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@ Purpose of This Talk

@ Give a brief introduction to basic PDE-constrained optimization
problems . ..

@ as a class of (hopefully interesting) target problems for HPC
architectures.

@ Emphasize the importance to view these problems from the continuous
level ...

@ in order to devise overall efficient solution algorithms.
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@ Hilbert Spaces

Suppose that H is a vector space endowed with an inner product (-,-):
o (u,v)g = (v,u)y
o (jui +agug,v)g = ai(ur,v)g + as(uz,v)g
e (u,u)g >0
o (u,u)g =0 if and only if u =0

The inner product generates a norm in H:

[ullr = v/ (u, w) -

H is called a Hilbert space provided that it is complete with respect to this
norm.
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@ = Examples of Hilbert Spaces

Suppose that @ C R"™ is an open set.

o
L*(Q) = {u: 2 — R measurable /\u|2dw is finite}
Q
is a Hilbert space w.r.t. the inner product
(u,v)2(q) = / uvdz.
Q
(2]

HY(Q) = {u: 2 — R measurable

/ V|3 + |u|? dz is finite}
Q

is a Hilbert space w.r.t. the inner product
(u,v) g1 () = / Vu-Vov+uvde.
Q
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@ Unconstrained Optimization in Hilbert Space

Minimize f(u) where uw € H J

f: H — Ris called the objective functional.

f'(u) € L(H,R) is called the (Fréchet) derivative of f at w € H provided
that

10wl 7 [f(u+du) — f(u) = f'(u) du] — 0 as du — 0.

@ The space L(H,R) = H* of bounded linear functionals H — R is
called the dual space of H.

@ The dual space H* carries the operator norm:

€]l = == sup{(&,u) | [Jul|g = 1}.
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@ = Implications for Iterative Optimization Methods

Minimize f(u) where uw € H J

At a point (iterate) u € H, we require a search direction d € H to come to
the next iterate
u+ade H.

How do we obtain a direction d € H in which to proceed using the
derivative f'(u) € H*? }
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@ The Riesz Map

@ In a Hilbert space H, the elements £ of its dual space H* are precisely
of the form (u¢,-)m.

@ The relation R: & — wug is linear (the Riesz map).

© Using the Riesz map, we can define an inner product on H*:

Q (-, )y~ defines a norm, which agrees with the operator norm.

© H* is itself a Hilbert space and R: H* — H is an isometry.

This statement can be summarized as

A Hilbert space H “can be identified with” its dual H*. J

but it often leads to confusion.
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@ = Implications for Iterative Optimization Methods

Minimize f(u) where uw € H J

At a point (iterate) u € H, we require a search direction d € H to come to
the next iterate
u+ade H.

How do we obtain a direction d € H in which to proceed using the
derivative f'(u) € H*? }

The Riesz representer of f/(u) € H* is called the gradient of f at u:

Vf(u) =R f(u).
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@ Steepest Descent Method

Minimize f(u) where uw € H J
In a steepest descent (gradient descent) method, we use d .= —V f(u) as
search direction and update an iterate u according to u + ad. J

The negative gradient direction d is obtained by solving the linear system

(d,v)g = —f'(u)v forall ve H.

Roland Herzog (Heidelberg University) OCP and Mesh Independence Heidelberg 9 /33



@ But What About H = R"?

Isn't it true that in R™, the gradient V f(u) € R™ is simply the transpose of
the derivative f'(u) € R,,?
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@ But What About H = R"?

Isn't it true that in R™, the gradient V f(u) € R™ is simply the transpose of
the derivative f'(u) € R,,?

That is the case only when the Euclidean inner product is used:

(Vf(u),v)iqg = f'(u)v forallveR"
& Vf(u)=f"(u).
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@ But What About H = R"?

Isn't it true that in R™, the gradient V f(u) € R™ is simply the transpose of
the derivative f'(u) € R,,?

That is the case only when the Euclidean inner product is used:

(Vf(u),v)iqg = f'(u)v forallveR"
= Vf(u):f'(u).

When the inner product is represented by an s.p.d. matrix M:

(Vf(u),v)ay = f(u)v forallveR”
& MVf(u)=f'(u).
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@ Does the Inner Product Really Matter?

For a quadratic polynomial in R"™

1
flu) = 5 TAu—b"u+c with ans.p.d. matrix A4,
the speed of convergence of the steepest descent method (with exact line

search) is determined by its condition number

Amax(A)
)\min (A)

R =

Often one refers to the gradient method in a non-Euclidean inner product
as a preconditioned gradient method.
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@ Does the Inner Product Really Matter?

For a quadratic polynomial in R"™

1
flu) = 5 TAu—b"u+c with ans.p.d. matrix A4,

the speed of convergence of the steepest descent method (with exact line
search) is determined by its generalized condition number

~ Amax(A4; M)
B )\min(A; M) ‘

Often one refers to the gradient method in a non-Euclidean inner product
as a preconditioned gradient method.
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@ Intermediate Summary

@ One needs to distinguish between derivative f’(u) € H* and gradient
Vf(u) € H.

@ When talking about gradients and the steepest descent method,
always mention which inner product is being used.

© Even in R™:
MV f(u) = f'(u)"

@ The specification of the inner product is in the user's responsibility.

When solving discretized version of infinite-dimensional optimization
problems, we can expect to achieve mesh-independent algorithms only
when respecting the appropriate inner product of the underlying
undiscretized problem.
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@ Table of Contents

@ Gradient Descent and Conjugate Gradients in Optimal Control of PDEs
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@-= A Model Problem

As an introduction, we are going to consider (variations on) the following
model problem for the stationary heat equation:

1 Ay(z) = Xeen u(z) i O
n%y(m)—i—ay(m) =0 on I' =00

state temperature y € YV = H'(Q)
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@-= A Model Problem

As an introduction, we are going to consider (variations on) the following
model problem for the stationary heat equation:

— Ay(e) = xernuz) i ©Q
n%y(m)—i—ay(x) =0 on I' =00

state temperature y € ) = H'(Q)
]

control heating power u € U = L*(Q)
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@-= A Model Problem

As an introduction, we are going to consider (variations on) the following
model problem for the stationary heat equation:

Minimize %/ﬂ (y(x)—yd(x))2 dx

obs

: ki Ay(z) = xeenu(z) i O
s.t.
n%y(m)—i—ay(m) =0 on I' =00

state temperature y € Y = H'(Q)
control heating power u € U = L*(Qy)

Roland Herzog (Heidelberg University) OCP and Mesh Independence Heidelberg 13 /33



@-= A Model Problem

As an introduction, we are going to consider (variations on) the following
model problem for the stationary heat equation:

Minimize %/Q (y(z) — yd(m))2 dz + %//Q u(x)? dz, >0

obs

: ki Ay(z) = xeen u(z) i O
s.t.
n%y(m)—i—ay(x) =0 on I' =00

ctrl

state temperature y € Y = H'(Q)
control heating power u € U = L*(Qy)
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@ Optimality Conditions

Lagrangian:

1

L(y,u,p) = 5/ (y — yd)2 dz + %/Q u? dx <+ objective

obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl
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@ Optimality Conditions

Lagrangian:

1
L(y,u,p) = §/Q
obs

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

(y — yd)2 dz + g/Q u? dx <+ objective
ctrl

Ey(y,u,p)&/:/ (y — ya) 0y dx—l—//{V(Sy-Vp dx—i—/aéypds

Qobs Q T

=0 foralldyeY=HYQ)
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@ Optimality Conditions

Lagrangian:

1

L(y,u,p) = 5/ (y — yd)2 dz + %/Q u? dx <+ objective

obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

—KApP = —Xobs (Y — ya) in Q

adjoint PDE 5
k3.0 +ap=0 onT
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@= Optimality Conditions
Lagrangian:

1
L(y,u,p) = §/Q (y — yd)2 dz + %/Q u? dx <+ objective
obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

—K AP = —Xobs (¥ —ya) in Q
/@a%p—i-apzo onT

adjoint PDE {

Ly(y,u,p) du = ’y/ uou dw —/ Supdr =0 forall du €U = L*(Qewn
Qcl:rl Q

ctrl
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@ Optimality Conditions

Lagrangian:

1

L(y,u,p) = 5/ (y — yd)2 dz + %/Q u? dx <+ objective

obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

—KApP = —Xobs (Y — ya) in Q

adjoint PDE 5
k3.0 +ap=0 onT

gradient equation {7u —p=0 in Qcn J
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@= Optimality Conditions
Lagrangian:

1
L(y,u,p) = §/Q (y — yd)2 dz + %/Q u? dx <+ objective
obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

—K AP = —Xobs (¥ —ya) in Q
/@a%p—i-apzo onT

adjoint PDE {

gradient equation {7u —p=0 in Q¢ J

ﬁp(y,u,p)(?p:/ﬁviy-Wp dw+/
Q T

=0 forallopey:=H' Q)

ayop ds—/Q wop dx

ctrl
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@= Optimality Conditions
Lagrangian:

1
L(y,u,p) = §/Q (y — yd)2 dz + %/Q u? dx <+ objective
obs ctrl

—I—/%Vy-Vpdw—i—/aypds—/ up dx <« PDE
Q r Q

ctrl

—KkAp=— — in Q
adjoint PDE { P = ~Xobs (¥ ~ Ya)

K a%p +ap=0 onT
gradient equation {7u —p=0 in Qcn J
—Kk Ay = (u o in £
state PDE 5 Y= Xar
Kg:ytay=0 on I
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@-= Optimality System as Saddle-Point Problem

self-adjoint saddle-point system:

Xobs : —A Y Ya
7 —Xetrl ul =
-A ~Xctrl . p 0
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@-= Optimality System as Saddle-Point Problem

self-adjoint saddle-point system:

Xobs : —A Y Ya
Y —Xetrl ul =
-A —Xetrl : p 0
(A(y,u), (2,v)) = a((y, u), (2,v)) A: Y xU — YV x U

a((y,u),(z,v)):/ yzd:L‘Jr’y/Q uv dx J

Qobs ctrl
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@-= Optimality System as Saddle-Point Problem

self-adjoint saddle-point system:

Xobs - ’[ —A]' Y Ya
: Y — Xctrl ul|l =120
P 0
(A (yau) ) (Z,U)) = a((%“)?('zﬂj)) A Y xU — YV xU*
a((y,u),(z,v)) :/Q Yz dl""'}’/g uv dx J
[<B(y7u)7Q>:b((yvu)aQ) ] B:YxU— Y*

b((y,u),q):/Q&Vy-Vq dw—i—/rayq ds—/Q uwq dz }
ctrl
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@ How Does This Relate to Section 17

We have here a problem with a PDE constraint.

—KAY = Xt u in
/ﬁ;%y—l—ayzo onI' =00
For every control u € L?(Qcy), there is a unique state y € H(£2) solving
the PDE.

When we use the control-to-state map
S: L2(Qetr) — HY () < L?(Qops), We can eliminate the state variable y:

Minimize J(y,u) Minimize f(u) :== J(Su,u)
s.t.  (y,u) satisfies PDE
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@ Gradient of the Reduced Problem

The reduced objective is of the form

Minimize f(u):—HSu—deHJr H““U

The derivative and gradient are given by

f(w) 6u = (Su — yq, S(Su)H + 7 (u, (5u)U
= (S°(Su — yq), 0u),; + v (u, 0u),;
= (S°(Su — ya) +yu,0u),

= V()= 5°(Su—yi) +yu

S° is the Hilbert-space adjoint of S.
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@ Evaluation of the Gradient

Vi) =8°(Su—1yq)+vu

y = Su means p=—5°(y — yq) means
—KAY = Xcu in Q —KAp = —Xobs (Y — Ya) in
kZy+ay=0 onT kZp+ap=0 onT

Vfu)=-p+vu

Each evaluation of V f(u) requires
@ one solve of the state (forward) PDE
@ one solve of the adjoint (backward) PDE
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@ Discretization by Finite Elements

Suppose that {¢;} are P; (piecewise linear, globally continuous) finite
element basis functions.

objective:

1 1
5/ (v — ya)® dfc+%/ u? dz = §(y_Yd)TMobs (y_yd)+%uTMctrl u
Q Q

obs ctrl

v

PDE:

/nVy-Vgpi dx-l—/ozygpi ds—/ up; dr =0 forall
Q r

ctrl

& Ky—Mgu=0 < Su=K 'Mgu

adjoint PDE:

/mVp-V(pi dx—i—/apcpi ds—I—/ (y —yq) @i dx =0 for all ¢
Q r

Qobs
& KTp +Mpps(y—ya) =0 & S°z= K_Tl\/Iobs z
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@ Representation of the Derivative and Gradient

1 _ _
f(u) = Q(K "Mt — yg) " Mops (K My u — yg) + guTMctrl u

f/(u) ou= (K_lMctrl u— yCl)TMobs I<_11\/Ictrl ou + Y uTMctrI ou
= (vf(u)7 5u>Mctr|
Vf(u) = K™ "TMyps (K 'Mgy u —yg) +yu
=S° =S
=S°(Su—yy)+7u

@ This agrees with the formulation of V f(u) in the continuous setting.

@ Interestingly, the evaluation of the gradient Vf(u) from the derivative
f’(u) does not require the solution of a linear system with M., here.
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@ = Mesh-Independence of Gradient Descent

@ The objective is quadratic:

1 ¥ 1
F(w) = S18u=yallfy + 5 lully = 5 (Au, w)o = (b,u)o + ¢

where A = S°S + «yid is U-selfadjoint and positive definite

@ The Q-linear contraction rate can be estimated by

_ sup{ (Au, u)y | ||lullv = 1} - sup{(Au,u)y | |ufly =1}
inf{(Au, )y [[Juv =1} = inf{(Au,)u [ [luflo =1}

Vo Vo
on U on any subspace U C U

@ An implementation of f, Vf etc. must be matrix-free.

@ To obtain an optimal implementation, we need to use optimal solvers
of the state and adjoint equations.
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@ Conjugate Gradient Method
A much better algorithm for the minimization of
1
§(Au,u)U — (byu)y +c

in a Hilbert space U with self-adjoint, positive definite operator A is the
conjugate gradient method.

@ Every new search direction is A-orthogonalized w.r.t. all previous ones
yet with short recursion.

@ The dominant cost per iteration is the same as in gradient descent.

@ The inner product in U takes the same role as preconditioner as in
gradient descent.

[Giinnel, Herzog, Sachs, 2014]
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@ Conjugate Gradient Method

Input: initial guess ug € U, tolerance ¢
Output: approximate minimizer of %(Au,u)U — (byu)y + ¢

1: Set rg = Vf(uo) =Auyg—beU

2: Set dp == —rg // initial search direction
3: Set 0o == ||ro|%

4: Setn:=0

5: while n < nmax und 6, > €25y do

6: Set ¢, = Ad,

7: Set o, == (dnjs#)lj // exact line search
8: Set Uy i1 = Uy + ay dy // update solution
9 Set rpi1 =7rn + anqn // update gradient/residual
10: Set 6p41 = |rnt1ll%

11:  Set Boiq = 57%

12: Set dpy1 = —Tpi1 + Bnr1dn // A-orthogonalize gradient

13: Setn=n+1
14: end while
15: return u,,
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@= Model Problem with Control Constraints

Minimize %/ (y(z) — yd(x))2 dz + %/ u(z)® dz, >0

Qobs Qctrl
st —HAy({L') = Xectrl U(x) in
.. P
K 529(@) + a(z) y(z) =0 on T = 9Q
—
o
-
c
O —
o
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Model Problem with Control Constraints

Minimize %/ﬂ (y(z) — yd(x))2 dz + %/Q u(z)® dz, >0

obs ctrl

st —kAy(z) = Xcmu( ) inQ
- kK 2y(z) + afz) y(z) = on T = 90
and  ug(x) < u(z) <up(x) in Qeen

Such

control

Roland Herzog (Heidelberg University) OCP and Mesh Independence

constraints are usually motivated by technological limitations.

@ upper bound wu; on the heating
power
@ lower bound, e.g., u, =0
- (no cooling)
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@ Optimality Conditions

1
L(y,u,p, 1) = 2/Q (y— yd)2 dz + g/ﬂ u? dx <+ objective
obs ctrl

—i—/ﬂVy-Vpdx—f—/aypds—/ up dx <« PDE
Q r Q

ctrl

—kAp = — y— in Q
adjoint PDE { P = ~Xobs (¥ — Ya)

K %p +ap=0 onT
gradienteq. {yu—p =0 in Qc
—k Ay = (1w in £
state PDE 9 Y= Xetr
kKg:y+tay=0 on I
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@ = Optimality Conditions
(v — va)” dx+g/ u* dz

1
ﬁ(y7u7p7,u):2/
Qobs Qctrl
+/&Vy-Vpdx+/aypds—/
Q r Q
.
Q,

Qctrl

ctrl

<+ objective

uwp dr <« PDE

ctrl

put (u—up) do + / o (ug —u) dz

<— constraints

v

—KAp = —Xobs (Y — Yd)

adjoint PDE 5
k3.0 +tap=0

in Q

onI’

gradient eq. { yu—p+put —pum =0 in Qg

—Kk Ay = uw in Q
state PDE 3 A
kKg:y+tay=0 on I

. T20,  u—up<0,
complementarity

U — ub) =0in Qctn

uw >0, Ug —u <0, pu (ug—u)=0in Qe
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@ Optimality Conditions

1
ﬁ(y,u,p,u)=2/ (y—yd)2dx+g/ u? da

Qobs Qctrl

—i—/ﬁVy-Vpdx—f—/aypds—/ wp dr
Q r Q

ctrl
_|_ /
Q

Qctrl

ctrl

<+ objective
+ PDE

<— constraints

v

/j,+ (u - Ub) dl’ + / /L_ (u(l _ 'LL) d$
—KAp = —Xobs (¥ — in )
adjoint PDE { kap Xobs (Y — Ya) i

K %p +ap=0 onT
gradient eq. { YU —p+ @ =0 in Qe
—k Ay = (1w in £
state PDE 3 Y= Xewr
kKg:y+tay=0 on I

complementarity {/L =max{0, x4+ (u—up)}+min{0, pn+ (u—ug)}

v
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@ Optimality Conditions

1
ﬁ(y,u,p,u)=2/ (y—yd)2dx+g/ u? da

Qobs Qctrl

—i—/ﬁVy-Vpdx—f—/aypds—/ wp dr
Q r Q

ctrl
_|_ /
Q

Qctrl

ctrl

<+ objective
+ PDE

<— constraints

v

/j,+ (u - Ub) dl’ + / /L_ (u(l _ 'LL) d$
—KAp = —Xobs (¥ — in )
adjoint PDE { kap Xobs (Y — Ya) i

K %p +ap=0 onT
gradient eq. { YU —p+ @ =0 in Qe
—k Ay = (1w in £
state PDE 3 Y= Xewr
kKg:y+tay=0 on I

complementarity {/L = max{0, u + ¢ (u — up)} + min{0, p + ¢ (u — ug)}

v
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@ Solution by Primal-Dual Active Set Method

The pointwise linearization of the complementarity function
p=max{0, 1 + ¢ (v —up) } + min{0, p + ¢ (v — uq) },
clut+du—up) =0 on A" := {2 € Qe : it + ¢ (u — up) > 0},

cu+du—uy) =0 on A" :=={x € Qtrr : 1t + ¢ (u — ug) < 0},
w+opu=0 onZ::Qct,|\(A+UA_)

is a generalized differentiation concept (even in function space).

@ It leads to a locally superlinearly convergent active set method which
generalizes Newton's method.

@ In each step, we need to solve a problem with equality constraints only.

[Chen, Nashed, Qi, 2000; Hintermiiller, Ito, Kunisch, 2002; Ulbrich, 2003]
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@ Algorithmic Considerations

Full-Space Approach

Xobs - —A : oy
T Xerl XA ou|
A —Xan - : op |
XA : —Ixz| \ou

o large-scale, self-adjoint, indefinite saddle-point system

@ solution by preconditioned Minres, a Krylov subspace method

Reduced Approach
xz(S°S + vid) xzdu =---
@ S = forward PDE solver, S° = adjoint PDE solver
o smaller scale, self-adjoint, positive definite system (id + compact)

@ solution by subspace CG, superlinear in function space

[Herzog, Kunisch (2010); Herzog, Sachs (SIMAX, 2010 & SINUM, 2015)]
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@-= Numerical Experiment

Setup of the eperiment:
o reduced primal-dual active set method
@ matrix-free implementation of S°S + ~id
@ inexact solves by subspace CG method
o discretization by P; finite elements
°

multi-level (nested) approach on a sequence of refined meshes

Caution:

1 = max{0, p+c(u —up)} + min{0, pA+c(u—ug)}
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@-= Numerical Experiment

Setup of the eperiment:

reduced primal-dual active set method

matrix-free implementation of S°S + ~id

°
@ inexact solves by subspace CG method
o discretization by P; finite elements

°

multi-level (nested) approach on a sequence of refined meshes

Caution:
My = maX{O, Mcnp +c (u - U—b)} + min{O, Mctp +c (11 - ua)}

@ lumped control space mass matrix: pointwise <+ componentwise
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@-= Numerical Experiment

Setup of the eperiment:
o reduced primal-dual active set method
@ matrix-free implementation of S°S + ~id
@ inexact solves by subspace CG method

o discretization by P; finite elements

Los 1 [a TR 1 c Il 1 1

dofs state dofs ctrl dofs total ~ active PDAS/CG iter CPU

226 95 642 29.47% 7 1.7 0.1s
849 324 2346 29.63% 4 1.8 0.1s
3289 1190 8958 30.00% 3 1.7 0.2s
12945 4554 34998 30.15% 2 1.5 04s
51361 17810 138342 30.20% 2 15 1.3s
204 609 70434 550086 30.23% 2 1.5 509s

(.
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@ Numerical Results

Optimal control 20 Optimal state
45 45 185
. 60 B 18
3.5 50 3.5 17.5
3 3 17
40
2.5 | 2.5 16.5
2 30 2 16
15 15
155
1 20 1
15
0.5 10 0.5
145
0 0
0 14
0 1 2 3 4 5 0 1 2 3 4 5
Bound constraint multiplier Active sets olus
u
4.5 0,025 4.5
4 0.02 4
35 0.01% 35
0.01
3 3
0.005
25 2.5
0 inactive
2 2
-0.005
15 001 15
1 -0.015 1
0.5 0.02 0.5
0 -0.025 0
minus
0 1 2 3 4 5 0 1 2 3 4 5
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@ = Model Problem with State Constraints

Minimize 1/ (y(z) —yd(:v))2 dz + z/ u(z)? dz, ~v>0
2 Q 2 Qctrl

obs

{ —k Ay(z) = Xew u(z) in Q
s.t P
k5-y(x) + a(z)y(x) =0 onI' =00

y

state
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Minimize 1/ (y(z) — yd(:v))2 dz + 1/ u(z)? dz, ~v>0
2 Qobs 2 Qctrl
. —k Ay(z) = Xerr u(z) in O
s.t.
K = (x)y(z) =0 onI' =00
yp(z) inQ

Model Problem with State Constraints

y

state

Roland Herzog (Heidelberg University)

@ Such constraints are motivated
by, e.g., safety limitations.
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Minimize

s.t.
{ﬂ 2y(x) +
and

%/QObs(y(x) — yd(m))2 dr + %/ﬂctrlu(as)2 dez, >0
—k Ay(x) = X u(z) in Q
(x)y(x) =0 on ' =00
yo(z) in Q J

Model Problem with State Constraints

y

state

[Casas (1986)]
Roland Herzog (Heidelberg University)

@ Such constraints are motivated
by, e.g., safety limitations.

@ Analysis and numerical solution
way more challenging than for
control / sparsity constraints.

e Lagrange multiplier is a measure

€ C(£2)*, not a function.
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@-= Model Problem with State Constraints

Minimize

s.t.
K

obs

+ —/ max {0, y(z )} + min {0, y(z (x)}2 dx
—k Ay(x) = X u(z) in Q
%y(m) +a(z)y(x) =0 on I' =00

(y(ﬂf) - yd($))2 dz + %/Q u(z)? dz, v>0

ctrl

state

[Casas (1986)]

@ Such constraints are motivated
by, e.g., safety limitations.

@ Analysis and numerical solution
way more challenging than for
control / sparsity constraints.

y

e Lagrange multiplier is a measure
€ C(£2)*, not a function.
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@= Numerical Example with e = 1000
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@-= Numerical Example with € = 464.2

.
°
=
c 2
o
o
HE 23— T

[¢)]
-
(o]
-
1) | i
o s 10 5 2 o 10 2 w0 o 50 w0
—
,/
\\
[
c Q
(=) H—
= , =
o] =
3 | 5
'S 1S
o s 1 15 2 25 3 35 4 o o5 1 15 2 25 s
Roland Herzog (Heidelberg University) OCP and Mesh Independence Heidelberg 31 /33




@-= Numerical Example with ¢ = 215.4
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== Numerical Example with ¢ = 100.0
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== Numerical Example with ¢ = 46.42
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Numerical Example with ¢ = 21.54
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Numerical Example with ¢ = 10.00
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Numerical Example with ¢ = 4.642
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Numerical Example with ¢ = 2.154
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== Numerical Example with ¢ = 1.000
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== Numerical Example with ¢ = 0.464
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Numerical Example with ¢ = 0.215
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== Numerical Example with ¢ = 0.100
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== Numerical Example with ¢ = 0.046
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== Numerical Example with ¢ = 0.022
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== Numerical Example with ¢ = 0.010
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== Numerical Example with ¢ = 0.005
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== Numerical Example with ¢ = 0.002
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== Numerical Example with ¢ = 0.001
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@ Considerations for HPC Implementations

reduced formulation full-space formulation
@ solve the PDE repeatedly @ converge state, control and
@ converge only the control adjoint state simultaneously

variable @ never solve the PDE

@ system solves often symmetric, @ system solves often symmetric,
positive definite (depends on but indefinite

PDE)

v

in between: solutions on subdomains (as in domain decomposition)

Questions for HPC implementations:

@ How to handle varying effective problem dimensions due to changing
active constraints?

@ GenEO approach for optimal control problems?

Roland Herzog (Heidelberg University) OCP and Mesh Independence Heidelberg 32 /33



.ﬂ:.ﬁﬁ‘x'-‘s' Summary

@ introduced optimal control problems with PDEs
o lead to large-scale, highly structured discrete problems

@ optimization often adds an additional iteration layer
(gradient descent, semi-smooth Newton, ...)

@ function-space awareness deals with mesh independence of the outer
iteration layer

e complements efficient hardware-aware implementations on lower
iteration layers
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