Performance Engineering on Modern
Processor Architectures

Dirk Pleiter
KTH, EECS, PDC and CST

2021-10-05

i

Overview

Introduction

Basic Architecture
Performance Model
Memory Hierarchy
Instruction Processing
Example Architectures

Summary

2021-10-05

Introduction

2021-10-05

Uni-Processor Performance Limits

[Karl Rupp, 2015]

40 Years of Microprocessor Trend Data

7
10 ! : : H Transistors
10°] (thousands)
10° | Single-Thread
Performance
4 (SpecINT x 10°%)
10" |
5 Frequency (MHz)
107 |
Typical Power
10° F (Watts)
1 Number of
10 f Logical Cores
10°
1970 1980 1990 2000 2010 2020

Year

Original data up 10 the year 2010 collected and plotled by M. Harowitz, F. Labonte, O. Shacham, K. Olukotun, L Hammond, and C. Batlen
New plot and data collected for 2010-2015 by K. Rupp

2021-10-05

Rent’s Rule

» Rent’s rule:

T =kGP
» G ... Number of logic elements (gates)
» T ... Number of edge connections (terminals)
> k ... Rent's coefficient
> p ... Rent's exponent

» Problem: typically p < 1
1 Difficult to ballance communication and compute
> Strategy for problem mitigating: Memory hierarchy

» Fast but small on-chip memory (cache)
» Slower but larger off-chip memory

> Trend towards deeper memory hierarchies
» DRAM main memory + high-bandwidth memory

Key Challenges of Performance Engineering

» Exploit parallelism at all levels
» Pipeline parallelism
» Example: instruction-level parallelism (ILP)
P Instruction-level data parallelism
» Example: SIMD instructions
» Core- and node-level parallelism
»> Example: multi-threading

» Optimise data transport

» Mitigate memory bandwidth limitations
» Hide memory access latencies

Content

Basic Architecture

2021-10-05

Von Neumann Architecture

[Neumann, 1945]

,,,,,,,,, . » Components defined by v. Neumann:

| | > Central arithmetic CA
‘ » Central control CC
» Memory M

C > Input |

» Output O
: » Simplified modern view:

””””” » Central Processing Unit
4—“ > Memory
» 1/0O chipset
M O > Bus
» Memory used for instructions and data =
Self-modifying code

V. Neumann Architecture: Instruction
Processing

program start
load first load next
instruction instruction

update prg
counter
\ 4 f
load ‘ > execute
operands operation

L1-1

Scheduler

Register File

Pipeline #0
Pipeline #1
Pipeline #2

v
Memory

Simple Processor Architecture

» Components

» Instruction decoder and scheduler
» Execution pipelines

Register file

Caches (L1-l, L1-D, L2)

» External memory

vy

> Memory architecture
» From outside: von Neumann
» General purpose memory
» Common L2 cache
» From inside: Harvard
» Data L1 cache (L1-D)
» Instruction L1 cache (L1-I)

2021-10-05

Performance Model

2021-10-05 11/40

Information Exchange: Architectural Model

» Machine = Set of interconnected devices

» Storage devices
> Processing/transport devices

» Storage devices

» Examples: Memory, register file, cache
» Parameters: Storage size o

» Processing/transport devices

» Examples: Arithmetic pipeline, bus
> Parameters: bandwidth/throughput §, startup latency A

» Graphical representation arithmetic unit

» Vertices = Storage devices (R) register file

» Edges = Processing/transport devices
memory bus

(m) memory

Information Exchange Function

> A computation implies that information is transferred from a
storage device x to a storage device y.

» Information Exchange Function:

I)ﬁy(W) = data transferred between computer sub-
systems for specific computation k
X ... source storage device (e.g. memory)
y ... destination storage device (e.g. register file)

W ... problem size/work-load

Information Exchange Model:
Latency Predictions

Ansatz to predict latency:

At;y ~ Ay + /Xﬁy/ﬁx,y

arithmetic unit
Example: @
> x, y =R register file
» Br,r = throughput arithmetic unit

> Iﬁy = number of input (or output) operands

Beware of limitations of this ansatz:
» Transfer mechanism may depend on task size NV
» Bandwidth changes due to resource congestion is ignored
> ...

Information Exchange: BLAS1 (1/2)

» BLASI operation sscal: xj < a-x; (i=1,...,N)
x ... vector of single precision floating-point numbers
« ... single-precision floating-point number

» Information exchange:

multiply o and x | Iy, = N - 1 Flop
load x, store x lnem = N - (4 + 4) Bytes
» Assume the following hardware parameters:

Floating-point unit throughput | B, = 1Flop/clock cycle

Memory bandwidth Bmem = 1 Byte/clock cycle

» Latency predictions (ignoring start-up latency):

Aty N - 1clock cycles
Atnem | N - 8clock cycles

Information Exchange: BLAS1 (2/2)

Latency for full operation:

» No overlap of memory load/store and arithmetic operations:
At(N) = Aty + Atmem = N - 9cycle

» Perfect overlap of memory load/store and arithmetic
operations:

At(N) = max (Atg, Atmem) = N - 8cycle

1 Memory bandwidth limited problem

Information Exchange Model: BLAS3

» BLAS3 operation (DGEMM):

N
M/,j(—G-ZU;k‘ij+P'V\//j (i,j=1,...,N)
k=1

U, V, W ... matrices of double precision floating-point numbers
o, p ... double-precision floating-point numbers

» Information exchange

additions, multiplications | /g, = (2- N® + 3 - N?) Flop
load {U, V, W}, store W | hyem = (2- N® +2- N?) - 8 Bytes

Arithmetic Intensity

> Arithmetic Intensity = [H. Harris, 2005]
Al — Number of floating-point operations /g,
- Amount of transferred data " pem

> Example: x; + a - Xx;

_ 1Flop

~ 8Bytes
_ 1Flop
16 Bytes

single-precision (SSCAL)

Al double-precision (DSCAL)

Roofline Model (1/2)

[S. Williams et al., 2009]
» Floating-point and memory performance limits:

bfp < pr’ bmem < Bmem
where b = | /At is the observed performance and B the peak
performance

» Upper limit for latency assuming perfect overlap of memory
and arithmetic operations assuming the latency-bandwidth
model to hold with zero start-up latencies:

] /
At = max <fp, hnem > > max <fp, hnem)
bfp bmem pr Bmem
» Upper limit (=roof) for floating-point performance
(“attainable performance”)

/mem

/ /
bg, = Aipt < min <pr, e Bmem> = min (Bgp, Al - Byem)

Roofline Model (2/2)

Example: x; + o - x;

& 10
o C]
g L i
© 1 E
Q E 3
=) C b
g i]
5 : l]
o o]
° F1/16 :
% 0.01?1 E
= -]
s L]
< | |

0.001 02 1

Al [Flop/Byte]

2021-10-05

Content

Memory Hierarchy

2021-10-05

Memory in Modern Node Architectures

» Today’s compute nodes: different

memory types and technologies Core #N-1
» Volatile memories L1-1|L1-D| ===-
> Main memory (DDR3 or DDR4) 12
» Caches (SRAM)
» Accelerator memory
(GDDR or HBM) m

» Non-volatile memories
> SSD (NAND flash, 3D XPoint)

» Different capabilities m

» Bandwidth
» Latency for single transfer

> Access time
» Cycle time

» Capacity

2021-10-05

Memory Access Locality

» Empirical observation: Programs tend to reuse data and
instructions they have used recently
» Observation can be exploited to
» Improve performance
» Optimize use of more/less expensive memory
» Types of localities
» Temporal locality: Recently accessed items are likely to be
accessed in the near future
» Spatial locality: Items whose addresses are near one another
tend to be referenced close together in time

2021-10-05

23/40

Memory Access Locality: Example

double a[N][N], b[N]J[N];

for (i=0; i<N; i++)
for (j=1; j<N; j++)
a[i][j] = b[j—1][0] + b[j][O];
P> Assume right-most index being fastest running index
» Temporal locality: b[j] [0]
» Spatial locality: a[i] [j] and a[il[j+1] (j +1 < N)

Memory: Cache

Cache miss = Word not found in cache
» Word has to be fetched from next memory level
» Typically a full cache line (=multiple words) is fetched

Cache organisation: Set associative cache
» Match line onto a set and then place line within the set
» Choice of set address: (address) mod (number of sets)
> Types:
» Direct-mapped cache: 1 cache line per set
» Each line has only one place it can appear in the cache
» Fully associative cache: 1 set only
» A line can be placed anywhere in the cache
» n-way set associative cache: n cache lines per set

» A line can be placed in a restricted set of places (1 out of n
different places) in the cache

2021-10-05

25/40

Cache misses

» Categories of cache misses

Compulsory: Occurs when cache line is accessed
the first time

Capacity: Re-fetch of cache lines due to lack of
cache capacity
Conflict: Cache line was discharged due to lack

of associativity

> Average memory access time =
hit time 4+ miss rate - miss penalty

Hit time ... Time to hit in the cache
Miss penalty ... Time to load cache line from memory

Exploiting Caches: Cache Blocking

>0 >0 >0 >0 >0

» Cache blocking is a strategy where data
structures or memory access patterns are
changed such that capacity cache misses
are reduced

» Optimisation strategy sometimes also
called loop tiling or loop blocking e e rererere
» Example: DGEMM

*>e e 'o»ojo‘
o->e >0 /0 >0 re
Wj o> Ui Vig+p- Wy otere efere
k=1 o‘»oto * re re

» Advantage: U and V needs to be loaded a1
e >eo >0 /0 >0 >0

only once per block —/ —

r'y / r'y
. . o >0 >0 0 >0 >0
» Disadvantage: Non-linear read of U, V ‘ g ‘

Cache-blocked DGEMM

P Let B be the block size with B < N and N being a multiple

of B
» Information exchange analysis without blocking:
ly(N) = (2-N®+3-N?)Flop
Inem(N) = (2 N°+2-N?) 8Byte
Al = Ity/hnem = (1/8) Flop/Byte

» Information exchange analysis with blocking:
ly(N,B) = (2-N3+43-N?)Flop

N\? /N
2- (=) - (=) -B>+2-N?
(&) (5) &+

= [2-(N?/B)+2- N?] - 8Byte
Al = I/ lnem =~ (B/8) Flop/Byte

Imem(Na B) — 8Byte

Instruction Processing

2021-10-05 29 /40

Instruction Set Architecture

Typically supported instruction can be categorised as follows:

’ Operator type

Examples

Data transfer

Load and store operations

Arithmetic and logic

Integer arithmetics, bitwise opera-
tions, compare operations

Control

Branch, jump, procedure call and re-
turn

Floating point
Mathemetical functions

Floating point arithmetics
Inverse, square root

Instruction Level Parallelism (ILP)

» ILP = Parallelism among instructions from small code
areas which are independent of one another
» Exploitation of ILP

» Overlapping of instructions in a pipeline
» Parallel execution of instructions in multiple functional units

» Modern processors support issuing of several instructions per
cycle
» Example: superscalar processors
» Optimisation strategy: Reduce number of instructions by
performing multiple operations per instruction

SIMD Parallelism

» Single Instruction Multiple Data (SIMD) instructions exploit
data-level parallelism by operating on data items in parallel

> E.g., SIMD add

20 X0 Yo
z X

1 <_ 1 + b1
) X2 Y2
Z3 X3 y3

> Example ISA:
> Intel Streaming SIMD Extensions (SSE)
> POWER ISA (VMX/AltiVec, VSX)
> ARMv7 NEON, ARMv8, ARM SVE
» Intel Advanced Vector Extensions:
> AVX/AVX2: 256 bit
> AVX512: 512 bit

Content

Example Architectures

2021-10-05 33/40

x86 Architecture: Intel Xeon Platinum

(1/2)

Hardware parameters of Intel Platinum 8358 (lce Lake)

Number of cores 32

Base core clock 2.6 GHz

Max. core clock 3.4GHz

L1 cache (data+instr) 48432 kBytes/core
L2 cache 1280 kBytes/core
L3 cache 48 MBytes
Memory technology DDR4

Number of channels 8

Max. memory bandwidth | 205 GBytes/s
Peak DP performance 32Flop/cycle/core
Max. TDP 250 Watt
Lithography 10nm

Release date Q1/2021

Nominal performance numbers as specified by manufacturer

Ice Lake SP
(28 core example)

[Intel, Hotchips, 2020]

2021-10-05

34 /40

https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

x86 Architecture: Intel Xeon Platinum

(2/2)

Intel Platinum 8358 (Ice Lake) micro-architecture:

I-TLB + I-cache

decode op Cache

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler
Port 6

512KB/1.25MB ML$

[Intel, Hotchips, 2020]

2021-10-05

35/40

https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

x86 Architecture: AMD EPYC

Hardware parameters of AMD EPYC 7742 (Rome)

Number of cores 64

Base core clock 2.25 GHz

Max. core clock 3.4GHz

L1 cache (data+instr) 32432 kBytes/core
L2 cache 512 kBytes/core
L3 cache 256 MBytes
Memory technology DDR4

Number of channels 8

Max. memory bandwidth | 205 GBytes/s

Peak DP performance

16 Flop/cycle/core

Max. TDP

225 Watt

Lithography

7/14nm

Release date

2019

[AMD]

2021-10-05

36 /40

https://developer.amd.com/wp-content/resources/56783_1.0.pdf

Fujitsu’s A64FX Processor

» ARMv8 + Scalable Vector Extension
(SVE)
> SVE width: 512 bit
» Number of cores: 4 x (124 1)
» Normal/boost frequency:
2.0GHz/2.2 GHz
» Cache parameters
» L1-D/L1-l: 64/64 kiByte per core, 4-way
> L2: 8 MiByte per (12+1) cores, 16-way
> Cache line size: 256 Byte
» Performance figures

» Floating-point performance:
2 x 16 FP64/cycle/core
> HBM memory bandwidth: 1024 GByte/s

2021-10-05 37/40

Summary

2021-10-05 38/40

Summary

» Modern processors feature a significant amount of parallelism
» Examples:
> 32...64cores
» SIMD instructions with operands of 256 ...512 bits
» Need suitable programming models to exploit parallelism
» Multi-threading programming models like OpenMP
P Auto-vectorising compilers, SIMD intrinsics, ...
» Compute capabilities versus data transport capabilities are
typically relatively large
» Methodologies: information exchange analysis and roofline
model
» Need algorithms and suitable data layouts that allow to exploit
data locality using available caches

2021-10-05

Finish with a Simple Architecture:
Leibniz’ Reckoner

[Museum Schloss Herrenhausen]

	Introduction
	Basic Architecture
	Performance Model
	Memory Hierarchy
	Instruction Processing
	Example Architectures
	Summary

