Multilevel Overlapping Domain Decomposition Methods with Spectral Coarse Spaces

 $\frac{Peter \ Bastian^{1}}{joint \ work \ with \ D. \ Kempf^{1}, \ L. \ Seelinger^{2}, \ R. \ Scheichl^{1,2} \ and \ A. \ Strehlow^{2}}$

Universität Heidelberg ¹Interdisziplinäres Zentrum für Wissenschaftliches Rechnen ²Institute for Applied Mathematics Im Neuenheimer Feld 205, D-69120 Heidelberg email: peter.bastian@iwr.uni-heidelberg.de

IGP/IWR Summer School, October 4-15, 2021

Outline

2 Multilevel Spectral DD as Subspace Correction Method

- **3** Convergence Theory
- 4 Numerical Results

Section 1

Motivation

P. Bastian et al. (IWR)

Multilevel Spectral DD IGP School, October 4–15, 2021 3/42

Groundwater Flow

$$\begin{aligned} -\nabla \cdot (K \nabla u) &= f & \text{in } \Omega, \\ u &= g & \text{on } \Gamma_D \subseteq \partial \Omega, \\ -(K \nabla u) \cdot \nu &= j & \text{on } \Gamma_N &= \partial \Omega \setminus \Gamma_D. \end{aligned}$$

- Permeability tensor K(x) highly varying and/or anisotropic
- Weighted symmetric interior penalty discontinuous Galerkin method¹

$$u_h \in V_h^{\mathsf{DG}}$$
 : $a_h^{\mathsf{DG}}(u_h, v) = I_h^{\mathsf{DG}}(v)$ $\forall v \in V_h^{\mathsf{DG}}$

$$\begin{split} \hat{\boldsymbol{s}}_{h}^{\mathbf{DG}}(\boldsymbol{u},\boldsymbol{v}) &= \sum_{\tau \in \mathcal{T}_{h}} (\boldsymbol{K} \nabla \boldsymbol{u}, \nabla \boldsymbol{v})_{\mathbf{0},\tau} + \sum_{\gamma \in \mathcal{F}_{h}^{I}} \left[\sigma_{\gamma}(\llbracket \boldsymbol{u} \rrbracket, \llbracket \boldsymbol{v} \rrbracket)_{\mathbf{0},\gamma} - (\{\boldsymbol{K} \nabla \boldsymbol{u}\}_{\omega} \cdot \boldsymbol{\nu}_{\gamma}, \llbracket \boldsymbol{v} \rrbracket)_{\mathbf{0},\gamma} - (\{\boldsymbol{K} \nabla \boldsymbol{v}\}_{\omega} \cdot \boldsymbol{\nu}_{\gamma}, \llbracket \boldsymbol{u} \rrbracket)_{\mathbf{0},\gamma} \right] \\ &+ \sum_{\gamma \in \mathcal{F}_{h}^{D}} \left[\sigma_{\gamma}(\boldsymbol{u}, \boldsymbol{v})_{\mathbf{0},\gamma} - ((\boldsymbol{K} \nabla \boldsymbol{u}) \cdot \boldsymbol{\nu}_{\gamma}, \boldsymbol{v})_{\mathbf{0},\gamma} - ((\boldsymbol{K} \nabla \boldsymbol{v}) \cdot \boldsymbol{\nu}_{\gamma}, \boldsymbol{u})_{\mathbf{0},\gamma} \right] \end{split}$$

¹ Ern, Stephansen, Zunino. IMA Journal of Numerical Analysis, 29 (2008).

Unstable Flows in Porous Media

$$abla \cdot \mathbf{v} = \mathbf{0}, \qquad \mathbf{v} = -\frac{K}{\mu(c)}(\nabla p - \rho(c)g)$$

$$\partial_t(\Phi c) + \nabla \cdot (cv - D(v)\nabla c) = 0$$

Density driven flow, miscible discplacement Can exploit high resolution schemes

Viscous Fingering Pe = 14400, M = 100

ILLR

Carbon Fibre Composites

$$\begin{aligned} -\nabla \cdot \sigma(u) &= f\\ \sigma(u) &= C : \epsilon(u)\\ \epsilon(u) &= \frac{1}{2} \left(\nabla u + (\nabla u)^T \right) \end{aligned}$$

This example by L. Seelinger, A. Reinarz

- u displacement, σ Cauchy stress, ϵ strain, C stiffness
- \bullet Discretized with conforming \mathbb{Q}_2 serendipity elements
- Application to carbon fibre composites²:
 - anisotropic stiffness tensor C
 - discontinuous material properties
 - highly anisotropic meshes

²Butler, Dodwell, Reinarz, Sandhu, Scheichl, Seelinger. Computer Physics Communications, 249 (2020).

Reinforced Bulk Material

Example by D. Kempf

- Two-dimensional bulk material reinforced by truss-beam elements³
- Discretized with cut-cell continuous Galerkin \mathbb{P}_2 / C^0 interior penalty discontinuous Galerkin method

	UMFPack	CG-S	SOR	CG-GenEO			
#dof	Т	#IT	Т	#IT	Т	S	
3402	0.03	1229	0.8	30	0.44	3	
13202	0.54	22691	64.3	35	1.92	14	
822402	265.10			60	253.60	370	

³Hansbo, Larson, Larsson. Lecture Notes in Computational Science and Engineering 121.

HPC FEM

- IHR
- FEM for elliptic PDE leads to solving large sparse linear systems Ax = b
- Use iterative solvers $x^{k+1} = x^k + B(b Ax^k)$ with preconditioner B
- Matrix-based methods assemble A in sparse matrix format
 - Memory bandwidth bound since $I \le 1/4$ in y = Ax
 - **Robust preconditioners** *B* available, e.g. AMG, DD
- Matrix-free methods avoid assembling A to get compute-bound
 - Low-order FEM:
 - * Exploit structure: regular grids, constant coefficients
 - * Vectorization over several elements
 - High-order FE schemes: naive complexity $O(p^{2d}h^{-d})$ for y = Ax
 - * Complexity reduction by exploiting tensor-product structure: $O(p^{d+1}h^{-d})$
 - ★ Algorithm employs matrix-matrix products
 - ★ Less flops are executed at a higher rate
- Our focus here:
 - Coefficient and h-robust, matrix-based preconditioner B

Matrix-free vs. Matrix-based Operator Application

- Convection-Diffusion-Reaction Problem, var. permeability, axis-parallel grid
- PETSc matrix (25 GFLOP/s \equiv at least 100 GByte/s)
- Node Performance on 2 \times Xeon E5-2698v3

	Matrix-free		Matrix-b	ased	Matrix Assembly		
p	DOF s	GFLOP s	DOF s	GFLOP s	DOF s	GFLOP s	
1	$1.80 imes10^8$	126	$2.06 imes10^8$	24.3	$1.60 imes10^7$	345	
2	$4.17 imes10^8$	282	$6.42 imes10^7$	27.3	$8.71 imes10^{6}$	371	
3	$6.00 imes10^8$	376	$2.69 imes10^7$	29.8	$4.66 imes10^6$	368	
4	$6.76 imes10^8$	436	$9.54 imes10^{6}$	23.5	$2.57 imes10^{6}$	301	
5	$7.20 imes10^8$	467	$4.58 imes10^{6}$	23.3	$1.93 imes10^{6}$	307	
6	$7.22 imes10^{8}$	481	$2.31 imes10^{6}$	23.5	$1.21 imes10^{6}$	231	
7	$7.07 imes10^8$	481	$1.46 imes10^{6}$	30.3	$6.65 imes10^5$	143	
8	$6.80 imes10^8$	476	$6.14 imes10^5$	24.1	$8.74 imes10^5$	198	
9	$6.59 imes10^8$	470	$2.98 imes10^5$	26.2	$7.01 imes10^5$	133	

Results by Steffen Müthing

Reaction Diffusion DG - Skylake

- Full Diffusion Tensor, SIPG DG discretization
- Measure matrix-free Jacobian application

(u, ∇u)× 2 qp, (u, ∂₁u)× 4 qp + (∂₂u, ∂₃u)× 4 qp, u× 8 qp, ∂_iu× 8 qp
Results by Dominic Kempf

P. Bastian et al. (IWR)

11/42

Let's focus

on efficient parallel iterative methods for

solving linear systems Ax = b

where

- $A \in \mathbb{R}^n$ is symmetric and positive definite
- A arises from the discretization of (systems of) PDEs
- with highly varying and/or anisotropic coefficients/meshes
- n is very large, e.g. $n \approx 10^8 \dots 10^{12}$
- \bullet the number of available computers P is very large, e.g. $P\approx 10^5\dots 10^6$
- S.p.d. case allows rigorous theory, concept is more general

Robust Parallel Iterative Solvers

- Algebraic multilevel methods (as early as 1982)
 - Ruge-Stüben, Agglomeration, AMGe, AMLI
 - ▶ Spectral AMGe, Chartier, et al., SIAM J. Sci. Comput., 25(1), 2006
- Two-level overlapping and nonoverlapping domain decomposition (DD)
 - Not coefficient-robust in their standard form
- Two-level spectral DD methods
 - ► Galvis, Efendiev, Multiscale Model. Simul. 8 (2010) 1461–1483
 - Efendiev et al. M2AN 46 (2012) 1175-1199
 - ▶ Multilevel variant: Willems, SIAM Journal on Numerical Analysis, 52 (2014)
 - ► GenEO: Spillane et al., Numerische Mathematik, 126, 2014
 - SORAS-GenEO-2: Haferssas, Jolivet, Nataf, SIAM SISC 39(4) 2017
 - Algebraic spsd splitting: Daas, Grigori, SIAM Mat. Ana. & Appl. 40(1) 2019
 - Multilevel spaces: Daas et al., hal-02151184 2020
- Spectral coarse spaces . . .
 - ... used for preconditioning
 - ... used as multiscale method

Why two levels are not sufficient ...

ILLR

- Supercomputers have many cores. HAWK@HLRS: 720896 / 2GB
- Dimension of coarse problem is $\sim P$
- More subdomains than cores (oversubscription) is attractive
- Limits P to around 10⁴ or even less
- Three or four levels are often sufficient
 - ► (A/G)MG: #subdomains ~ n, coarsening factor 2^d
 - MLDD: #subdomains \sim P, agressive coarsening factor pprox 100

New aspects in this work:

- Multilevel spectral DD as subspace correction method
- Theory for additive V-cycle (solve once in each subdomain)
- Theory for discontinuous Galerkin discretization
- Several options for the rhs of the eigenproblems

Section 2

Multilevel Spectral DD as Subspace Correction Method

Abstract Subspace Correction Methods

Consider the discrete variational problem

$$u_h \in V_h$$
: $a(u_h, v) = l(v)$ $\forall v \in V_h$,

 V_h : finite element space, *a*: symmetric, coercive bilinear form, *I* linear form **Split** V_h into *P* (possibly overlapping) subspaces

$$V_h = V_{h,1} + \ldots + V_{h,P}.$$

Parallel (additive) subspace iteration

$$egin{aligned} &u_h^{k+1} = u_h^k + \omega \sum_{i=1}^P w_i^k, \qquad 0 < \omega \in \mathbb{R} \ &w_i^k \in V_{h,i}: \qquad a(w_i^k,v) = I(v) - a(u_h^k,v) \qquad orall v \in V_{h,i} \end{aligned}$$

Sequential subspace correction and hybrid variants are possible

IHR

Multilevel Domain Decomposition Splitting

I: Multilevel hierarchy of finite element spaces (vertical)

$$V_{h,0} \subset V_{h,1} \subset \ldots \subset V_{h,l} \subset \ldots V_{h,L} = V_h$$

II: Split each level into P_I subspaces related to subdomains (horizontal)

$$V_{h,l} = \sum_{i=1}^{P_l} V_{h,l,i}$$

• With $P_0 = 1$ this yields a multilevel DD splitting:

$$V_{h} = V_{h,0} + \sum_{l=1}^{L} \sum_{i=1}^{P_{l}} V_{h,l,i}$$

Q: How to define $V_{h,l}$ and $V_{h,l,i}$?

Algebraic Formulation

Implementation: introduce **basis representations** of the subspaces

$$V_h = \operatorname{span}\{\phi_1, .., \phi_n\}, \quad V_{h,l,i} = \operatorname{span}\{\phi_{l,i,1}, .., \phi_{l,i,n_{l,i}}\}, \quad \phi_{l,i,j} = \sum_{k=1}^{\infty} (R_{l,i})_{j,k} \phi_k.$$

P. Bastian et al. (IWR)

Multilevel Spectral DD

19/42

Convergence

• Number of iterations needed is proportional to (square root of) the spectral condition number

$$\kappa(\mathit{BA}) = rac{\lambda_{\mathsf{max}}(\mathit{BA})}{\lambda_{\mathsf{min}}(\mathit{BA})}$$

• Below we are interested in upper and lower bounds

$$\gamma \leq \lambda_{\mathsf{min}}(BA) \leq \kappa(BA) \leq \lambda_{\mathsf{max}}(BA) \leq \Gamma$$

which implies $\kappa(BA) \leq \Gamma/\gamma$

• These bounds are proven on the function level using properties of bilinear forms and finite element spaces

Multilevel Domain Decomposition

- \mathcal{T}_h is a finite element mesh for the domain Ω
- On each level *I* decompose T_h into P_I overlapping subsets:

$$\mathcal{T}_{h,l,i} \subset \mathcal{T}_h, \quad 1 \leq i \leq P_l, \qquad \qquad \bigcup_{i=1}^{P_l} \mathcal{T}_{h,l,i} = \mathcal{T}_h,$$

• defining the subdomains

$$\Omega_{l,i} = \mathsf{Interior}\left(\bigcup_{\tau\in\mathcal{T}_{h,l,i}}\bar{\tau}\right)$$

• Decomposition is hierarchic:

$$\mathcal{T}_{h,l,i} = \bigcup_{k \in J_{l,i}} \mathcal{T}_{h,l+1,k}, \qquad 0 \le l < L, \qquad P_0 = 1, P_l < P_{l+1}$$
$$\bigcup_{i=1}^{P_l} J_{l,i} = \{1, \dots, P_{l+1}\} \text{ describes union of subdomains}$$

Multilevel Domain Decomposition: 2D Example

Domain decomposition hierarchy generated with ParMetis

Coarsest level not shown

Multilevel Spectral Finite Element Spaces

- $r_{l,i}v = v|_{\Omega_{l,i}}$ restriction operators, $e_{l,i}$ zero extension operators
- $\chi_{l,i}$ partition of unity operators: $\sum_{i=1}^{P_l} e_{l,i} \chi_{l,i} r_{l,i} v = v$, $\chi_{l,i} v_{l,i}|_{\partial \Omega_{l,i} \cap \Omega} = 0$
- On level L set $V_{h,L} = V_h$ defined on mesh \mathcal{T}_h
- For $l = L, \ldots, 1$ construct $V_{h,l-1}$ from $V_{h,l}$ as follows
 - For each subdomain $i = 1, \ldots, P_l$ define the spaces

$$\begin{split} &V_{h,l,i} = \left\{ v \in V_{h,l} : \text{supp } v \subseteq \overline{\Omega}_{l,i} \right\} \subset V_{h,l} & \text{used in subspace correction} \\ &\overline{V}_{h,l,i} = \left\{ r_{l,i}v : v \in V_{h,l} \right\} & \text{auxiliary space} \end{split}$$

▶ In each subdomain $i = 1, ..., P_l$, solve a generalized eigenproblem

$$w_{l,i,k} \in \overline{V}_{h,l,i}: \qquad \overline{a}_{l,i}(w_{l,i,k},v) = \lambda_{l,i,k}\overline{b}_{l,i}(w_{l,i,k},v) \qquad \forall v \in \overline{V}_{h,l,i}$$

positive semi-definite BLFs $\bar{a}_{l,i}$ and $\bar{b}_{l,i}$ to be detailled below

 \blacktriangleright Then for a given threshold 0 $<\eta\in\mathbb{R}$ set

$$V_{h,l-1} = \bigoplus_{i=1}^{P_l} \operatorname{span} \left\{ \phi_{l,i,k} : \phi_{l,i,k} = e_{l,i} \chi_{l,i} w_{l,i,k} \wedge \lambda_{l,i,k} < \eta \right\}$$

Section 3

Convergence Theory

P. Bastian et al. (IWR)

Multilevel Spectral DD IGP School, October 4–15, 2021 23 / 42

Abstract Subspace Correction Theory

Stable splitting

The multilevel splitting is called C_0 -stable if there exists $C_0 > 0$ and for each $v \in V_h$ a decomposition $v = v_0 + \sum_{l=1}^{L} \sum_{i=1}^{P_l} v_{l,i}$, such that

$$a(\mathbf{v}_0,\mathbf{v}_0) + \sum_{l=1}^L \sum_{i=1}^p a(\mathbf{v}_{l,i},\mathbf{v}_{l,i}) \leq C_0 a(\mathbf{v},\mathbf{v}).$$

Levelwise Coloring

$$\exists k_0 \in \mathbb{N}$$
 and maps $c_l: \{1,\ldots,P_l\} o \{1,\ldots,k_0\}$, such that for each $l>0$

$$i \neq j \land c_l(i) = c_l(j) \qquad \Rightarrow \qquad a(v_{l,i}, v_{l,j}) = 0 \quad \forall v_{l,i} \in V_{h,l,i}, \forall v_{l,j} \in V_{h,l,j}.$$

Theorem 1

Under these assumptions

$$\kappa(BA) \leq (1+k_0L)C_0.$$

Abstract Spectral Subspace Correction Theory

A1 (Triangle inequality under the square). $\exists a_0 > 0$ indep. of $l > 0, P_l$ s. t.

$$\left\|\sum_{i=1}^{P_l} v_{l,i}\right\|_a^2 \le a_0 \sum_{i=1}^{P_l} \|v_{l,i}\|_a^2, \qquad \forall v_{l,i} \in V_{h,l,i}.$$

A2 (Symmetric positive semidefinite splitting). $\exists b_0 > 0$ such that for l > 0 the bilinear forms $\overline{a}_{l,i}$ satisfy

$$\sum_{i=1}^{P_l} |\mathbf{r}_{l,i}\mathbf{v}_l|_{\overline{a}_{l,i}}^2 \leq b_0 \|\mathbf{v}_l\|_a^2, \qquad \forall \mathbf{v}_l \in V_{h,l}.$$

A3 (Local stability). $\exists C_1 > 0$ and for each $v_l \in V_{h,l}$, l > 0, a decomposition $v_l = v_{l-1} + \sum_{i=1}^{P_l} v_{l,i}$ such that

$$\|\mathbf{v}_{l,i}\|_{a}^{2} \leq C_{1} |\mathbf{r}_{l,i}\mathbf{v}_{l}|_{\overline{a}_{l,i}}^{2}, \qquad 1 \leq i \leq P_{l}.$$

This two-level splitting can be extended to a multilevel splitting.

P. Bastian et al. (IWR)

25 / 42

Stable Splittings

ILLR

Lemma 2 (Two-level Stable Splitting)

Let A1-A3 be satisfied for all levels. Then, for l > 0 exists a decomposition $v_l = v_{l-1} + \sum_{i=1}^{P_l} v_{l,i}$ such that

$$\|\mathbf{v}_{l-1}\|_{a}^{2} + \sum_{i=1}^{P_{l}} \|\mathbf{v}_{l,i}\|_{a}^{2} \leq (2 + b_{0}C_{1}(1 + 2a_{0})) \|\mathbf{v}_{l}\|_{a}^{2}$$

Lemma 3 (Multilevel Stable Splitting)

Let A1-A3 be satisfied for all levels. Then $\mathbf{v} = \mathbf{v}_0 + \sum_{l=1}^{L} \sum_{i=1}^{P_l} \mathbf{v}_{l,i}$ satisfies

$$\|\mathbf{v}_{0}\|_{a}^{2} + \sum_{l=1}^{L} \sum_{i=1}^{P_{l}} \|\mathbf{v}_{l,i}\|_{a}^{2} \leq C^{L} \left(1 + \frac{b_{0}C_{1}}{C - 1}\right) \|\mathbf{v}\|_{a}^{2}$$

with $C = 2(1 + a_0 b_0 C_1)$. (This is due to $||v_{l-1}||_a \leq C ||v_l||_a$).

Generalized Eigenvalue Problem I

• Local stability A3 is ensured via the GEVP:

$$w_{l,i,k} \in \overline{V}_{h,l,i}$$
: $ar{a}_{l,i}(w_{l,i,k},v) = \lambda_{l,i,k}ar{b}_{l,i}(w_{l,i,k},v) \quad \forall v \in \overline{V}_{h,l,i}$

 $\bar{a}_{I,i}, \bar{b}_{I,i}$ symmetric positive semi-definite with ker $\bar{a}_{I,i} \cap \ker \bar{b}_{I,i} = \{0\}$. • Spectrum in subdomain *i* on level *I* has the form

$$0 = \underbrace{\lambda_1 = \ldots = \lambda_r}_{r = \dim \ker \bar{a}_{l,i}} < \lambda_{r+1} \leq \ldots \leq \lambda_{n-s} < \underbrace{\lambda_{n-s+1} = \ldots = \lambda_n}_{s = \dim \ker \bar{b}_{l,i}} = +\infty,$$

• Eigenfunctions $w_{l,i,k}$ can be chosen $\bar{b}_{l,i}$ -orthonormal and $\bar{a}_{l,i}$ -orthogonal

Generalized Eigenvalue Problem II

• Define projection
$$\Pi_{l,i,m}: \bar{V}_{h,l,i} \to \bar{V}_{h,l,i,m} = \operatorname{span}\{w_{l,i,k}: 1 \le k \le m\}$$

$$\Pi_{I,i,m} v = \sum_{k=1}^m \overline{b}_{I,i}(v, w_{I,i,k}) w_{I,i,k}.$$

• $\Pi_{I,i,m}$ is $\bar{a}_{I,i}$ -stable:

$$|\Pi_{I,i,m}v|^2_{\bar{a}_{I,i}} \leq |v|^2_{\bar{a}_{I,i}}, \qquad |(I - \Pi_{I,i,m})v|^2_{\bar{a}_{I,i}} \leq |v|^2_{\bar{a}_{I,i}}, \qquad v \in \bar{V}_{h,I,i}.$$

• If $m \ge \dim(\ker \bar{a}_{l,i})$ one can show

$$|(I - \Pi_{I,i,m})v|_{\bar{b}_{I,i}}^2 \leq \lambda_{m+1}^{-1}|(I - \Pi_{I,i,m})v|_{\bar{a}_{I,i}}^2, \qquad v \in \bar{V}_{h,I,i}.$$

• The two-level splitting in A3 is then defined as

$$\mathbf{v}_{l} = \underbrace{\sum_{i=1}^{P_{l}} e_{l,i}\chi_{l,i}\Pi_{l,i,m(\eta)}r_{l,i}v_{l}}_{v_{l-1}} + \sum_{i=1}^{P_{l}} \underbrace{e_{l,i}\chi_{l,i}(I - \Pi_{l,i,m(\eta)})r_{l,i}v_{l}}_{v_{l,i}}$$

Application to Discontinuous Galerkin

Use the weighted SIPG method by *Di Pietro, Ern, Guermond, (2008).* The BLF has volume and face contributions:

$$a_h^{\mathsf{DG}}(u,v) = \sum_{\tau \in \mathcal{T}_h} a_{\tau}(u,v) + \sum_{\gamma \in \mathcal{F}_h^I} a_{\gamma}^I(u,v) + \sum_{\gamma \in \mathcal{F}_h^D} a_{\gamma}^D(u,v).$$

For the subdomains set

$$ar{a}_{l,i}(u, \mathbf{v}) = \sum_{ au \in \mathcal{T}_{h,l,i}} a_{ au}(u, \mathbf{v}) + \sum_{ au \in \mathcal{F}_{h,l,i}^l} a_{ au}^l(u, \mathbf{v}) + \sum_{ au \in \mathcal{F}_{h,l,i}^D} a_{ au}^D(u, \mathbf{v}),$$

where

$$\mathcal{F}_{h,l,i}^{I} = \{ \gamma \in \mathcal{F}_{h}^{I} : \gamma \subset \Omega_{l,i} \}, \qquad \mathcal{F}_{h,l,i}^{D} = \{ \gamma \in \mathcal{F}_{h}^{D} : \gamma \subset \partial \Omega_{l,i} \}.$$

Then A1, A2 are satisfied with constants independent of P and K

P. Bastian et al. (IWR)

Multilevel Spectral DD

A3 for Discontinuous Galerkin

For the DG method consider three different choices for $\bar{b}_{l,j}$:

$$\bar{b}_{l,i}^{1}(u, v) = \bar{a}_{l,i} (\chi_{l,i}u, \chi_{l,i}v) = a_{h}^{DG}(\chi_{l,i}u, \chi_{l,i}v),
\bar{b}_{l,i}^{2}(u, v) = a_{l,i} (\chi_{l,i}u, \chi_{l,i}v), \text{ original GenEO}
\bar{b}_{l,i}^{3}(u, v) = \bar{a}_{l,i} ((I - \chi_{l,i})u, (I - \chi_{l,i})v),$$

Lemma 4

If eigenvalues are picked according to a threshold $\eta > 0$, A3 is satisfied with

$$C_1^1 = \eta^{-1}, \qquad C_1^2 = 1 + \eta^{-1}, \qquad C_1^3 = 2(1 + \eta^{-1}).$$

$$\mathring{a}_{l,i}(u,v) = \sum_{\tau \in \mathring{\mathcal{T}}_{h,l,i}} a_{\tau}(u,v) + \sum_{\gamma \in \mathring{\mathcal{F}}_{h,l,i}^{l}} a_{\gamma}^{l}(u,v) + \sum_{\gamma \in \mathring{\mathcal{F}}_{h,l,i}^{D}} a_{\gamma}^{D}(u,v)$$

corresponding to $\mathring{\Omega}_{l,i} = \{x \in \Omega_{l,i} : x \text{ is shared by other subdomains}\} \subset \Omega_{l,i}$.

Section 4

Numerical Results

P. Bastian et al. (IWR)

Multilevel Spectral DD IGP School, October 4–15, 2021 31 / 42

Implementation Details

• Code is **sequential**

- Parallel execution time and speedup are estimated
- Fully algebraic implementation
 - Patch stiffness matrices required on level L
 - Subdomain Neumann matrices would also suffice
 - Algebraic SPSD splittings have been devised
- ParMetis for mesh partitioning
- Arpack in symmetric shift-invert mode used for eigenproblems on all levels
- UMFPack and Cholmod used for subdomain problems
- All integrated in Dune⁴ software framework
- $\bullet~10^{-8}$ reduction of initial residual norm in all examples

⁴www.dune-project.org

Patch-based Assembly

P. Bastian et al. (IWR)

Multilevel Spectral DD

IGP School, October 4–15, 2021 33 / 42

Islands Problem

Scalar diffusion problem with isotropic permeability field

h Scaling in Two-level Method

 \mathbb{Q}_1 CGFE, 16 subdomains, $\eta =$ 0.15, varying overlap δ

Problem	h	omoge	eneous			Islar	nds	
	$\delta \sim h$		$\delta \sim H$		$\delta \sim h$		$\delta \sim H$	
h^{-1}	# IT	<i>n</i> 0						
320	30	56	30	56	31	65	31	65
640	29	114	32	50	27	103	30	59
1280	27	236	25	54	27	240	25	78
2560	26	488	26	54	25	481	24	55

- Size of coarse space n_0 depends on overlap δ
- Convergence independent of coefficient K

p Scaling in Two-level Method

DG FE in 2d, 384^2 elements, 256 subdomains, varying polynomial degree p

		$\eta=$ 0.15						n _e	v =	20	
		$\delta = 2h$		δ var		$\delta = 2h$		δ var			
р	<i>n</i> ₁	#IT	<i>n</i> 0	δ	#I⊤	<i>n</i> 0	#IT	<i>n</i> 0	δ	#I⊤	<i>n</i> 0
1	589824	28	1457	2	28	1457	18	5120	2	18	5120
2	1327104	21	3171	3	22	1901	19	5120	3	18	5120
3	2359296	20	5026	3	21	2991	20	5120	3	19	5120
4	3686400	18	8217	4	21	3322	21	5120	4	20	5120
5	5308416	17	13596	4	21	5078	23	5120	4	21	5120
6	7225344	17	17029	5	22	5234	24	5120	5	22	5120

• Even with fixed number of eigenvalues per subdomain and fixed overlap there is only mild increase in iteration numbers with polynomial degree

Islands 2d Weak Scaling

37 / 42

Fixed #dof/subdomain, \mathbb{Q}_1 conforming finite elements, $\delta = 3h$, $\eta = 0.3$

subdomains	64	256	1024	4096	16384					
levels		degrees of freedom								
finest total n_0 2 levels n_0 3 levels n_0 4 levels	410881 306	1640961 1348 130	6558721 5523 431 207	26224641 22673 1319 436	104878081 91055 3890 891					
levels			#IT							
2 3 4	25	26 32	27 31 40	26 31 38	26 33 38					

Conjecture: $\kappa(BA) = O(L^2)$

Islands 3d Strong Scaling

FV discretization, fixed problem size 320³ mesh, 32768000 degrees of freedom

P_L	P_{L-1}	∦IT	<i>n</i> 0	T_{seq}	T _{par}	T _{i,min}	T _{i,max}	T _{coarse}			
two level method, varying overlap δ											
512	1	12	7680	63613	191.3	70.3	176.2	0.47			
1024	1	12	15360	35817	58.4	18.2	49.8	1.3			
2048	1	14	30720	18781	25.2	4.9	13.2	5.1			
4096	1	13	61441	19982	33.5	2.2	7.0	20.1			
	three level method										
4096	32	15	1387	21168	55.9	9.8	42.3	0.27			
4096	64	15	1817	20725	27.7	2.5	15.1	0.18			
4096	128	16	2569	20549	18.4	0.59	6.2	0.15			

• More subdomains are faster sequentially

• Three level method is faster than two-level method in parallel

P. Bastian et al. (IWR)

Multilevel Spectral DD

SPE10 Problem

Scalar diffusion problem with strong heterogeneity and anisotropy

P. Bastian et al. (IWR)

JIR

SPE10 Results Overlap $\delta = 2h$, GMRES+MRAS cycle

CG, $n_L = 9124731$ CCFV, $n_L = 8976000$ DG, $n_L = 8976000$											
P_L, P_{L-1}	#IT	<i>n</i> ₀	T_{par}	#IT	<i>n</i> ₀	T_{par}	#IT	<i>n</i> ₀	T_{par}		
two levels, $\eta=$ 0.3											
256	24	7237	133.8	25	7502	49.2	22	8366	233.5		
512	24	9830	60.4	23	10600	21.6	21	13690	124.9		
1024	28	21881	22.3	25	25753	12.3	24	31637	42.4		
2048	25	29023	15.7	25	35411	11.2	25	46844	36.7		
	three levels, no coarse overlap, $\eta=0.3$										
256, 16	29	1222	151.4	29	1364	70.3	31	1683	273.2		
512, 16	27	1228	77.8	28	1446	47.4	28	1762	186.8		
1024, 32	36	3145	46.3	34	3487	47.3	33	5476	231.4		
2048, 32	31	3120	40.1	35	3421	49.9	36	5359	204.8		

• Method works equally well for different discretization schemes

3d Carbon Fibre Composites

IHR

- $\bullet\,$ Linear elasticity, \mathbb{Q}_2 serendipity elements
- 9 ply layers and 8 interface layers
- 256 \times 64 \times 52 mesh, 10523067 degrees of freedom
- 1024 subdomains
- GMRES+MRAS cycle

	:	subdom	ains		m	ax dofs/	subdoma	in	
levels	3	2	1	0	3	2	1	0	#IT
2			1024	1			28791	21565	13
3		1024	32	1		28791	1260	914	31
4	1024	128	16	1	28791	546	515	273	35

Conclusions

IUR

- Extended spectral DD methods to more than two levels
- Generalized GenEO theory to DG discretization schemes
- Fully additive, robust and scalable preconditioner for SPD problems
- Improvements over 2 level DD in d = 3, $P \ge 4096$, $n > 30 \cdot 10^6$

Many research opportunities remain:

- Improve the C^{L} factor in the estimate
- Better understand eigenvalue distribution
- High-performance, scalable, parallel implementation
- Non-symmetric problems

Thanks to

- Dominic Kempf, Robert Scheichl, Linus Seelinger, Arne Strehlow
- Hussam Al Daas

Thank You for your attention!

P. Bastian et al. (IWR)

Multilevel Spectral DD