a
generator object.
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Mathematical Constants

While C++17 added special functions that are often needed in Scientific
Computing, C++20 introduces variable templates for mathematical constants.
Before C++20, well-known constants like, e.g., π or e are usually available as
C-style macros like M_PI . The variable templates serve as a modern replacement
that is part of the standard.

The predefined constants include:

e_v<T> : Euler’s number e ≈ 2.7182918 . . .

pi_v<T> : the circle constant π ≈ 3.1415926 . . .

egamma_v<T> : the Euler-Mascheroni constant γ ≈ 0.57721566 . . .

phi_v<T> : the golden ratio constant φ ≈ 1.6180339 . . .

Additionally, a small number of square roots and logarithms are available, like
ln(2) and

√
2. Specializations for float , double and long double are

provided for each variable template.
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Text Formatting

Before C++20, there are two separate ways to format text output:

• The well-known I/O streams. These provide a safe and extensible interface,
but format strings and arguments are intertwined, which. . .
• makes automatic generation / modification difficult (e.g., localization)
• makes code with many formatting commands hard to read

• The old printf() formated output function from C. While this clearly

separates format and arguments, this function is neither safe nor extensible
and should be avoided.

C++20 introduces modern text formatting capabilities to C++ in the from of its
format library34:

• Based on templates and therefore extensible

• Performant implementation available

• Format specifiers consistent with those from other languages

34https://en.cppreference.com/w/cpp/utility/format/formatter#Standard_format_

specification
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