IGP/IWR Summer School

Hardware-aware Scientific
Computing

Heidelberg, October 4-15, 2021

|IGP = Indo-German Partnership

A special program financed by DAAD (German Academic
Exchange Service) and UGC (University grants commission)

Funded 2020 - 2024

Main Partners:

- Department of Computational and Data Sciences (CDS) at |
the Indian Institute of Science, Bangalore

- Interdisciplinary Center for Scientific Computing (IWR),
Heidelberg University

Collaborating Partners:
- Tata Institute of Fundamental Research

- Julich Supercomputing Centre as part of the
Forschungszentrum Julich

- NVIDIA

Measures

 Mobilities for master students, doctoral candidates, postdocs and professors
- This might be a possibility for you! Think about it!

* Organization of schools and workshops
- This is the first such event in a series

e Joint supervision of master and doctoral candidates

* |Individual research collaborations

* EXxplore the possibility of introducing a cotutelle program on the Ph.D. level
between |[ISc and U Heidelberg

* Prepare lectures/materials for a joint course on hardware-aware scalable
NUMerics

Proceeding of the Summer School

 Week October 4-8: Lecture programme

- https://conan.iwr.uni-heidelberg.de/events/hasc summerschool2021/

- Dinner in Heidelberg: Wednesday, 17:00 (german time)
 Week October 11-15: Projects
- Will be more spontaneous :-)
* Hybrid format
- For those participating online, please
> Switch on your microphone and camera if possible
> Use the chat only if there is no other chance
- We will leave on the zoom room during the breaks for discussion

» Before asking a question/making a remark for the first time, please introduce yourself
shortly

https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/
https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/

Hardware-aware Scientific
Computing

Introduction & Programming Models

Peter Bastian, IGP Summer School, Heidelberg University, October 4-15, 2021

Purpose of the Summer School

* Progress in Scientific Computing happens through
- Development of new algorithms and theory: reduce flops, solve new problems
- Increase in compute power
* |ncrease in compute power is driven by Moore’s law, but
- Hardware gets increasingly more difficult to use efficiently
- Large gap between peak performance and obtained performance
- This will get worse with the end of Moore’s law
- And by the way: Moore’s law will end
=|n this summer school we want to highlight
- Efficient algorithms and

- Efficient implementations of these algorithms

6

Contents of this Lecture

« Compact introduction to hardware development
* Overview of programming models with focus on shared memory
* Performance of selected algorithms as examples

* The lecture is highly CPU centric

Haraware

Moore’s Law and Dennard Scaling

* Exponential growth of computing power of digital computers in the last 75
years changed the life of nearly everybody!

» Moore’s law: Number of transistors put economically on a chip doubles every
two years (Gordon Moore 1965, changed from 1 year to two years in 1975)

 Dennard Scaling: Power density (W/m2) can be kept constant at scaling even
with increasing clock rate by lowering supply voltage

 Dennard scaling ended 2004
 Moore’s law has significantly slowed down in recent years

 Computer performance is a consequence of
1) Moore’s law + Dennard scaling
2) Improvements in computer architecture (what to do with all the transistors?)
3) Improvement in computational algorithms

9

Moore’s Law: The number of transistors on microchips doubles every two years [oSgWILs

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

50,000,000,000 GC2 IP\Li © AM@Epyc Rome
72-core Xeon Phj Centrig 2400 /S Graviton?
e AMD Epyc

4
\032_
/Apple A12X Bionic
\ . g HiSillicon é(i(rinh‘?‘?o 5G)
. 3 Apple A13 (iPhone 11 Pro
Xbox One main SoC X
12-core POWERS, ‘e v HiSilicon Kirin 710
8-core Xeon Nehalem-EXN . . glo—core Core i7 Broadwell-E
Six-core Xeon 7400 8 p

18-core Xeon Haswell-E5

10 OOO OOO OOO IBM z13 Storagesgsr?tgoh/]e_i\\o
Q,

g Qualcomm Snapdragon 835
Dual-core Itanium 24 © O ¢ °Dual—core + GPU Iris Core i/ Broadwell-U

Quad-core + GPU GT2 Core i7 Skylake K
1,000,000,000 | Pentium D Presler POWERGS PO N © Quad-core + GPU Core i/ Haswell
ttanium 2 with o o % Apple A7 (dual-core ARM64 "mobile SoC")
500,000,000 UL O o
itanium 2 Madison 6M € RO 2 Duo Wolfdale
Pentium D Smithfield @ 2 Duo Conroe
ltanium 2 McKinley € ell €Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2 »\QCore 2 Duo Allendale

100 OOO OOO . Pentium 4 Cedar Mill
’ ’ AMD KS S tium 4 Prescott
S0,000,000 Pentium 4 Northwoo

Pentium 4 Willamette €¢p 2§

Pentium Il Mobile Dixon
AMD K7

€ Barton
Pentium Il Tualatin
Q@ ARM Cortex-A9

QAtom

©Pentium Ill Coppermine
AL K6

10,000,000
y) AMD Kg entiui atmai 1
5,000,000 Pentium Progghfoc ﬁu%ﬁggumh'$5élgcﬁuttes Factor 1000 in 20 years,
ama . .
rrimgfl B 10 doublings in 20 years
SAYI10 .
1,000,000 Y A 1 doubling every 2 years
>00,000 TR s -
Intel 8038 e Q A\RM 3
Motorola 680209(6° 603
100,000 A Mt tan
Motarola 7 ARM
50,000 68000¢p B 50186 9TDMI
Intel 808¢€y € g 3088 QARM 2 AR?/]()
. :ARMl
Mg |)
10,000 s 1000 Zilog 780 ga . SN
5,000 ® reagso Potel s0s5 0007
Intel 8008 ! 8080
° ° uf rola 245%% Technology
intel 4004 0890
1,000
O AV Al A0 AP O VoM o P oV g* 00 g0 P T PP PO NP O
SN NN N N O U N RN N R N N N R NGRS SIS SIS S SIS SRS S S S S

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced
OurWorldinData.org - Research and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.
10

Very popular minicomputer by Digital Equipment Corporation

Increase of single chip performance on SPEC integer benchmark
(at most 4 cores per chip)

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)
intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)

| intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
100,000 intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)

intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)

Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz) 49,935
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 49,870

Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) 31,999 39,419
Intel Core Duo Extreme 2 cores, 3.0 GHz 21,871 .

Intel Core 2 Extreme 2 cores, 2.9 GHz

ekl TSRSl O TN e e SO SR T S O Sl S e s R L Y AMD Athlon 64, 2.8 GHz —-=.
AMD Athlon, 2.6 GHz
Intel Xeon EE 3.2 GHz_gye=

Intel DBS0EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g¢* 6,04
IBM Power4, 1.3 GHz @~ 4

T e e T e e R e

AlphaServer 4000 5/600, 600 MHz 21164
Digital Alphastation 5/500, 500 MHz
Digital Alphastation 5/300, 300 MHz @
| Digital Alphastation 4/266, 266 MHz
- IBM POWERSstation 100, 150 MHz @
100 o

" Digital 3000 AXP/500, 150 MHz
HP 9000/750, 66 MHz X

Performance (vs. VAX-11/780)

¢ - . S—— — :\'.I_
TR
-) tﬁ
v P o e L
L
™ o
- Al e o B
3 H . < ‘s L p—
32 o7 3 1 Eo
Y T e 3 ity A]
gl Tl Y fl.'. T Y . % e
o SRR =% £y EmaY
AX-11/780, 5 MHz D P e e ik
D 37NN e . AR, 2 AT 5
e N .) 3 ! * :
% - . o iy s : b
A ne - 5 w

i ; » N et R SN i e e et Ry e L AT

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

1 Image credit: Hennesy/Patterson. Computer Architecture

End of Dennard Scaling in Detall

= Dramatic events in 2003:
Bual:Core ltanium 2 TN End of Dennard scaling lead to stagnation
1,000,000 - '
o . of clock rate
Intel CPU Trends A . . .
(sources: Intel, Wikipedia, K. Olukotun) - * |mprovement of instruction level parallelism
— (ILP) came to halt: This ended the automatic
iIncrease of instructions executed per clock
R * Way out: Multicore architecture
StUttering | Chipintroduction
1,000 @ Transistors per chip, '000 ® Clock speed (max), MHz ® Thermal design power*, w dates, selected
Transistors bought per $, m Pentium 4 | | Xeon | |Core 2 Duo
100 o 15 Pentium III 09 S;?)lf
10 | | N e m e p — 10°
8086 386 ————— o
1 i | & | @ Transistors (000) 4004
* ¢ o] o ::::::;‘)dwm) /_§
o°
@ Perf/Clock (ILP) 10
0
1970 1975 1980 1985 1990 1995 2000 2005 2010 L IE———
1970 75 80 85 90 95 2000 05 10 15
|mage Credi't: Herb Sutter_ The Free LunCh IS Ove[’_ Dr_ DObb'S JOurnaI_ 2005 12 Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Levels of Parallelism (What to do with silicon)

® Bijt-level parallelism (BLP)
- 1,4,8,12,16,32,64 Bit processors (width of Registers, address and data wires)

® /nstruction level parallelism (ILP)
- Pipelining (assembly line, time parallel execution) of instructions
- Superscalar execution: >1 instruction/clock
- Enabled by RISC (reduced instruction set computer)
- Part of RISC: Load/Store architecture
® Data level parallelism (DLP)

- Vector/Matrix instructions as special form of superscalar execution
- Also pipelined (many of them executed in parallel and overlapping)
® [hread level parallelism (TLP)
- Independent instruction streams with shared memory access
® Message level parallelism (MLP, request level parallelism in Hennessy/Patterson)

- Independent instructions with private memory and message passing

13

SIMD Instructions in Microprocessors

Combines ILP and DLP
Used in CPUs and GPUs today

Peak performance = SIMD instructions!

Introduced In Intel processors ~20 years ago
Operate on 16 (32 in AVX512) SIMD registers

Support various integer, SP and DP ops

14

Name Year Width (Bits) Doubles
SSE 1999 128 No
SSE2 2001 128 2
AVX 2010 256 4
AVX2 2013 256 4 (fma)

AVX512

2017

512

8 (fma)

100,000

Memory

10,000 -
D

S 1000 -
©
S
9

O 100 -
al

10 -

.
19

Resulted in ,memory gap*

From Hennessy/Patterson 5th edition

... 0-0-0-0-6

Processor
.. (Issued memory loads, one core)
... Memory

(DRAM Latency)
—— | | | | |
80 1985 1990 1995 2000 2005 2010
Year

Memory performance grew slower than processor performance for decades

Memory bandwidth grows a bit faster than latency (not shown)

Remedy is the ,memory hierarchy”

15

Exploring the Memory Hierarchy: Pointer Chasing

 From Hennesy/Patterson, 6th ed., Figure 2.32 on page 151
 Chose an array x of integers with length n and a stride s < n with s dividing n

e« Thensetx|i]=(G(+s)modnforO<i=ks<n

 ,Pointer-chasing” or ,Index-chasing” then means to execute the loop

1=x[0];
while (1!=0) i=x[1i];

 This means we do memory reads every s’'th integer from the array

* |In total there are n/s reads and we repeat s times; so an ,experiment” does n
reads, irrespective of s

 Now equip this with some reliable timing

16

Intel(R) Core(TM) i7-8559U CPU @ 2.70GHz,

Pointer Chasing: Results 4 cores, 64k L1/core (321,320)

256KB L2/core, 8 MB L3

Cache line size 64 bytes
N 16 GB 2133 MHz LPDDR3 memory
maximum memory bandwidth: 37.5 GB/s

Observe: memory access
times differ by a factor 100 in
a complex way!

== 1024
= 2048
4096
= 8192
P] 6384
32768
m—pt= 65536
131072
—== 262144
s 524288
= 1048576
e 2097152

=
o

mpiem 4194304

—y = e 8388608
1 | 16777216
= 33554432
—t== 67108864
- H“X y, : . 134217728

Stride in bytes (starts with 4 = sizeof(int)

Time in nanoseconds for a memory read

0.1
1 10 100 1000 10000 1000097 1000000 10000000 100000000

Interpretation of the results

« s = 1. Independent of n we observe an execution time of about 1.2 ns, corresponding to 5 or 6 clock cycles (4,5 GHz
turbo mode)

- The chasing contains a data dependence resulting in a pipeline stall that limits execution time

- The required memory bandwidth 4Byte/1.2 ns = 3.33 GB/s is easily delivered by main memory, so the time is
independent of n!

« 5 = n/2. These are the bottom data points at 0.22 ns = 1/4.5 GHz.
- Only two memory locations are read, so memory is not an issue here.

- Only one comparison is done; Branch prediction and speculative execution achieve full pipelining without any
stalls

* The plateaus correspond to the cache levels; in particular consider
e Fixed n.

- For small strides s < 8 (2 ints per cache line are read) memory bandwidth is sufficient and instruction exec with
pipeline stalls is the limiting factor

- For stride s > 16 (1 int per cache line is read) memory bandwidth becomes the limiting factor and we see the
transfer rates of the memory

- For s reaching the range of n. Only n/s cache lines are needed and we get back down the memory hierarchy again

18

STREAM Benchmark

 The STREAM benchmark [1] is a very well known benchmark to measure
memory bandwidth

* |nvented by ,,Dr. Bandwidth® John D. McAlpin in 1995

* |t times four operations on double precision float vectors:

COpY: X =V
scale: X = sy
add: X =y + Z

triad: X =y + sz

[1] McCalpin, John D., 1995: “Memory Bandwidth and Machine Balance in Current High Performance Computers”,
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995.

19

STREAM Results

 On my notebook compiled with gcc10 and -Ofast -fargument-noalias -march=native -fopenmp

Function Best Rate MB/s Avg time Min time
Copy: 28745.3 0.007587 0.005566
Scale: 18995.9 0.009139 0.008423
Add: 19367.3 0.013923 0.012392
Triad: 17996.5 0.015054 0.013336

Nominal memory bandwidth is 37.5 GB/s, so we are quite far away.
The problems are explained in Georg Hager’s blog https://blogs.fau.de/hager/archives/8263:

- Copy is translated to a memcpy call, that’s why it is faster

- With option -ffreestanding we get

Function Best Rate MB/s Avg time Min time
Copy: 15696.9 0.010748 0.010193
Scale: 15626.3 0.010790 0.010239
Add: 17822.5 0.014725 0.013466
Triad: 17003.1 0.017150 0.014115

The problem comes from the accounting. With a write-back cache, the cold write to the result
X actually needs an additional read before, which is not accounted for by the code

The results need to be multiplied with 3/2 for copy/scale and 4/3 for add/triad
Setting OMP_NUM_THREADS to a lower number might also help

Max time
0.016805
0.010568
0.015311
0.020023

Max time
0.011705
0.011965
0.016031
0.026462

20

https://blogs.fau.de/hager/archives/8263
https://blogs.fau.de/hager/archives/8263

Implications for Software
(Roofline Analysis)

Machine Intensity

 Assume a hypothetical algorithm using all available machine resources:
- It performs at peak floating point performance P, in Gflops/sec

- It uses the maximum memory bandwidth M, in Gbytes/sec (the most relevant
bandwidth. Might be main memory or cache level x)

P

. Define the machine intensity I = M—m with unit flops/byte
m

» Our hypothetical algorithm performs /,, flops for each byte transfered to/from

memory

» The reciprocal B,, = 1/1, in bytes/flop is called machine balance

» Example i7-8559U CPU @ 2.70GHz: P,, = 180 Gflops/sec, M, = 37Gbytes/s,
so [, = 4.86 flops/byte

22

Roofline Analysis

Now consider a specific algorithm for solving a problem and its implementation

The idea is to model the performance of the implementation on a given machine as a
function of its intensity and machine characteristics

P(I) =min(P,,I-M,k)

Fundamental classification of algorithms on a given machine:
Memory-bound algorithms: I < [, performance limited by M

Compute-bound algorithm: [> [, performance limited by P,

Example: Scalar product. [= 2 flops/16 bytes = 1/8 flops/byte. With 40 Gbytes/sec
memory bandwidth, the algorithm will performat P =1-M, = 0.125-40 =5

Gflops/sec (if P < P,).
Only compute bound algorithms may reach peak performance

Note: In general performance is less than the ideal performance due to various factors,
e.g. pipeline stalls, loop overhead, cache misses that were not anticipated, TLB miss, ..

23

Roofline Diagram

ng\i /QQg PE) = [‘% (\\'\/N\'T.) K6 & Gaips/Sec. (Yceren)
12K :/&QN ‘f'/eo% T
J
L
S‘\é& s Comnula
\D 16 BOU\\oQ
j 4 Recommended Paper:
Qé Williams, Samuel, Waterman, Andrew, &
0 1 Patterson, David A. (2009). Roofline: An
(& 3 Insightful Visual Performance Model for

Multicore Architectures. http://doi.org/
10.1145/1498765.1498785

Roofline Diagram Refined

ANKAL0 & Corps/Sec (Gcoren)

e

7M

3\»@-*&'0 ’(&3'J’°§ @/Qq*& l

/P»;? /Qp%CI M)/(@I\'Jlg;\"(
Retlonak: QL&A&WM

Recipe for Performance Optimization

1. Determine compute intensity /

2. If (I < 1) : try to improve compute intensity

- Optimize access patterns (i.e. reduce memory bandwidth to the relevant level of
the memory hierarchy

> Blocking (tiling)
> Loop fusion
> Array of structures (AoS) vs. Structure of Arrays (SoA)

3. If ({ = I) : optimize instruction rate (i.e. improve pipelining)
- SIMD
- Reduce loop overhead (loop unrolling, loop unrolling + vectorization = strip mining)

- Instruction reordering (avoid pipeline stalls)

4. Use a different algorithm? But:
- Of course without superfluous flops!

- Sometimes algorithms with worse complexity have higher compute intensity. Is the
run-time of the worse algorithm really better?

26

BLAS

 BLAS = Basic Linear Algebra Subroutines. Library for linear algebra kernels
introduced in 1979

- Level 1: vector ops, e.g. daxpy y = ax + y, O(n) operations on O(n) data
- Level 2: matrix-vector ops, e.g. y = aAx + By, O(n?) operations on O(n?) data

- Level 3: matrix-matrix ops, e.g. C = aAB + BC, O(n°) operations on O(n?)
data

 Compute intensity on level 1, 2 is constant, algorithm would typically be memory
bound, unless the constant is large enough

« Compute intensity on level 3 is O(n), so for n large enough there is a chance to
make the algorithm compute bound

- Peak FP performance might still be a challenge: SIMD, register pressure, loop
overhead, etc., see matmul example

27

Roofline for Matrix Multiplication

Want C = C + AB, A, B, C square matrices of size n = MN
N

Write algorithm in block form: C;; = C;; + Z :1AikBkj

To compute product A; B, ; of M X M block matrices:

- Flops made: 2M?

- Bytes loaded: 2 - 8M?. Assumes we load A and B but have full reuse on C

. : 2M° M
Intensity then is [= - —

16M? 3
To be compute bound on my laptop with I, = 5 requires M > 40

This requires 40 - 40 - 8 - 3 = 38400 bytes. So 32 KBytes is pretty close
Note: we need three matrices in the cache!

28

Other algorithms

. N-body problem: O(n?) operations on O(n) data. Compute bound possible

e Discrete convolution:

(F*)@) =), fii—j)g()
J=—m

 Effort is O(nm), might be compute bound when m is large

« Stencil computation is a special case, there m is typically small (m = 1)

29

Programming Models

Overview

* SIMD Vectorization
- |Is mandatory for achieving high performance
* Thread programming
- Great choice of programming models
- OpenMP: simple when it works, C/C++/Fortran
- C++ threads: multithreading in the standard but low-level/large effort
- Intel thread building blocks: C++ lib, kernel-based and task-based, good scheduler
- SYCL: Portable heterogeneous programming
» Message passing
- MPI (message passing interface), now at version 4 is the model of choice
 MPI+X

31

How to use SIMD

 Use compiler options

- E.g. -mavx2 -mfma for gcc
* Write assembly language
e |ntrinsics

- Gcce (and other compilers) provide extensions with special data types, like
__m256d for 4 doubles and functions on these types mapping directly to a
single machine instructions. Its like assembler programming

- Compiler does the register allocation and may do other optimizations (e.qg.
loop unrolling)

- | found this article quite good http://const.me/articles/simd/simd.pdf

* Overloaded operators: A bit easier to use: packs these types into classes and
overloads arithmetic operators. A bit more portable.

 Example: Agner Fog’s vector class library https://www.agner.org/optimize/

32

Scalability SIMD Vectorization

Over the years SIMD width increased from 2 (SSE2) to 8 (AVX512) in DP
Can we observe a corresponding performance increase?

Can we write SIMD code in a generic way that supports different widths

This might be important in the future with SIMD width up to 2048 bits in ARM
CPUs (ARMv8 scalable vector extensions, used in Fujitsu A64FX CPU)

Let us look at two examples: matmul and nbody
C++ Implementation uses
- Agner Fogs vector class library (overloaded operations map to intrinsics)

- Templates to parametrize SIMD width at compile-time

33

Generic SIMD in matmul

,4x3“ approach, SIMD width W, JONe
row-major storage m

Decompose n X n matrix into

M X M blocks

Each M X M matmul is
decomposed into 4 X (3W)

blocks in C matrix, each such ’

block requires multiplying a

4 X M with a M X (3W) matrix
using 12 FMA operations

Required SIMD registers: 12 for
C, 1 for Aand 3 for B = 106!

34

Generic SIMD Scaling Matmul Code

template<size t simd width>
struct SIMDSelector

{

};

template<>
struct SIMDSelector<’>

{

static const size t simd width = 2;
static const size t simd registers = 16;
typedef Vec2d SIMDType;

I

template<>

struct SIMDSelector<4>

{
static const size t simd width = 4;
static const size t simd registers = 16;
typedef Vec4d SIMDType;

I

template<>

struct SIMDSelector<8>

{
static const size t simd width = §;
static const size t simd registers = 327;

typedef Vec8d SIMDType;
b

// version with tile size and SIMD width as a parameter
// tiling and SIMD with vectorization of 4x3*W blocks

template<size t M, size t W>

volid matmuld4d (int n, double A[], double B[], double C[])

{

using VecWd = typename SIMDSelector<W>::SIMDType;
VecWd CC[4]1[3]1, BB[3], AA; // fits exactly 16 registers

if (M%4!=0) |

std::cout << "M must be a multiple of 4" << std::endl;

exit (1) ;

if (MS(3*W) '=0) {

std::cout << "M must be a multiple of 3*W" << std::endl;

exit (1) ;

if (nsM!=0) {

std::cout << "n must be a multiple of M" << std::endl;

exit (1) ;

35

#fpragma omp parallel for schedule (static) firstprivate(n,A,B,C)

for

(int 1=0;

i<n;

1+=M)

// loop over tiles

for

(int J=0;

j<n;

3+=M)

for

(int k=0;

k<n;

k+=M)

// C 1j += A 1k*B kj where all blocks are MxM
// now C ij is again blocked into 4x(3*W) blocks

for (int s=i; s<i+M; s+=4) // loop over 4x3*W blocks of C within the tiles

for

{

(int t=73; t<j+M; t+=3*W)

private (CC, BB, AA)

// C st is a 4x3*W block in 12 SIMD registers which is loaded now

for (int p=0; p<4; ++p)
{

// load store amortized over M/8 matrix multiplications

CClp][0].load (&C[INDEX (s+p,t,n)]);

CClp][1].load (&C[INDEX (s+p, t+W,n)])

CClpl[2].load (&C[INDEX (s+p, t+2*W, n)
}

1)

// C st += A sM*B Mt where now A sM is 4xM and B Mt is Mx3*W
for (int u=k; u<k+M; u+=1) // columns of A / rows of B

{

// 3 loads of B now amortized over
BB[0O].load (&B[INDEX (u,t,n)]);
BB[1l].load (&B[INDEX (u, t+W,n)]) ;
BB[”?].load (&B[INDEX (u, t+2*W,n) 1) ;

AA = VecWd (A[INDEX (s,u,n)]); // loa
CC[0]1[0] = mul add(AA,BB[0],CC[0][0
CC[O0][1] = mul add(AA,BB[1],CC[O][L
CC[0][2] = mul add(AA,BB[2],CC[0][2
AA = VecWd (A[INDEX (s+1,u,n)1); // loa
CC[1]1[0] = mul add(AA,BB[0],CC[L1]1[0]);
CC[1]1[1] = mul add(AA,BB[1],CC[L1]1[1])
CC[1]1[2] = mul add(AA,BB[2],CC[1]1[2])
AA = VecWd (A[INDEX (s+2,u,n)1); //
CC[2]1[0] = mul add(AA,BB[0],CC[2]
CC[2]1[1] = mul add(AA,BB[1],CC[2]]
CC[2]1[2] = mul add(AA,BB[2],CC[2]]

AA = VecWd (A[INDEX (s+3,u,n)l); // loa
CC[3]1[0] = mul add(AA,BB[0],CC[3]1[01);
CC[3]1[1] = mul add(AA,BB[1],CC[3]1[1])
CC[31[2] = mul add(AA,BB[2],CC[3]1[2])

}
// write back C

for (int p=0; p<4; ++p)
{

12 fmas

// load store amortized over M/8 matrix multiplications

CC[pl[0].store(&C[INDEX (s+tp,t,n)]);

CClpl]l[l].store(&C[INDEX (s+p, t+W,n)])
CClp][2] .store(&C[INDEX (s+p, t+2*W,n)

1)

collapse

(2)

SIMD Scaling in Matmul

Single Core Matmul Performance for different SIMD width

Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz

120
100

80

—— \Vec2d 4 3
- \Vec4d 4 3
60 Vec8d 4 3

0 N~

20

GFLOPs/sec

———s—s—8——8—=

10 100 1000 10000 100000

Matrix Size N

* Decent scaling with SIMD width and matrix size

* Probably turbo mode was on

36

For Comparison: Matmul results using auto vectorizer (AVX2)

Performance matrix multiplication using auto vectorizer

25
20
-= vanillaautovec_M16
15 - tiledautovec_M16
- vanillaautovec_M32
?81 —de=tiledautovec M32
KS) < —p—_vanillaautovec_M64
O 10 < tiledautovec_M64
~ r 4 == vanillaautovec_M128
~i= tiledautovec_M128
- Conclusion: VCL version NN \
10 times faster than vanilla, T
four times faster than tiled
0

l I
10 100 1000 10000

Matrix size 37

Jacobi Method in 2d

 Example for memory bound algorithm

for k=1,
for 1=1..n-1

vold Jacobl wvanilla

{

for

{

J

for

l]

(int 1=

for

std:

j=1..n-1

..,lterations

1
k+1__(k o

k
1] I_Flh+1]_klh]+1)

(lnt n, 1nt i1terations,

; 1<iterations; 1++)

(int 11=1; 1l<n-1,; 11++)
for (int 10=1,;, 10<n-1; 10++)
*(u0[11l*n+i0-n]+ul0[il*n+1i0-1]
]+u0[11*n+10+n]) ;

ul[11*n+10]

:swap (ul,ul) ;

+ul0[11*n+10+

Provide the initial guess in two vectors
u0 and u1 and only update the interior

Use double buffering to avoid a copy
step

No convergence check here, it would
cost as much as one iteration!

If you want one, amortize it over many
iterations

double* ulO, double* ul)

38

3.5

Jacobi Results

2.5

1.5

Billion updates per second

0.5

0
100 1000

o X-axis shows total number of points in the lattice

* Y-axis gives (billion) site updates per second (1
update = 4 Flops)

 Compute intensity is 4/(6™8) = 1/12 (counting the
cold write twice)

39

10000 100000 1000000 10000000 1000000

N

e N=1863225 fits 3 consecutive rows in L1 cache

 N=400000 fits both arrays completely into L3
cache

« N=16384 fits both arrays completely into L2
cache

e Consider Jacobi in 1d

» Alternatively, each point represents
a whole line (2d) or plane (3d)

e Standard scheme completes one
iteration before the next starts

Data Dependencies In 1d Jacobi

@ 5 ><'><‘><‘><><"\
§ e R ><'><'><‘><><\°

/’ R BIIKN ’
/"><><'><><‘><><'\

> olo wesd u,.gla,g

o

o

—

O o o o o (]

o o o 0

o o o 0

— i{@aRous
Q Q
© ©

o o
MDD slowest tuelex

o

Yo

®

Wave Front Scheme

e Treat K > 1 iterations in an
overlapping fashion

* Proceed in order shown to the right

« Uses both arrays K times for one
spatial index (reading or writing)

» Need to fit data of about 3K spatial
indices int cache

* Can you parallelize that scheme?
Guess what!

41

—— ifFafons

—— ifFokons

SIMD Vectorization

e Do not use horizontal adds, rather vectorize over 4
consecutive points in one row

* Needs four loads and one write T °°°°

 Most loads will not be aligned > i,

 FMA or not? Algorithm can be written with FMA

* This makes more flops and executes in the same time,

SO performance is higher
for (int 1=0; i<iterations; i++)
' {
* But lattice updates per second stays the same ' _
. . for (int 10=1; 10<n-1; 10++)

 Be careful with evaluating performance! unew[il*n+i0] = *uold[il*n+i0-n]
+ *uoldf[11*n+10-1"
+ *uold[11*n+10+1]
+ *nold[11*n+10+n]) ;

std: :swap (uold, unew) ;

J

42

Improved Jacobi Performance

Jacobi Performance Sequential

4

3.5

3

nd

2.5

== vanilla
- blocked
wave
—de== vectorized
=P yectorized_wave

2

1.5

Giga Lattice Site Updates per seco

1
0.5

0
100 1000 10000 100000 1000000 10000000 100000000

N

e Wavefront: 2.5*4=10 GFLOPS/sec in scalar/no fma or 2.5*8 = 20 GFLOPS/sec in vectorized FMA

* No performance advantage from vectorization

43

OpenMP Programming Model

* |s based on three components:
- Compiler directives

» Comments in Fortran

> #pragma in C/C++ (a pragma gives additional information to the compiler beyond the
language itself. The C standard specifies a few pragmas to be understood by every
compiler, the rest is optional)

- Runtime library
- Environment variables

* |s quite easy to use as it avoids a lot of boiler-plate code for starting/joining threads,
argument passing, return value passing

* Particularly simple for loop-based parallelism
* Fork-Join model: alternating sequential and parallel phases executed by a team of threads

 Newer versions support also task-based parallelism and SIMD vectorization

44

Hello World Example

#include <iostream>

#1fdef OPENMP

#includg<omp.h> // headers for runtime 1if available
#endif

int main (1nt argc, char** argv)
{
// start sequential as usual
fpragma omp parallel // execute the following block in parallel
{ // number of parallel threads conrolled in various ways
int id = omp get thread num(); // call library function
fpragma omp critical // execute following block exclusive
std::cout << "I am " << 1d << std::endl;

} // join parallel threads at end of parallel regions a@iiy&
return 0U; &
} o EF 7 L

v\ oW
. . . . _‘LQ ,
» Compile with option -fopenmp in g++ VV/

45

http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc
http://hello_omp.cc

Example: Scalar Product

* result Is private in the parallel

section and reduced at the // Example: parallel scalar product
end const int n=100;

double x[n];

double vI[n];

double result=0.0;

for (int 1=0; i<n; i++) x[1]=1.0/(1.04+1);
for (int 1=0; 1<n; 1++) y[1]=(1l.0+1);

// scalar product parallel for loop
#tpragma omp parallel for \
num threads (4) \
schedule (static) \
shared (x,v,n) \
reduction (+: result)
for (int i=0; i<n; 1i++) result += x[1]*vI[i];
std: :cout << "scalar product 1s "
<< result << std::endl;

46

Matmul, AVX2 on Xeon 6230R

1000

900

OpenMP Matmul

e 2 X Xeon Gold 6230R CPU a2 Pl

- 600 = avx2 P=2
. k] avx2 P=4
£ 500 e avXx2 P=8
e Has 2x26 cores with AVX512 {
T 400 =P avx2d P=16
O avx2 P=26
300 b= VX2 P=54
200
100 t‘ : : :
0
10 100 1000 10000 100000
))) N (matrix size NxN)
Speedup for matmul with fixed problem size 6144x6144
25 Matmul, AVX512, Xeon 6230R
2000
20 — — — 1800
| 1600
14
15 00 - avx512 P=1
_§- il N=6144, avx?2 § 1200 —— avx512 P=_2
& —e— N=6144, avx512 & avx512 P=4
ZI a 1000 == avx512 P=8
S 800 —>— avx512 P=16
% avx512 P=26
600 b= VX512 P=54
5
400
200
0 0
0 10 20 30 40 >0 o0 10 100 1000 10000 100000

Number of threads .
47 N (matrix size NxN)

Effect of Pinning for Matmul

GFLOPs/sec

2000

1800

1600

1400

1200

1000

800

600

400

200

Matmul, AVX512, Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz

10

[[
100 1000 10000

N (matrix size is NxMg

100000

- P=8 1 socket

- P=8 2 sockets
P=26, 1 socket

- P=26, 2 sockets

TBB Intro

* Open-source C++ library supporting thread-level shared memory parallelism on a single
node since 2006

* Central concepts: kernels and tasks

* |tis now part of Intel oneAPI, a new attempt to provide an open platform for writing code on
heterogeneous systems incorporating accelerators (GPUs, CPUs, FPGAs), oneAPI contains

- Compillers: icc (classic Intel compiler) and dpcpp (data parallel C++), both compille
OpenMP code

- BB which you can compile with any compiler
- SYCL, a data parallel programming language and run-time library (dpcpp compiler only)
- Intel MPI implementation
* Note for MacOS users: dpcpp is not supported on MacOS :-(
* There is an excellent free book on TBB: https://www.springer.com/de/book/9781484243978

¢ DOcumentatiOn fOr TBB can be fOund here: https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/

top.html

49

https://www.springer.com/de/book/9781484243978
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://www.springer.com/de/book/9781484243978
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html
https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/top.html

Complete Vector Addition Example

#include <iostream>
#include <vector>
#include <oneapi/tbb.h>

®

class VectorSumKernel
{

std::vector<double> &x, &y, &z;
public:

VectorSumWorker (std::vector<double>& x, std::vector<double>& vy,)

std::vector<double>& 2z)
cx(x), vy, z(_2)

{}

vold operator () (const oneapi::tbb::blocked range<size t>& r) const

{ °

b

for (size t 1=r.begin(); 1i<r.end(); ++1) z[i]=x[1]+y[1];

}

int main (int argc, char** argv)

{

std::vector<double> x(1000,1.0), y(L000,2.0), z(1L000);

// first version: pass kernel object
oneapil::tbb::parallel for (oneapil::tbb::blocked range<size t>(0,x.size()),
VectorSumKernel (x,v,2))

// second version: pass lambda
oneapil::tbb::parallel for(oneapil::tbb::blocked range<size t>(0,x.size()),
[&] (const oneapil::tbb::blocked range<size t>& r)
{
for (size t 1=r.begin(); 1i<r.end(); ++1)
z[1]=x[1]+y[1];
b) g

return 0;
50

parallel_for is used to invoke a
kernel function for a given range

In addition, a chunk size parameter
could be given

Observe the similarity to parallelism
in the C++ standard library

http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc
http://hello_tbb.cc

Data Flow Graphs

 \We now turn to a different parallelization approach: data
flow graphs

« Given a directed graph G = (V, E) consisting of nodes and

edges \ A
* Each node stands for a computation working on input

data given by the input edges and producing a result

corresponding to the output edges

 Each edge stands for a message transferred from the

source node to the destination node
» Consider e.g. node v,, it realizes a computation V;
fr : Ty X T, — T5, where T; is the type transferred on edge

€;

 The computation is carried out as soon as an input
message Is available on every input edge

» Data flow graphs may be cyclic!

51

Data Dependence Graphs

* Pure data flow graph:. computation only depends on the inputs provided by the input
messages

 Data dependence graph:
- Computation is performed on some shared state

- The input messages provide synchronization and determine when the computation can be
done

 TBB provides the continue_node for that, using a dummy message type continue_msg (but
you could do it on your own as well)

 Data dependence graphs realized with continue_node may not be cyclic!
 Below we use mixed form of a data dependence graph:
- Computations are performed on a global shared state

- Messages convey iteration numbers; they determine when the next iteration can be started
and when the overall computation is finished

- In this way, also cyclic data dependence graphs can be covered!

52

Application: Parallel Jacobi

* Good performance needs data locality across iterations

« Figure: horizontal: i, index, vertical: iterations

» Let K be an even integer defining groups with horizontal extend K and vertical extend K/2

 Groups 0,1,2,3 can be computed in parallel; orange edges indicate data depend

Conceptual Data Dependence Graph

U O) JO,
/ \ﬁ\\,@ﬂ _/

« A\ nodes compute the Lambda-shaped triangular regions

* V nodes compute the V-shaped triangular regions

« [, R compute the left and right triangular regions of half size

Processing the Chunks

-
2 i O (L Y e <
\ e i
)\ (& 5> \) 0 1 2L
0 Ry A)
N\ _ 5 D 0 A
N | 4") e a'\ .E 2
O Q" — =) —’2 ¢ g) \ 0 A
5 2 $ A
O l 2 (3 Ly S— & ‘?" ’i =) 5 »\\ i
—
- -~ — '
-3

* Processing order in each chunk is chosen to achieve good locality

55

using Lambda node = oneapi::tbb::

std::tuple<int, 1nt>, 1nt>;

A Node

A\ nodes are normal function nodes

template<int K>
class Lambda

double*
int 1i;
int 1lstart;
public:
Lambda

ul”]; -

* The function to be performed is the operator()

:n(_n), 1(_1)

* [he constructor gets grid size n, the two arraysto ¢
work on and the chunk number i to identify itself

ul0] = ul0; ulfl] = ul;
ilstart = 1+1*K;
}

int operator ()

* |nput type is std::tuple<int,int> which is the |
output of the preceding join_node. Each int is the

(int r=0; r<K/2; ++r)
(int k=0, k<=r; ++k)

for
for

{

(1nt n, double* u0, double* ul,

flow::function node<

| g:C}
! int n; gﬁw& . %bv‘aa

int 1)

(const std::tuple<int,int>& 1in)

number of the iteration we are in (starting with 1) int sre = k32;
int dst = l-src;
. . . . int 11 = ilstart+(r-k)*2+k;
 Qutput type is one int (the same iteration) for (inc 1001y 1<ty 1044

uldst] [11*n+10] =

e The iteration number is increased inthe L, R, V
nodes

11++;
for (int 10=1;
uldst] [11*n+10] =

* Actually each iteration stands for a group of

K/2 + 1 iterations (we assume, the total number |
of iterations is a multiple thereof) e L s ean (el

return std::get<0>(in);

10<n-1;

*(u[src] [11*n+10-n]
+u[src] [11*n+10-1]
+u[src] [11*n+10+1]
+ul[src] [11*n+10+n]) ;

10++)

*(ul[src] [11*n+10-n]
+u[src] [11*n+10-1]
+u[src] [11*n+10+1]
+u[src] [11*n+1i0+n]) ;

yulll]);

Jacobi Performance

Task Parallel TBB version vs. vanilla gccl10

10

5 - vanilla
w—== thbh

Giga Updates / second

| | I I [
100 1000 10000 100000 1000000 10000000 100000000

N
57

Wrap Up

 Todays CPUs are highly parallel, complex machines
 Peak performance can only be achieved by

* Using SIMD instructions

* Using multiple cores
* Use roofline analysis to think about your algorithm
 GPUs:

 SIMD on steroids (wider, more and only)

 High bandwidth memory

58

