
IGP/IWR Summer School
Hardware-aware Scientific

Computing
Heidelberg, October 4-15, 2021

• A special program financed by DAAD (German Academic
Exchange Service) and UGC (University grants commission)

• Funded 2020 - 2024

• Main Partners:

- Department of Computational and Data Sciences (CDS) at
the Indian Institute of Science, Bangalore

- Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg University

• Collaborating Partners:

- Tata Institute of Fundamental Research

- Jülich Supercomputing Centre as part of the

Forschungszentrum Jülich

- NVIDIA

IGP = Indo-German Partnership

Measures
• Mobilities for master students, doctoral candidates, postdocs and professors

- This might be a possibility for you! Think about it!

• Organization of schools and workshops

- This is the first such event in a series

• Joint supervision of master and doctoral candidates

• Individual research collaborations

• Explore the possibility of introducing a cotutelle program on the Ph.D. level
between IISc and U Heidelberg

• Prepare lectures/materials for a joint course on hardware-aware scalable
numerics

�3

Proceeding of the Summer School
• Week October 4-8: Lecture programme

- https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/

- Dinner in Heidelberg: Wednesday, 17:00 (german time)

• Week October 11-15: Projects

- Will be more spontaneous :-)

• Hybrid format

- For those participating online, please

‣ Switch on your microphone and camera if possible

‣ Use the chat only if there is no other chance

- We will leave on the zoom room during the breaks for discussion

• Before asking a question/making a remark for the first time, please introduce yourself

shortly
�4

https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/
https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/

Peter Bastian, IGP Summer School, Heidelberg University, October 4-15, 2021

Hardware-aware Scientific
Computing
Introduction & Programming Models

�5

Purpose of the Summer School
• Progress in Scientific Computing happens through

- Development of new algorithms and theory: reduce flops, solve new problems

- Increase in compute power

• Increase in compute power is driven by Moore’s law, but

- Hardware gets increasingly more difficult to use efficiently

- Large gap between peak performance and obtained performance

- This will get worse with the end of Moore’s law

- And by the way: Moore’s law will end

➡In this summer school we want to highlight

- Efficient algorithms and

- Efficient implementations of these algorithms
�6

Contents of this Lecture
• Compact introduction to hardware development

• Overview of programming models with focus on shared memory

• Performance of selected algorithms as examples

• The lecture is highly CPU centric

�7

Hardware

�8

Moore’s Law and Dennard Scaling
• Exponential growth of computing power of digital computers in the last 75

years changed the life of nearly everybody!

• Moore’s law: Number of transistors put economically on a chip doubles every
two years (Gordon Moore 1965, changed from 1 year to two years in 1975)

• Dennard Scaling: Power density (W/m2) can be kept constant at scaling even
with increasing clock rate by lowering supply voltage

• Dennard scaling ended 2004

• Moore’s law has significantly slowed down in recent years

• Computer performance is a consequence of  
1) Moore’s law + Dennard scaling 
2) Improvements in computer architecture (what to do with all the transistors?) 
3) Improvement in computational algorithms

�9

Factor 1000 in 20 years,

10 doublings in 20 years

1 doubling every 2 years

�10

Very popular minicomputer by Digital Equipment Corporation

Image credit: Hennesy/Patterson. Computer Architecture

Increase of single chip performance on SPEC integer benchmark

(at most 4 cores per chip)

Technology
Driven

Technology
+ RISC architecture

End of Dennard
Scaling

Note: doubling = 41% per year

End of
Moore’s law?

�11

End of Dennard Scaling in Detail

Image credit: Herb Sutter. The Free Lunch Is Over. Dr. Dobb's Journal. 2005.

Dramatic events in 2003:
• End of Dennard scaling lead to stagnation 

of clock rate

• Improvement of instruction level parallelism 

(ILP) came to halt: This ended the automatic 
increase of instructions executed per clock

• Way out: Multicore architecture

�12

Levels of Parallelism (What to do with silicon)
• Bit-level parallelism (BLP)

- 1,4,8,12,16,32,64 Bit processors (width of Registers, address and data wires)

• Instruction level parallelism (ILP)

- Pipelining (assembly line, time parallel execution) of instructions

- Superscalar execution: >1 instruction/clock

- Enabled by RISC (reduced instruction set computer)

- Part of RISC: Load/Store architecture

• Data level parallelism (DLP)
- Vector/Matrix instructions as special form of superscalar execution

- Also pipelined (many of them executed in parallel and overlapping)

• Thread level parallelism (TLP)
- Independent instruction streams with shared memory access

• Message level parallelism (MLP, request level parallelism in Hennessy/Patterson)
- Independent instructions with private memory and message passing

�13

SIMD Instructions in Microprocessors
• Combines ILP and DLP

• Used in CPUs and GPUs today

• Peak performance = SIMD instructions!

• Introduced in Intel processors ~20 years ago

• Operate on 16 (32 in AVX512) SIMD registers

• Support various integer, SP and DP ops

Name Year Width (Bits) Doubles
SSE 1999 128 No
SSE2 2001 128 2
AVX 2010 256 4
AVX2 2013 256 4 (fma)

AVX512 2017 512 8 (fma)
�14

Memory

• Memory performance grew slower than processor performance for decades

• Memory bandwidth grows a bit faster than latency (not shown)

• Resulted in „memory gap“

• Remedy is the „memory hierarchy“
�15

From Hennessy/Patterson 5th edition

(Issued memory loads, one core)

(DRAM Latency)

Exploring the Memory Hierarchy: Pointer Chasing
• From Hennesy/Patterson, 6th ed., Figure 2.32 on page 151

• Chose an array � of integers with length � and a stride � with � dividing �

• Then set � for �

• „Pointer-chasing“ or „Index-chasing“ then means to execute the loop 
 
i=x[0];  
while (i!=0) i=x[i];

• This means we do memory reads every � ’th integer from the array

• In total there are � reads and we repeat � times; so an „experiment“ does �
reads, irrespective of �

• Now equip this with some reliable timing

x n s < n s n
x[i] = (i + s) mod n 0 ≤ i = ks < n

s
n/s s n

s

�16

Pointer Chasing: Results Intel(R) Core(TM) i7-8559U CPU @ 2.70GHz,  
4 cores, 64KB L1/core (32I,32D),

256KB L2/core, 8 MB L3 
Cache line size 64 bytes

16 GB 2133 MHz LPDDR3 memory 
maximum memory bandwidth: 37.5 GB/s

�17

Stride in bytes (starts with 4 = sizeof(int)

Ti
m

e
in

 n
an

os
ec

on
ds

 fo
r a

 m
em

or
y

re
ad

Observe: memory access
times differ by a factor 100 in
a complex way!

Interpretation of the results
• � . Independent of � we observe an execution time of about 1.2 ns, corresponding to 5 or 6 clock cycles (4,5 GHz

turbo mode)

- The chasing contains a data dependence resulting in a pipeline stall that limits execution time

- The required memory bandwidth 4Byte/1.2 ns = 3.33 GB/s is easily delivered by main memory, so the time is
independent of � !

• � . These are the bottom data points at 0.22 ns = 1/4.5 GHz.

- Only two memory locations are read, so memory is not an issue here.

- Only one comparison is done; Branch prediction and speculative execution achieve full pipelining without any
stalls

• The plateaus correspond to the cache levels; in particular consider

• Fixed � .

- For small strides � (2 ints per cache line are read) memory bandwidth is sufficient and instruction exec with
pipeline stalls is the limiting factor

- For stride � (1 int per cache line is read) memory bandwidth becomes the limiting factor and we see the
transfer rates of the memory

- For � reaching the range of � . Only � cache lines are needed and we get back down the memory hierarchy again

s = 1 n

n
s = n/2

n
s ≤ 8

s ≥ 16

s n n/s

�18

STREAM Benchmark
• The STREAM benchmark [1] is a very well known benchmark to measure

memory bandwidth

• Invented by „Dr. Bandwidth“ John D. McAlpin in 1995

• It times four operations on double precision float vectors: 
 
copy: x = y 
scale: x = sy 
add: x = y + z 
triad: x = y + sz

[1] McCalpin, John D., 1995: “Memory Bandwidth and Machine Balance in Current High Performance Computers”,
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995.

�19

STREAM Results
• On my notebook compiled with gcc10 and -Ofast -fargument-noalias -march=native -fopenmp

• Nominal memory bandwidth is 37.5 GB/s, so we are quite far away.

• The problems are explained in Georg Hager’s blog https://blogs.fau.de/hager/archives/8263:

- Copy is translated to a memcpy call, that’s why it is faster

- With option -ffreestanding we get

• The problem comes from the accounting. With a write-back cache, the cold write to the result
x actually needs an additional read before, which is not accounted for by the code

• The results need to be multiplied with 3/2 for copy/scale and 4/3 for add/triad

• Setting OMP_NUM_THREADS to a lower number might also help

Function Best Rate MB/s Avg time Min time Max time
Copy: 28745.3 0.007587 0.005566 0.016805
Scale: 18995.9 0.009139 0.008423 0.010568
Add: 19367.3 0.013923 0.012392 0.015311
Triad: 17996.5 0.015054 0.013336 0.020023

Function Best Rate MB/s Avg time Min time Max time
Copy: 15696.9 0.010748 0.010193 0.011705
Scale: 15626.3 0.010790 0.010239 0.011965
Add: 17822.5 0.014725 0.013466 0.016031
Triad: 17003.1 0.017150 0.014115 0.026462

�20

https://blogs.fau.de/hager/archives/8263
https://blogs.fau.de/hager/archives/8263

Implications for Software 
(Roofline Analysis)

�21

Machine Intensity
• Assume a hypothetical algorithm using all available machine resources:

- It performs at peak floating point performance � in Gflops/sec

- It uses the maximum memory bandwidth � in Gbytes/sec (the most relevant
bandwidth. Might be main memory or cache level x)

• Define the machine intensity � with unit flops/byte

• Our hypothetical algorithm performs � flops for each byte transfered to/from
memory

• The reciprocal � in bytes/flop is called machine balance

• Example i7-8559U CPU @ 2.70GHz: � Gflops/sec, � 37Gbytes/s,
so � flops/byte

Pm

Mm

Im =
Pm

Mm

Im

Bm = 1/Im

Pm = 180 Mm =
Im = 4.86

�22

Roofline Analysis
• Now consider a specific algorithm for solving a problem and its implementation

• The idea is to model the performance of the implementation on a given machine as a

function of its intensity and machine characteristics

�

• Fundamental classification of algorithms on a given machine: 
 Memory-bound algorithms: � , performance limited by �  
 Compute-bound algorithm: � , performance limited by �

• Example: Scalar product. � 2 flops/16 bytes = 1/8 flops/byte. With 40 Gbytes/sec
memory bandwidth, the algorithm will perform at �
Gflops/sec (if �).

• Only compute bound algorithms may reach peak performance
• Note: In general performance is less than the ideal performance due to various factors,

e.g. pipeline stalls, loop overhead, cache misses that were not anticipated, TLB miss, ..

P(I) = min(Pm, I ⋅ Mm)

I < Im Mm
I > Im Pm

I =
P = I ⋅ Mm = 0.125 ⋅ 40 = 5

P ≤ Pm

�23

Roofline Diagram

Recommended Paper:

Williams, Samuel, Waterman, Andrew, &
Patterson, David A. (2009). Roofline: An
Insightful Visual Performance Model for
Multicore Architectures. http://doi.org/
10.1145/1498765.1498785

�24

Roofline Diagram Refined

�25

Recipe for Performance Optimization
1. Determine compute intensity �

2. If (�) : try to improve compute intensity

- Optimize access patterns (i.e. reduce memory bandwidth to the relevant level of
the memory hierarchy

‣ Blocking (tiling)

‣ Loop fusion

‣ Array of structures (AoS) vs. Structure of Arrays (SoA)

3. If (�) : optimize instruction rate (i.e. improve pipelining)

- SIMD

- Reduce loop overhead (loop unrolling, loop unrolling + vectorization = strip mining)

- Instruction reordering (avoid pipeline stalls)

4. Use a different algorithm? But:

- Of course without superfluous flops!

- Sometimes algorithms with worse complexity have higher compute intensity. Is the

run-time of the worse algorithm really better?

I
I < Im

I ≥ Im

�26

BLAS
• BLAS = Basic Linear Algebra Subroutines. Library for linear algebra kernels

introduced in 1979

- Level 1: vector ops, e.g. daxpy � , � operations on � data

- Level 2: matrix-vector ops, e.g. � , � operations on � data

- Level 3: matrix-matrix ops, e.g. � , � operations on �
data

• Compute intensity on level 1, 2 is constant, algorithm would typically be memory
bound, unless the constant is large enough

• Compute intensity on level 3 is � , so for � large enough there is a chance to
make the algorithm compute bound

- Peak FP performance might still be a challenge: SIMD, register pressure, loop
overhead, etc., see matmul example

y = αx + y O(n) O(n)
y = αAx + βy O(n2) O(n2)
C = αAB + βC O(n3) O(n2)

O(n) n

�27

Roofline for Matrix Multiplication
• Want � , � square matrices of size �

• Write algorithm in block form: �

• To compute product � of � block matrices:

- Flops made: �

- Bytes loaded: � . Assumes we load � and � but have full reuse on �

• Intensity then is �

• To be compute bound on my laptop with � requires �

• This requires � bytes. So 32 KBytes is pretty close 
Note: we need three matrices in the cache!

C = C + AB A, B, C n = MN

Cij = Cij + ∑
N

k=1
AikBkj

AikBkj M × M

2M3

2 ⋅ 8M2 A B C

I =
2M3

16M2
=

M
8

Im ≈ 5 M ≥ 40
40 ⋅ 40 ⋅ 8 ⋅ 3 = 38400

�28

Other algorithms
• N-body problem: � operations on � data. Compute bound possible

• Discrete convolution:

�

• Effort is � , might be compute bound when � is large

• Stencil computation is a special case, there � is typically small (�)

O(n2) O(n)

(f * g)(i) =
m

∑
j=−m

f(i − j)g(j)

O(nm) m
m m = 1

�29

Programming Models

�30

Overview
• SIMD Vectorization

- Is mandatory for achieving high performance

• Thread programming

- Great choice of programming models

- OpenMP: simple when it works, C/C++/Fortran

- C++ threads: multithreading in the standard but low-level/large effort

- Intel thread building blocks: C++ lib, kernel-based and task-based, good scheduler

- SYCL: Portable heterogeneous programming

• Message passing

- MPI (message passing interface), now at version 4 is the model of choice

• MPI+X

�31

How to use SIMD
• Use compiler options

- E.g. -mavx2 -mfma for gcc

• Write assembly language

• Intrinsics

- Gcc (and other compilers) provide extensions with special data types, like
__m256d for 4 doubles and functions on these types mapping directly to a
single machine instructions. Its like assembler programming

- Compiler does the register allocation and may do other optimizations (e.g.
loop unrolling)

- I found this article quite good http://const.me/articles/simd/simd.pdf

• Overloaded operators: A bit easier to use: packs these types into classes and

overloads arithmetic operators. A bit more portable.

• Example: Agner Fog’s vector class library https://www.agner.org/optimize/

�32

Scalability SIMD Vectorization
• Over the years SIMD width increased from 2 (SSE2) to 8 (AVX512) in DP

• Can we observe a corresponding performance increase?

• Can we write SIMD code in a generic way that supports different widths

• This might be important in the future with SIMD width up to 2048 bits in ARM
CPUs (ARMv8 scalable vector extensions, used in Fujitsu A64FX CPU)

• Let us look at two examples: matmul and nbody

• C++ Implementation uses

- Agner Fogs vector class library (overloaded operations map to intrinsics)

- Templates to parametrize SIMD width at compile-time

�33

Generic SIMD in matmul
• „4x3“ approach, SIMD width � ,

row-major storage

• Decompose � matrix into
� blocks

• Each � matmul is
decomposed into �
blocks in � matrix, each such
block requires multiplying a
� with a � matrix
using 12 FMA operations

• Required SIMD registers: 12 for
C, 1 for A and 3 for B = 16!

W

n × n
M × M

M × M
4 × (3W)

C

4 × M M × (3W)

�34

Generic SIMD Scaling Matmul Code
template<size_t simd_width>
struct SIMDSelector
{
};
template<>
struct SIMDSelector<2>
{
 static const size_t simd_width = 2;
 static const size_t simd_registers = 16;
 typedef Vec2d SIMDType;
};
template<>
struct SIMDSelector<4>
{
 static const size_t simd_width = 4;
 static const size_t simd_registers = 16;
 typedef Vec4d SIMDType;
};
template<>
struct SIMDSelector<8>
{
 static const size_t simd_width = 8;
 static const size_t simd_registers = 32;
 typedef Vec8d SIMDType;
};

// version with tile size and SIMD width as a parameter
// tiling and SIMD with vectorization of 4x3*W blocks
template<size_t M, size_t W>
void matmul4 (int n, double A[], double B[], double C[])
{
 using VecWd = typename SIMDSelector<W>::SIMDType;
 VecWd CC[4][3], BB[3], AA; // fits exactly 16 registers

 if (M%4!=0) {
 std::cout << "M must be a multiple of 4" << std::endl;
 exit(1);
 }
 if (M%(3*W)!=0) {
 std::cout << "M must be a multiple of 3*W" << std::endl;
 exit(1);
 }
 if (n%M!=0) {
 std::cout << "n must be a multiple of M" << std::endl;
 exit(1);
 }

#pragma omp parallel for schedule (static) firstprivate(n,A,B,C) private(CC,BB,AA) collapse (2)
 for (int i=0; i<n; i+=M) // loop over tiles
 for (int j=0; j<n; j+=M)
 for (int k=0; k<n; k+=M)
 // C_ij += A_ik*B_kj where all blocks are MxM
 // now C_ij is again blocked into 4x(3*W) blocks
 for (int s=i; s<i+M; s+=4) // loop over 4x3*W blocks of C within the tiles
 for (int t=j; t<j+M; t+=3*W)
 {
 // C_st is a 4x3*W block in 12 SIMD registers which is loaded now
 for (int p=0; p<4; ++p)
 {
 // load store amortized over M/8 matrix multiplications
 CC[p][0].load(&C[INDEX(s+p,t,n)]);
 CC[p][1].load(&C[INDEX(s+p,t+W,n)]);
 CC[p][2].load(&C[INDEX(s+p,t+2*W,n)]);
 }
 // C_st += A_sM*B_Mt where now A_sM is 4xM and B_Mt is Mx3*W
 for (int u=k; u<k+M; u+=1) // columns of A / rows of B
 {
 // 3 loads of B now amortized over ... 12 fmas
 BB[0].load(&B[INDEX(u,t,n)]);
 BB[1].load(&B[INDEX(u,t+W,n)]);
 BB[2].load(&B[INDEX(u,t+2*W,n)]);

 AA = VecWd(A[INDEX(s,u,n)]); // load-broadcast
 CC[0][0] = mul_add(AA,BB[0],CC[0][0]);
 CC[0][1] = mul_add(AA,BB[1],CC[0][1]);
 CC[0][2] = mul_add(AA,BB[2],CC[0][2]);

 AA = VecWd(A[INDEX(s+1,u,n)]); // load-broadcast
 CC[1][0] = mul_add(AA,BB[0],CC[1][0]);
 CC[1][1] = mul_add(AA,BB[1],CC[1][1]);
 CC[1][2] = mul_add(AA,BB[2],CC[1][2]);

 AA = VecWd(A[INDEX(s+2,u,n)]); // load-broadcast
 CC[2][0] = mul_add(AA,BB[0],CC[2][0]);
 CC[2][1] = mul_add(AA,BB[1],CC[2][1]);
 CC[2][2] = mul_add(AA,BB[2],CC[2][2]);

 AA = VecWd(A[INDEX(s+3,u,n)]); // load-broadcast
 CC[3][0] = mul_add(AA,BB[0],CC[3][0]);
 CC[3][1] = mul_add(AA,BB[1],CC[3][1]);
 CC[3][2] = mul_add(AA,BB[2],CC[3][2]);
 }
 // write back C
 for (int p=0; p<4; ++p)
 {
 // load store amortized over M/8 matrix multiplications
 CC[p][0].store(&C[INDEX(s+p,t,n)]);
 CC[p][1].store(&C[INDEX(s+p,t+W,n)]);
 CC[p][2].store(&C[INDEX(s+p,t+2*W,n)]);
 }
 }
} �35

SIMD Scaling in Matmul

• Decent scaling with SIMD width and matrix size

• Probably turbo mode was on

�36

For Comparison: Matmul results using auto vectorizer (AVX2)

�37

Conclusion: VCL version
10 times faster than vanilla,
four times faster than tiled

Jacobi Method in 2d
• Example for memory bound algorithm
 • Provide the initial guess in two vectors

u0 and u1 and only update the interior

• Use double buffering to avoid a copy
step

• No convergence check here, it would
cost as much as one iteration!

• If you want one, amortize it over many
iterations

void jacobi_vanilla (int n, int iterations, double* u0, double* u1)
{
 for (int i=0; i<iterations; i++)
 {
 for (int i1=1; i1<n-1; i1++)
 for (int i0=1; i0<n-1; i0++)
 u1[i1*n+i0] = 0.25*(u0[i1*n+i0-n]+u0[i1*n+i0-1]
 +u0[i1*n+i0+1]+u0[i1*n+i0+n]);
 std::swap(u0,u1);
 }
} �38

for k=1,…,iterations
 for i=1…n-1
 for j=1…n-1

 "uk+1
i,j =

1
4 (uk

i−1,j + uk
i,j−1 + uk

i+1,j + uk
i,j+1)

Jacobi Results

• X-axis shows total number of points in the lattice

• Y-axis gives (billion) site updates per second (1

update = 4 Flops)

• Compute intensity is 4/(6*8) = 1/12 (counting the

cold write twice)

• N=1863225 fits 3 consecutive rows in L1 cache

• N=400000 fits both arrays completely into L3

cache

• N=16384 fits both arrays completely into L2

cache
�39

Data Dependencies in 1d Jacobi
• Consider Jacobi in 1d

• Alternatively, each point represents
a whole line (2d) or plane (3d)

• Standard scheme completes one
iteration before the next starts

�40

Wave Front Scheme
• Treat � iterations in an

overlapping fashion

• Proceed in order shown to the right

• Uses both arrays � times for one
spatial index (reading or writing)

• Need to fit data of about � spatial
indices int cache

• Can you parallelize that scheme?
Guess what!

K > 1

K

3K

�41

SIMD Vectorization
• Do not use horizontal adds, rather vectorize over 4

consecutive points in one row

• Needs four loads and one write

• Most loads will not be aligned

• FMA or not? Algorithm can be written with FMA

• This makes more flops and executes in the same time,

so performance is higher

• But lattice updates per second stays the same

• Be careful with evaluating performance!

 // do iterations
 for (int i=0; i<iterations; i++)
 {
 for (int i1=1; i1<n-1; i1++)
 for (int i0=1; i0<n-1; i0++)
 unew[i1*n+i0] = 0.25*uold[i1*n+i0-n]
 +0.25*uold[i1*n+i0-1]
 +0.25*uold[i1*n+i0+1]
 +0.25*uold[i1*n+i0+n]);
 std::swap(uold,unew);
 }

�42

Improved Jacobi Performance

• Wavefront: 2.5*4=10 GFLOPS/sec in scalar/no fma or 2.5*8 = 20 GFLOPS/sec in vectorized FMA

• No performance advantage from vectorization

�43

OpenMP Programming Model
• Is based on three components:

- Compiler directives

‣ Comments in Fortran

‣ #pragma in C/C++ (a pragma gives additional information to the compiler beyond the

language itself. The C standard specifies a few pragmas to be understood by every
compiler, the rest is optional)

- Runtime library

- Environment variables

• Is quite easy to use as it avoids a lot of boiler-plate code for starting/joining threads,
argument passing, return value passing

• Particularly simple for loop-based parallelism

• Fork-Join model: alternating sequential and parallel phases executed by a team of threads

• Newer versions support also task-based parallelism and SIMD vectorization

�44

Hello World Example
#include <iostream>

#ifdef _OPENMP
#include<omp.h> // headers for runtime if available
#endif

int main (int argc, char** argv)
{
 // start sequential as usual
#pragma omp parallel // execute the following block in parallel
 { // number of parallel threads conrolled in various ways
 int id = omp_get_thread_num(); // call library function
#pragma omp critical // execute following block exclusive
 std::cout << "I am " << id << std::endl;
 } // join parallel threads at end of parallel regions
 return 0;
}

• Compile with option -fopenmp in g++
Find

code
 in

hello
_omp.cc

�45

http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc

Example: Scalar Product
• result is private in the parallel

section and reduced at the
end

 // Example: parallel scalar product
 const int n=100;
 double x[n];
 double y[n];
 double result=0.0;
 for (int i=0; i<n; i++) x[i]=1.0/(1.0+i);
 for (int i=0; i<n; i++) y[i]=(1.0+i);

 // scalar product parallel for loop
#pragma omp parallel for \
 num_threads (4) \
 schedule (static) \
 shared (x,y,n) \
 reduction (+: result)
 for (int i=0; i<n; i++) result += x[i]*y[i];
 std::cout << "scalar product is "
 << result << std::endl;

�46

OpenMP Matmul
• 2 x Xeon Gold 6230R CPU

• Has 2x26 cores with AVX512

�47

Effect of Pinning for Matmul

�48

TBB Intro
• Open-source C++ library supporting thread-level shared memory parallelism on a single

node since 2006

• Central concepts: kernels and tasks

• It is now part of Intel oneAPI, a new attempt to provide an open platform for writing code on
heterogeneous systems incorporating accelerators (GPUs, CPUs, FPGAs), oneAPI contains

- Compilers: icc (classic Intel compiler) and dpcpp (data parallel C++), both compile
OpenMP code

- TBB which you can compile with any compiler

- SYCL, a data parallel programming language and run-time library (dpcpp compiler only)

- Intel MPI implementation

• Note for MacOS users: dpcpp is not supported on MacOS :-(

• There is an excellent free book on TBB: https://www.springer.com/de/book/9781484243978

• Documentation for TBB can be found here: https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/
top.html

�49

https://www.springer.com/de/book/9781484243978
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://www.springer.com/de/book/9781484243978
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html

Complete Vector Addition Example
#include <iostream>
#include <vector>
#include <oneapi/tbb.h>

class VectorSumKernel
{
 std::vector<double> &x,&y,&z;
public:
 VectorSumWorker (std::vector<double>& _x, std::vector<double>& _y,
 std::vector<double>& _z)
 : x(_x), y(_y), z(_z)
 {}
 void operator() (const oneapi::tbb::blocked_range<size_t>& r) const
 {
 for (size_t i=r.begin(); i<r.end(); ++i) z[i]=x[i]+y[i];
 }
};

int main (int argc, char** argv)
{
 std::vector<double> x(1000,1.0), y(1000,2.0), z(1000);

 // first version: pass kernel object
 oneapi::tbb::parallel_for(oneapi::tbb::blocked_range<size_t>(0,x.size()),
 VectorSumKernel(x,y,z));

 // second version: pass lambda
 oneapi::tbb::parallel_for(oneapi::tbb::blocked_range<size_t>(0,x.size()),
 [&](const oneapi::tbb::blocked_range<size_t>& r)
 {
 for (size_t i=r.begin(); i<r.end(); ++i)
 z[i]=x[i]+y[i];
 });
 return 0;
}

Find
code

 in

hello
_tbb.c

c

• parallel_for is used to invoke a
kernel function for a given range

• In addition, a chunk size parameter
could be given

• Observe the similarity to parallelism
in the C++ standard library

�50

http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc

Data Flow Graphs
• We now turn to a different parallelization approach: data

flow graphs

• Given a directed graph � consisting of nodes and
edges

• Each node stands for a computation working on input
data given by the input edges and producing a result
corresponding to the output edges

• Each edge stands for a message transferred from the
source node to the destination node

• Consider e.g. node � , it realizes a computation
� , where � is the type transferred on edge
�

• The computation is carried out as soon as an input
message is available on every input edge

• Data flow graphs may be cyclic!

G = (V, E)

v2
f2 : T1 × T2 → T3 Ti
ei

�51

Data Dependence Graphs
• Pure data flow graph: computation only depends on the inputs provided by the input

messages

• Data dependence graph:

- Computation is performed on some shared state

- The input messages provide synchronization and determine when the computation can be

done

• TBB provides the continue_node for that, using a dummy message type continue_msg (but

you could do it on your own as well)

• Data dependence graphs realized with continue_node may not be cyclic!

• Below we use mixed form of a data dependence graph:

- Computations are performed on a global shared state

- Messages convey iteration numbers; they determine when the next iteration can be started

and when the overall computation is finished

- In this way, also cyclic data dependence graphs can be covered!

�52

Application: Parallel Jacobi

• Good performance needs data locality across iterations

• Figure: horizontal: � index, vertical: iterations

• Let � be an even integer defining groups with horizontal extend � and vertical extend �

• Groups 0,1,2,3 can be computed in parallel; orange edges indicate data depend

i1
K K K/2

�53

Conceptual Data Dependence Graph

• � nodes compute the Lambda-shaped triangular regions

• � nodes compute the V-shaped triangular regions

• � compute the left and right triangular regions of half size

Λ
V
L, R

�54

Processing the Chunks

• Processing order in each chunk is chosen to achieve good locality

�55

� NodeΛ
• � nodes are normal function nodes

• The function to be performed is the operator()

• The constructor gets grid size n, the two arrays to
work on and the chunk number i to identify itself

• Input type is std::tuple<int,int> which is the
output of the preceding join_node. Each int is the
number of the iteration we are in (starting with 1)

• Output type is one int (the same iteration)

• The iteration number is increased in the �
nodes

• Actually each iteration stands for a group of
� iterations (we assume, the total number
of iterations is a multiple thereof)

Λ

L, R, V

K/2 + 1

using Lambda_node = oneapi::tbb::flow::function_node<
 std::tuple<int,int>,int>;

template<int K>
class Lambda
{
 int n;
 double* u[2];
 int i;
 int i1start;
public:
 Lambda (int _n, double* u0, double* u1, int _i)
 : n(_n), i(_i)
 {
 u[0] = u0; u[1] = u1;
 i1start = 1+i*K;
 }
 int operator() (const std::tuple<int,int>& in)
 {
 for (int r=0; r<K/2; ++r)
 for (int k=0; k<=r; ++k)
 {
 int src = k%2;
 int dst = 1-src;
 int i1 = i1start+(r-k)*2+k;
 for (int i0=1; i0<n-1; i0++)
 u[dst][i1*n+i0] = 0.25*(u[src][i1*n+i0-n]
 +u[src][i1*n+i0-1]
 +u[src][i1*n+i0+1]
 +u[src][i1*n+i0+n]);
 i1++;
 for (int i0=1; i0<n-1; i0++)
 u[dst][i1*n+i0] = 0.25*(u[src][i1*n+i0-n]
 +u[src][i1*n+i0-1]
 +u[src][i1*n+i0+1]
 +u[src][i1*n+i0+n]);
 }
 if (K/2%2==0) std::swap(u[0],u[1]);
 return std::get<0>(in);
 }
};

Find
code

 in

jacob
i_tbb.

cc

�56

Jacobi Performance

�57

Wrap Up
• Todays CPUs are highly parallel, complex machines

• Peak performance can only be achieved by

• Using SIMD instructions

• Using multiple cores

• Use roofline analysis to think about your algorithm

• GPUs:

• SIMD on steroids (wider, more and only)

• High bandwidth memory

�58

