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Measures
• Mobilities for master students, doctoral candidates, postdocs and professors


- This might be a possibility for you! Think about it!


• Organization of schools and workshops


- This is the first such event in a series


• Joint supervision of master and doctoral candidates


• Individual research collaborations 


• Explore the possibility of introducing a cotutelle program on the Ph.D. level 
between IISc and U Heidelberg


• Prepare lectures/materials for a joint course on hardware-aware scalable 
numerics
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Proceeding of the Summer School
• Week October 4-8: Lecture programme


- https://conan.iwr.uni-heidelberg.de/events/hasc_summerschool2021/ 

- Dinner in Heidelberg: Wednesday, 17:00 (german time)


• Week October 11-15: Projects

- Will be more spontaneous :-)


• Hybrid format

- For those participating online, please

‣ Switch on your microphone and camera if possible

‣ Use the chat only if there is no other chance


- We will leave on the zoom room during the breaks for discussion

• Before asking a question/making a remark for the first time, please introduce yourself 

shortly
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Peter Bastian, IGP Summer School, Heidelberg University, October 4-15, 2021

Hardware-aware Scientific 
Computing
Introduction & Programming Models
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Purpose of the Summer School
• Progress in Scientific Computing happens through


- Development of new algorithms and theory: reduce flops, solve new problems


- Increase in compute power


• Increase in compute power is driven by Moore’s law, but


- Hardware gets increasingly more difficult to use efficiently


- Large gap between peak performance and obtained performance


- This will get worse with the end of Moore’s law


- And by the way: Moore’s law will end

➡In this summer school we want to highlight


- Efficient algorithms and


- Efficient implementations of these algorithms
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Contents of this Lecture
• Compact introduction to hardware development


• Overview of programming models with focus on shared memory


• Performance of selected algorithms as examples


• The lecture is highly CPU centric
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Hardware
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Moore’s Law and Dennard Scaling
• Exponential growth of computing power of digital computers in the last 75 

years changed the life of nearly everybody!


• Moore’s law: Number of transistors put economically on a chip doubles every 
two years (Gordon Moore 1965, changed from 1 year to two years in 1975) 

• Dennard Scaling: Power density (W/m2) can be kept constant at scaling even 
with increasing clock rate by lowering supply voltage 

• Dennard scaling ended 2004


• Moore’s law has significantly slowed down in recent years


• Computer performance is a consequence of  
1) Moore’s law + Dennard scaling 
2) Improvements in computer architecture (what to do with all the transistors?) 
3) Improvement in computational algorithms
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Factor 1000 in 20 years, 

10 doublings in 20 years

1 doubling every 2 years
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Very popular minicomputer  by Digital Equipment Corporation

Image credit: Hennesy/Patterson. Computer Architecture

Increase of single chip performance on SPEC integer benchmark

(at most 4 cores per chip)

Technology 
Driven

Technology 
+ RISC architecture

End of Dennard 
Scaling

Note: doubling = 41% per year

End of 
Moore’s law?

�11



End of Dennard Scaling in Detail

Image credit: Herb Sutter. The Free Lunch Is Over. Dr. Dobb's Journal. 2005.

Dramatic events in 2003: 
• End of Dennard scaling lead to stagnation 

of clock rate

• Improvement of instruction level parallelism 

(ILP) came to halt: This ended the automatic 
increase of instructions executed per clock


• Way out: Multicore architecture
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Levels of Parallelism (What to do with silicon)
• Bit-level parallelism (BLP) 

- 1,4,8,12,16,32,64 Bit processors (width of Registers, address and data wires)

• Instruction level parallelism (ILP) 

- Pipelining (assembly line, time parallel execution) of instructions

- Superscalar execution: >1 instruction/clock

- Enabled by RISC (reduced instruction set computer)

- Part of RISC: Load/Store architecture


• Data level parallelism (DLP) 
- Vector/Matrix instructions as special form of superscalar execution

- Also pipelined (many of them executed in parallel and overlapping) 


• Thread level parallelism (TLP) 
- Independent instruction streams with shared memory access


• Message level parallelism (MLP, request level parallelism in Hennessy/Patterson) 
- Independent instructions with private memory and message passing
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SIMD Instructions in Microprocessors
• Combines ILP and DLP


• Used in CPUs and GPUs today


• Peak performance = SIMD instructions!


• Introduced in Intel processors ~20 years ago


• Operate on 16 (32 in AVX512) SIMD registers


• Support various integer, SP and DP ops

Name Year Width (Bits) Doubles
SSE 1999 128 No
SSE2 2001 128 2
AVX 2010 256 4
AVX2 2013 256 4 (fma)

AVX512 2017 512 8 (fma)
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Memory

• Memory performance grew slower than processor performance for decades


• Memory bandwidth grows a bit faster than latency (not shown)


• Resulted in „memory gap“


• Remedy is the „memory hierarchy“
�15
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Exploring the Memory Hierarchy: Pointer Chasing
• From Hennesy/Patterson, 6th ed., Figure 2.32 on page 151


• Chose an array �  of integers with length �  and a stride �  with �  dividing � 


• Then set �  for � 


• „Pointer-chasing“ or „Index-chasing“ then means to execute the loop 
 
i=x[0];  
while (i!=0) i=x[i];

• This means we do memory reads every � ’th integer from the array


• In total there are �  reads and we repeat �  times; so an „experiment“ does �  
reads, irrespective of �  


• Now equip this with some reliable timing

x n s < n s n
x[i] = (i + s) mod n 0 ≤ i = ks < n

s
n/s s n

s

�16



Pointer Chasing: Results Intel(R) Core(TM) i7-8559U CPU @ 2.70GHz,  
4 cores, 64KB L1/core (32I,32D), 

256KB L2/core, 8 MB L3 
Cache line size 64 bytes

16 GB 2133 MHz LPDDR3 memory 
maximum memory bandwidth: 37.5 GB/s
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Interpretation of the results
• � . Independent of �  we observe an execution time of about 1.2 ns, corresponding to 5 or 6 clock cycles (4,5 GHz 

turbo mode)


- The chasing contains a data dependence resulting in a pipeline stall that limits execution time


- The required memory bandwidth 4Byte/1.2 ns = 3.33 GB/s is easily delivered by main memory, so the time is 
independent of � !


• � . These are the bottom data points at 0.22 ns = 1/4.5 GHz.


- Only two memory locations are read, so memory is not an issue here.


- Only one comparison is done; Branch prediction and speculative execution achieve full pipelining without any 
stalls


• The plateaus correspond to the cache levels; in particular consider


• Fixed � .


- For small strides �  (2 ints per cache line are read) memory bandwidth is sufficient and instruction exec with 
pipeline stalls is the limiting factor


- For stride �  (1 int per cache line is read) memory bandwidth becomes the limiting factor and we see the 
transfer rates of the memory


- For �  reaching the range of � . Only �  cache lines are needed and we get back down the memory hierarchy again

s = 1 n

n
s = n/2

n
s ≤ 8

s ≥ 16

s n n/s
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STREAM Benchmark
• The STREAM benchmark [1] is a very well known benchmark to measure 

memory bandwidth


• Invented by „Dr. Bandwidth“ John D. McAlpin in 1995


• It times four operations on double precision float vectors: 
 
copy: x = y 
scale: x = sy 
add: x = y + z 
triad: x = y + sz

[1] McCalpin, John D., 1995: “Memory Bandwidth and Machine Balance in Current High Performance Computers”, 
IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter, December 1995.
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STREAM Results
• On my notebook compiled with gcc10 and -Ofast -fargument-noalias -march=native -fopenmp


• Nominal memory bandwidth is 37.5 GB/s, so we are quite far away. 


• The problems are explained in Georg Hager’s blog https://blogs.fau.de/hager/archives/8263:


- Copy is translated to a memcpy call, that’s why it is faster


- With option -ffreestanding we get


• The problem comes from the accounting. With a write-back cache, the cold write to the result 
x actually needs an additional read before, which is not accounted for by the code


• The results need to be multiplied with 3/2 for copy/scale and 4/3 for add/triad


• Setting OMP_NUM_THREADS to a lower number might also help

Function    Best Rate MB/s  Avg time     Min time     Max time 
Copy:           28745.3     0.007587     0.005566     0.016805 
Scale:          18995.9     0.009139     0.008423     0.010568 
Add:            19367.3     0.013923     0.012392     0.015311 
Triad:          17996.5     0.015054     0.013336     0.020023

Function    Best Rate MB/s  Avg time     Min time     Max time 
Copy:           15696.9     0.010748     0.010193     0.011705 
Scale:          15626.3     0.010790     0.010239     0.011965 
Add:            17822.5     0.014725     0.013466     0.016031 
Triad:          17003.1     0.017150     0.014115     0.026462
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Implications for Software 
(Roofline Analysis)
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Machine Intensity
• Assume a hypothetical algorithm using all available machine resources:


- It performs at peak floating point performance �  in Gflops/sec


- It uses the maximum memory bandwidth �  in Gbytes/sec (the most relevant 
bandwidth. Might be main memory or cache level x)


• Define the machine intensity �  with unit flops/byte


• Our hypothetical algorithm performs �  flops for each byte transfered to/from 
memory


• The reciprocal �  in bytes/flop is called machine balance


• Example i7-8559U CPU @ 2.70GHz: �  Gflops/sec, � 37Gbytes/s, 
so �  flops/byte

Pm

Mm

Im =
Pm

Mm

Im

Bm = 1/Im

Pm = 180 Mm =
Im = 4.86
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Roofline Analysis
• Now consider a specific algorithm for solving a problem and its implementation

• The idea is to model the performance of the implementation on a given machine as a 

function of its intensity and machine characteristics


� 


• Fundamental classification of algorithms on a given machine: 
    Memory-bound algorithms: � , performance limited by �  
    Compute-bound algorithm: � , performance limited by � 


• Example: Scalar product. � 2 flops/16 bytes = 1/8 flops/byte. With 40 Gbytes/sec 
memory bandwidth, the algorithm will perform at �  
Gflops/sec (if � ).


• Only compute bound algorithms may reach peak performance 
• Note: In general performance is less than the ideal performance due to various factors, 

e.g. pipeline stalls, loop overhead, cache misses that were not anticipated, TLB miss, ..

P(I) = min(Pm, I ⋅ Mm)

I < Im Mm
I > Im Pm

I =
P = I ⋅ Mm = 0.125 ⋅ 40 = 5

P ≤ Pm
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Roofline Diagram

Recommended Paper:


Williams, Samuel, Waterman, Andrew, & 
Patterson, David A. (2009). Roofline: An 
Insightful Visual Performance Model for 
Multicore Architectures. http://doi.org/
10.1145/1498765.1498785
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Roofline Diagram Refined
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Recipe for Performance Optimization
1. Determine compute intensity � 

2. If (� ) : try to improve compute intensity


- Optimize access patterns (i.e. reduce memory bandwidth to the relevant level of 
the memory hierarchy

‣ Blocking (tiling)

‣ Loop fusion

‣ Array of structures (AoS) vs. Structure of Arrays (SoA)


3. If (� ) : optimize instruction rate (i.e. improve pipelining)

- SIMD

- Reduce loop overhead (loop unrolling, loop unrolling + vectorization = strip mining) 

- Instruction reordering (avoid pipeline stalls)


4.  Use a different algorithm? But:

- Of course without superfluous flops!

- Sometimes algorithms with worse complexity have higher compute intensity. Is the 

run-time of the worse algorithm really better?

I
I < Im

I ≥ Im

�26



BLAS
• BLAS = Basic Linear Algebra Subroutines. Library for linear algebra kernels 

introduced in 1979


- Level 1: vector ops, e.g. daxpy � , �  operations on �  data


- Level 2: matrix-vector ops, e.g. � , �  operations on �  data


- Level 3: matrix-matrix ops, e.g. � , �  operations on �  
data


• Compute intensity on level 1, 2 is constant, algorithm would typically be memory 
bound, unless the constant is large enough


• Compute intensity on level 3 is � , so for �  large enough there is a chance to 
make the algorithm compute bound


- Peak FP performance might still be a challenge: SIMD, register pressure, loop 
overhead, etc., see matmul example

y = αx + y O(n) O(n)
y = αAx + βy O(n2) O(n2)
C = αAB + βC O(n3) O(n2)

O(n) n
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Roofline for Matrix Multiplication
• Want � , �  square matrices of size � 


• Write algorithm in block form: � 


• To compute product �  of �  block matrices:


- Flops made: � 


- Bytes loaded: � . Assumes we load �  and �  but have full reuse on � 


• Intensity then is � 


• To be compute bound on my laptop with �  requires � 


• This requires �  bytes. So 32 KBytes is pretty close 
Note: we need three matrices in the cache!

C = C + AB A, B, C n = MN

Cij = Cij + ∑
N

k=1
AikBkj

AikBkj M × M

2M3

2 ⋅ 8M2 A B C

I =
2M3

16M2
=

M
8

Im ≈ 5 M ≥ 40
40 ⋅ 40 ⋅ 8 ⋅ 3 = 38400
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Other algorithms
• N-body problem: �  operations on �  data. Compute bound possible


• Discrete convolution: 


� 


• Effort is � , might be compute bound when �  is large


• Stencil computation is a special case, there �  is typically small ( � )

O(n2) O(n)

( f * g)(i) =
m

∑
j=−m

f(i − j)g( j)

O(nm) m
m m = 1
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Programming Models
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Overview
• SIMD Vectorization


- Is mandatory for achieving high performance

• Thread programming


- Great choice of programming models

- OpenMP: simple when it works, C/C++/Fortran

- C++ threads: multithreading in the standard but low-level/large effort

- Intel thread building blocks: C++ lib, kernel-based and task-based, good scheduler

- SYCL: Portable heterogeneous programming


• Message passing

- MPI (message passing interface), now at version 4 is the model of choice


• MPI+X
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How to use SIMD
• Use compiler options


- E.g. -mavx2 -mfma for gcc

• Write assembly language

• Intrinsics


- Gcc (and other compilers) provide extensions with special data types, like 
__m256d for 4 doubles and functions on these types mapping directly to a 
single machine instructions. Its like assembler programming


- Compiler does the register allocation and may do other optimizations (e.g. 
loop unrolling)


- I found this article quite good http://const.me/articles/simd/simd.pdf

• Overloaded operators: A bit easier to use: packs these types into classes and 

overloads arithmetic operators. A bit more portable.

• Example: Agner Fog’s vector class library https://www.agner.org/optimize/
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Scalability SIMD Vectorization
• Over the years SIMD width increased from 2 (SSE2) to 8 (AVX512) in DP


• Can we observe a corresponding performance increase?


• Can we write SIMD code in a generic way that supports different widths


• This might be important in the future with SIMD width up to 2048 bits in ARM 
CPUs (ARMv8 scalable vector extensions, used in Fujitsu A64FX CPU)


• Let us look at two examples: matmul and nbody


• C++ Implementation uses


- Agner Fogs vector class library (overloaded operations map to intrinsics)


- Templates to parametrize SIMD width at compile-time
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Generic SIMD in matmul
• „4x3“ approach, SIMD width � , 

row-major storage


• Decompose �  matrix into 
�  blocks


• Each �  matmul is 
decomposed into �  
blocks in �  matrix, each such 
block requires multiplying a 
�  with a �  matrix 
using 12 FMA operations


• Required SIMD registers: 12 for 
C, 1 for A and 3 for B = 16!

W

n × n
M × M

M × M
4 × (3W)

C

4 × M M × (3W)
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Generic SIMD Scaling Matmul Code
template<size_t simd_width> 
struct SIMDSelector 
{ 
}; 
template<> 
struct SIMDSelector<2> 
{ 
  static const size_t simd_width = 2; 
  static const size_t simd_registers = 16; 
  typedef Vec2d SIMDType; 
}; 
template<> 
struct SIMDSelector<4> 
{ 
  static const size_t simd_width = 4; 
  static const size_t simd_registers = 16; 
  typedef Vec4d SIMDType; 
}; 
template<> 
struct SIMDSelector<8> 
{ 
  static const size_t simd_width = 8; 
  static const size_t simd_registers = 32; 
  typedef Vec8d SIMDType; 
}; 

// version with tile size and SIMD width as a parameter 
// tiling and SIMD with vectorization of 4x3*W blocks 
template<size_t M, size_t W> 
void matmul4 (int n, double A[], double B[], double C[]) 
{ 
  using VecWd = typename SIMDSelector<W>::SIMDType; 
  VecWd CC[4][3], BB[3], AA; // fits exactly 16 registers 
  
  if (M%4!=0) { 
     std::cout << "M must be a multiple of 4" << std::endl; 
     exit(1); 
  }  
  if (M%(3*W)!=0) { 
     std::cout << "M must be a multiple of 3*W" << std::endl; 
     exit(1); 
  }  
  if (n%M!=0) { 
     std::cout << "n must be a multiple of M" << std::endl; 
     exit(1); 
  }  

#pragma omp parallel for schedule (static) firstprivate(n,A,B,C) private(CC,BB,AA) collapse (2) 
  for (int i=0; i<n; i+=M) // loop over tiles 
    for (int j=0; j<n; j+=M) 
      for (int k=0; k<n; k+=M) 
        // C_ij += A_ik*B_kj where all blocks are MxM 
        // now C_ij is again blocked into 4x(3*W) blocks 
        for (int s=i; s<i+M; s+=4) // loop over 4x3*W blocks of C within the tiles 
          for (int t=j; t<j+M; t+=3*W) 
            { 
              // C_st is a 4x3*W block in 12 SIMD registers which is loaded now 
              for (int p=0; p<4; ++p) 
                { 
                  // load store amortized over M/8 matrix multiplications 
                  CC[p][0].load(&C[INDEX(s+p,t,n)]); 
                  CC[p][1].load(&C[INDEX(s+p,t+W,n)]); 
                  CC[p][2].load(&C[INDEX(s+p,t+2*W,n)]); 
                } 
              // C_st += A_sM*B_Mt where now A_sM is 4xM and B_Mt is Mx3*W 
              for (int u=k; u<k+M; u+=1) // columns of A / rows of B 
                { 
                  // 3 loads of B now amortized over ... 12 fmas 
                  BB[0].load(&B[INDEX(u,t,n)]); 
                  BB[1].load(&B[INDEX(u,t+W,n)]); 
                  BB[2].load(&B[INDEX(u,t+2*W,n)]); 

                  AA = VecWd(A[INDEX(s,u,n)]); // load-broadcast 
                  CC[0][0] = mul_add(AA,BB[0],CC[0][0]); 
                  CC[0][1] = mul_add(AA,BB[1],CC[0][1]); 
                  CC[0][2] = mul_add(AA,BB[2],CC[0][2]); 
                   
                  AA = VecWd(A[INDEX(s+1,u,n)]); // load-broadcast 
                  CC[1][0] = mul_add(AA,BB[0],CC[1][0]); 
                  CC[1][1] = mul_add(AA,BB[1],CC[1][1]); 
                  CC[1][2] = mul_add(AA,BB[2],CC[1][2]); 

                  AA = VecWd(A[INDEX(s+2,u,n)]); // load-broadcast 
                  CC[2][0] = mul_add(AA,BB[0],CC[2][0]); 
                  CC[2][1] = mul_add(AA,BB[1],CC[2][1]); 
                  CC[2][2] = mul_add(AA,BB[2],CC[2][2]); 

                  AA = VecWd(A[INDEX(s+3,u,n)]); // load-broadcast 
                  CC[3][0] = mul_add(AA,BB[0],CC[3][0]); 
                  CC[3][1] = mul_add(AA,BB[1],CC[3][1]); 
                  CC[3][2] = mul_add(AA,BB[2],CC[3][2]); 
                } 
              // write back C 
              for (int p=0; p<4; ++p) 
                { 
                  // load store amortized over M/8 matrix multiplications 
                  CC[p][0].store(&C[INDEX(s+p,t,n)]); 
                  CC[p][1].store(&C[INDEX(s+p,t+W,n)]); 
                  CC[p][2].store(&C[INDEX(s+p,t+2*W,n)]); 
                } 
            } 
} �35



SIMD Scaling in Matmul

• Decent scaling with SIMD width and matrix size

• Probably turbo mode was on
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For Comparison: Matmul results using auto vectorizer (AVX2)
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Jacobi Method in 2d
• Example for memory bound algorithm
 • Provide the initial guess in two vectors 

u0 and u1 and only update the interior


• Use double buffering to avoid a copy 
step


• No convergence check here, it would 
cost as much as one iteration!


• If you want one, amortize it over many 
iterations

void jacobi_vanilla (int n, int iterations, double* u0, double* u1) 
{ 
  for (int i=0; i<iterations; i++) 
    { 
      for (int i1=1; i1<n-1; i1++) 
        for (int i0=1; i0<n-1; i0++) 
          u1[i1*n+i0] = 0.25*(u0[i1*n+i0-n]+u0[i1*n+i0-1] 
                                +u0[i1*n+i0+1]+u0[i1*n+i0+n]); 
      std::swap(u0,u1); 
    } 
} �38
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Jacobi Results

• X-axis shows total number of points in the lattice

• Y-axis gives (billion) site updates per second (1 

update = 4 Flops)

• Compute intensity is 4/(6*8) = 1/12 (counting the 

cold write twice)


• N=1863225 fits 3 consecutive rows in L1 cache

• N=400000 fits both arrays completely into L3 

cache

• N=16384 fits both arrays completely into L2 

cache
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Data Dependencies in 1d Jacobi
• Consider Jacobi in 1d 


• Alternatively, each point represents 
a whole line (2d) or plane (3d)


• Standard scheme completes one 
iteration before the next starts
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Wave Front Scheme
• Treat �  iterations in an 

overlapping fashion


• Proceed in order shown to the right


• Uses both arrays �  times for one 
spatial index (reading or writing)


• Need to fit data of about �  spatial 
indices int cache


• Can you parallelize that scheme? 
Guess what!

K > 1

K

3K
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SIMD Vectorization
• Do not use horizontal adds, rather vectorize over 4 

consecutive points in one row

• Needs four loads and one write

• Most loads will not be aligned

• FMA or not? Algorithm can be written with FMA

• This makes more flops and executes in the same time, 

so performance is higher

• But lattice updates per second stays the same

• Be careful with evaluating performance!

  // do iterations 
  for (int i=0; i<iterations; i++) 
    { 
      for (int i1=1; i1<n-1; i1++) 
        for (int i0=1; i0<n-1; i0++) 
          unew[i1*n+i0] = 0.25*uold[i1*n+i0-n] 
                       +0.25*uold[i1*n+i0-1] 
                       +0.25*uold[i1*n+i0+1] 
                       +0.25*uold[i1*n+i0+n]); 
      std::swap(uold,unew); 
    }
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Improved Jacobi Performance

• Wavefront: 2.5*4=10 GFLOPS/sec in scalar/no fma or 2.5*8 = 20 GFLOPS/sec in vectorized FMA  

• No performance advantage from vectorization
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OpenMP Programming Model
• Is based on three components:


- Compiler directives

‣ Comments in Fortran

‣ #pragma in C/C++ (a pragma gives additional information to the compiler beyond the 

language itself. The C standard specifies a few pragmas to be understood by every 
compiler, the rest is optional)


- Runtime library

- Environment variables


• Is quite easy to use as it avoids a lot of boiler-plate code for starting/joining threads, 
argument passing, return value passing


• Particularly simple for loop-based parallelism

• Fork-Join model: alternating sequential and parallel phases executed by a team of threads

• Newer versions support also task-based parallelism and SIMD vectorization
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Hello World Example 
#include <iostream> 

#ifdef _OPENMP 
#include<omp.h> // headers for runtime if available 
#endif 

int main (int argc, char** argv) 
{ 
  // start sequential as usual 
#pragma omp parallel // execute the following block in parallel 
  { // number of parallel threads conrolled in various ways 
    int id = omp_get_thread_num(); // call library function 
#pragma omp critical // execute following block exclusive 
    std::cout << "I am " << id << std::endl; 
  } // join parallel threads at end of parallel regions 
  return 0; 
}

• Compile with option -fopenmp in g++
Find 

code
 in  

hello
_omp.cc
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Example: Scalar Product
• result is private in the parallel 

section and reduced at the 
end 

  // Example: parallel scalar product 
  const int n=100; 
  double x[n]; 
  double y[n]; 
  double result=0.0; 
  for (int i=0; i<n; i++) x[i]=1.0/(1.0+i); 
  for (int i=0; i<n; i++) y[i]=(1.0+i); 

  // scalar product parallel for loop 
#pragma omp parallel for \ 
  num_threads (4) \ 
  schedule (static) \ 
  shared (x,y,n) \ 
  reduction (+: result) 
  for (int i=0; i<n; i++) result += x[i]*y[i]; 
  std::cout << "scalar product is " 
            << result << std::endl;

�46



OpenMP Matmul
• 2 x Xeon Gold 6230R CPU 


• Has 2x26 cores with AVX512
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Effect of Pinning for Matmul
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TBB Intro
• Open-source C++ library supporting thread-level shared memory parallelism on a single 

node since 2006


• Central concepts: kernels and tasks


• It is now part of Intel oneAPI, a new attempt to provide an open platform for writing code on 
heterogeneous systems incorporating accelerators (GPUs, CPUs, FPGAs), oneAPI contains


- Compilers: icc (classic Intel compiler) and dpcpp (data parallel C++), both compile 
OpenMP code


- TBB which you can compile with any compiler


- SYCL, a data parallel programming language and run-time library (dpcpp compiler only)


- Intel MPI implementation


• Note for MacOS users: dpcpp is not supported on MacOS :-(


• There is an excellent free book on TBB: https://www.springer.com/de/book/9781484243978


• Documentation for TBB can be found here: https://software.intel.com/content/www/us/en/develop/documentation/onetbb-documentation/
top.html
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Complete Vector Addition Example
#include <iostream> 
#include <vector> 
#include <oneapi/tbb.h> 

class VectorSumKernel 
{ 
  std::vector<double> &x,&y,&z; 
public: 
  VectorSumWorker (std::vector<double>& _x, std::vector<double>& _y, 
                   std::vector<double>& _z) 
    : x(_x), y(_y), z(_z) 
  {} 
  void operator() (const oneapi::tbb::blocked_range<size_t>& r) const 
  { 
    for (size_t i=r.begin(); i<r.end(); ++i) z[i]=x[i]+y[i]; 
  } 
}; 

int main (int argc, char** argv) 
{ 
  std::vector<double> x(1000,1.0), y(1000,2.0), z(1000); 

  // first version: pass kernel object 
  oneapi::tbb::parallel_for(oneapi::tbb::blocked_range<size_t>(0,x.size()), 
                            VectorSumKernel(x,y,z)); 

  // second version: pass lambda 
  oneapi::tbb::parallel_for(oneapi::tbb::blocked_range<size_t>(0,x.size()), 
                            [&](const oneapi::tbb::blocked_range<size_t>& r) 
                            { 
                              for (size_t i=r.begin(); i<r.end(); ++i) 
                                z[i]=x[i]+y[i]; 
                            }); 
  return 0; 
} 

Find 
code

 in  

hello
_tbb.c

c

• parallel_for is used to invoke a 
kernel function for a given range


• In addition, a chunk size parameter 
could be given


• Observe the similarity to parallelism 
in the C++ standard library
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Data Flow Graphs
• We now turn to a different parallelization approach: data 

flow graphs


• Given a directed graph �  consisting of nodes and 
edges


• Each node stands for a computation working on input 
data given by the input edges and producing a result 
corresponding to the output edges


• Each edge stands for a message transferred from the 
source node to the destination node


• Consider e.g. node � , it realizes a computation 
� , where �  is the type transferred on edge 
� 


• The computation is carried out as soon as an input 
message is available on every input edge


• Data flow graphs may be cyclic!

G = (V, E)

v2
f2 : T1 × T2 → T3 Ti
ei
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Data Dependence Graphs
• Pure data flow graph: computation only depends on the inputs provided by the input 

messages

• Data dependence graph: 


- Computation is performed on some shared state 

- The input messages provide synchronization and determine when the computation can be 

done

• TBB provides the continue_node for that, using a dummy message type continue_msg (but 

you could do it on your own as well)

• Data dependence graphs realized with continue_node may not be cyclic!

• Below we use mixed form of a data dependence graph:


- Computations are performed on a global shared state

- Messages convey iteration numbers; they determine when the next iteration can be started 

and when the overall computation is finished

- In this way, also cyclic data dependence graphs can be covered!
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Application: Parallel Jacobi

• Good performance needs data locality across iterations


• Figure: horizontal: �  index, vertical: iterations


• Let �  be an even integer defining groups with horizontal extend �  and vertical extend � 


• Groups 0,1,2,3 can be computed in parallel; orange edges indicate data depend

i1
K K K/2
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Conceptual Data Dependence Graph

• �  nodes compute the Lambda-shaped triangular regions


• �  nodes compute the V-shaped triangular regions


• �  compute the left and right triangular regions of half size

Λ
V
L, R

�54



Processing the Chunks

• Processing order in each chunk is chosen to achieve good locality
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�  NodeΛ
• �  nodes are normal function nodes


• The function to be performed is the operator()


• The constructor gets grid size n, the two arrays to 
work on and the chunk number i to identify itself


• Input type is std::tuple<int,int> which is the 
output of the preceding join_node. Each int is the 
number of the iteration we are in (starting with 1)


• Output type is one int (the same iteration)


• The iteration number is increased in the �  
nodes


• Actually each iteration stands for a group of 
�  iterations (we assume, the total number 
of iterations is a multiple thereof)

Λ

L, R, V

K/2 + 1

using Lambda_node = oneapi::tbb::flow::function_node< 
  std::tuple<int,int>,int>; 

template<int K> 
class Lambda 
{ 
  int n; 
  double* u[2]; 
  int i; 
  int i1start; 
public: 
  Lambda (int _n, double* u0, double* u1, int _i) 
    : n(_n), i(_i) 
  { 
    u[0] = u0; u[1] = u1; 
    i1start = 1+i*K; 
  } 
  int operator() (const std::tuple<int,int>& in) 
  { 
    for (int r=0; r<K/2; ++r) 
      for (int k=0; k<=r; ++k) 
        { 
          int src = k%2; 
          int dst = 1-src; 
          int i1 = i1start+(r-k)*2+k; 
          for (int i0=1; i0<n-1; i0++) 
            u[dst][i1*n+i0] = 0.25*(u[src][i1*n+i0-n] 
                                    +u[src][i1*n+i0-1] 
                                    +u[src][i1*n+i0+1] 
                                    +u[src][i1*n+i0+n]); 
          i1++; 
          for (int i0=1; i0<n-1; i0++) 
            u[dst][i1*n+i0] = 0.25*(u[src][i1*n+i0-n] 
                                    +u[src][i1*n+i0-1] 
                                    +u[src][i1*n+i0+1] 
                                    +u[src][i1*n+i0+n]); 
        } 
    if (K/2%2==0) std::swap(u[0],u[1]); 
    return std::get<0>(in); 
  } 
};

Find 
code

 in 

jacob
i_tbb.

cc
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Jacobi Performance
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Wrap Up
• Todays CPUs are highly parallel, complex machines


• Peak performance can only be achieved by


• Using SIMD instructions


• Using multiple cores


• Use roofline analysis to think about your algorithm


• GPUs: 


• SIMD on steroids (wider, more and only)


• High bandwidth memory
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