
Performance Engineering on Modern
Processor Architectures

Dirk Pleiter

KTH, EECS, PDC and CST

2021-10-05

Overview

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 2 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 3 / 40

Uni-Processor Performance Limits

[Karl Rupp, 2015]

2021-10-05 4 / 40

Rent’s Rule

I Rent’s rule:
T = k Gp

I G . . . Number of logic elements (gates)
I T . . . Number of edge connections (terminals)
I k . . . Rent’s coefficient
I p . . . Rent’s exponent

I Problem: typically p � 1
+ Difficult to ballance communication and compute

I Strategy for problem mitigating: Memory hierarchy
I Fast but small on-chip memory (cache)
I Slower but larger off-chip memory

I Trend towards deeper memory hierarchies
I DRAM main memory + high-bandwidth memory

2021-10-05 5 / 40

Key Challenges of Performance Engineering

I Exploit parallelism at all levels
I Pipeline parallelism

I Example: instruction-level parallelism (ILP)

I Instruction-level data parallelism
I Example: SIMD instructions

I Core- and node-level parallelism
I Example: multi-threading

I Optimise data transport
I Mitigate memory bandwidth limitations
I Hide memory access latencies

2021-10-05 6 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 7 / 40

Von Neumann Architecture

CC

CA

I

O

M

C

Bus

[Neumann, 1945]

I Components defined by v. Neumann:
I Central arithmetic CA
I Central control CC
I Memory M
I Input I
I Output O

I Simplified modern view:
I Central Processing Unit
I Memory
I I/O chipset
I Bus

I Memory used for instructions and data +

Self-modifying code

2021-10-05 8 / 40

V. Neumann Architecture: Instruction
Processing

instruction
load first

program end

instruction
load next

finished?

program start

operation
execute

counter
update prg

operands
load

2021-10-05 9 / 40

Simple Processor Architecture

L1−I

Decoder

Scheduler
L2

M
e

m
o

ry

P
ip

e
lin

e
 #

0

P
ip

e
lin

e
 #

1

P
ip

e
lin

e
 #

2

Register File

L1−D

I Components
I Instruction decoder and scheduler
I Execution pipelines
I Register file
I Caches (L1-I, L1-D, L2)
I External memory

I Memory architecture
I From outside: von Neumann

I General purpose memory
I Common L2 cache

I From inside: Harvard
I Data L1 cache (L1-D)
I Instruction L1 cache (L1-I)

2021-10-05 10 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 11 / 40

Information Exchange: Architectural Model

I Machine = Set of interconnected devices
I Storage devices
I Processing/transport devices

I Storage devices
I Examples: Memory, register file, cache
I Parameters: Storage size σ

I Processing/transport devices
I Examples: Arithmetic pipeline, bus
I Parameters: bandwidth/throughput β, startup latency λ

I Graphical representation
I Vertices = Storage devices
I Edges = Processing/transport devices

R

M

arithmetic unit

memory bus

memory

register file

2021-10-05 12 / 40

Information Exchange Function

I A computation implies that information is transferred from a
storage device x to a storage device y .

I Information Exchange Function:

I kx ,y (W) = data transferred between computer sub-
systems for specific computation k

x ... source storage device (e.g. memory)
y ... destination storage device (e.g. register file)
W ... problem size/work-load

2021-10-05 13 / 40

Information Exchange Model:
Latency Predictions

Ansatz to predict latency:

∆tkx ,y ' λx ,y + I kx ,y/βx ,y

R register file

arithmetic unit
Example:

I x , y = R

I βR,R = throughput arithmetic unit

I I kx ,y = number of input (or output) operands

Beware of limitations of this ansatz:

I Transfer mechanism may depend on task size N

I Bandwidth changes due to resource congestion is ignored

I ...

2021-10-05 14 / 40

Information Exchange: BLAS1 (1/2)

I BLAS1 operation sscal: xi ← α · xi (i = 1, . . . ,N)
x . . . vector of single precision floating-point numbers
α . . . single-precision floating-point number

I Information exchange:

multiply α and x Ifp = N · 1Flop
load x , store x Imem = N · (4 + 4)Bytes

I Assume the following hardware parameters:

Floating-point unit throughput βfp = 1 Flop/clock cycle

Memory bandwidth βmem = 1 Byte/clock cycle

I Latency predictions (ignoring start-up latency):

∆tfp N · 1 clock cycles

∆tmem N · 8 clock cycles

2021-10-05 15 / 40

Information Exchange: BLAS1 (2/2)

Latency for full operation:

I No overlap of memory load/store and arithmetic operations:

∆t(N) = ∆tfp + ∆tmem = N · 9 cycle

I Perfect overlap of memory load/store and arithmetic
operations:

∆t(N) = max (∆tfp,∆tmem) = N · 8 cycle

+ Memory bandwidth limited problem

2021-10-05 16 / 40

Information Exchange Model: BLAS3

I BLAS3 operation (DGEMM):

Wij ← σ ·
N∑

k=1

Uik · Vkj + ρ ·Wij (i , j = 1, . . . ,N)

U, V , W . . . matrices of double precision floating-point numbers
σ, ρ . . . double-precision floating-point numbers

I Information exchange

additions, multiplications Ifp = (2 · N3 + 3 · N2)Flop

load {U,V ,W }, store W Imem = (2 · N3 + 2 · N2) · 8Bytes

2021-10-05 17 / 40

Arithmetic Intensity

I Arithmetic Intensity = [H. Harris, 2005]

AI =
Number of floating-point operations

Amount of transferred data
=

Ifp
Imem

I Example: xi ← α · xi

AI =
1 Flop

8 Bytes
single-precision (SSCAL)

AI =
1 Flop

16 Bytes
double-precision (DSCAL)

2021-10-05 18 / 40

Roofline Model (1/2)

[S. Williams et al., 2009]

I Floating-point and memory performance limits:

bfp ≤ Bfp, bmem ≤ Bmem

where b = I/∆t is the observed performance and B the peak
performance

I Upper limit for latency assuming perfect overlap of memory
and arithmetic operations assuming the latency-bandwidth
model to hold with zero start-up latencies:

∆t = max

(
Ifp
bfp

,
Imem

bmem

)
≥ max

(
Ifp
Bfp

,
Imem

Bmem

)
I Upper limit (=roof) for floating-point performance

(“attainable performance”)

bfp =
Ifp
∆t
≤ min

(
Bfp,

Ifp
Imem

Bmem

)
= min (Bfp,AI · Bmem)

2021-10-05 19 / 40

Roofline Model (2/2)

Example: xi ← α · xi

0.2 1 5
AI [Flop/Byte]

0.001

0.01

0.1

1

10

A
tt

ai
n
ab

le
 p

er
fo

rm
an

ce
 [

G
F

lo
p
/s

]

1/8

1/16

2021-10-05 20 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 21 / 40

Memory in Modern Node Architectures

I Today’s compute nodes: different
memory types and technologies
I Volatile memories

I Main memory (DDR3 or DDR4)
I Caches (SRAM)
I Accelerator memory

(GDDR or HBM)

I Non-volatile memories
I SSD (NAND flash, 3D XPoint)

I Different capabilities
I Bandwidth
I Latency for single transfer

I Access time
I Cycle time

I Capacity

L3 slice

Core #N−1

L2

L1−DL1−I

MC

DDR

IO

/HBM
GDDR

GPU

SSD

2021-10-05 22 / 40

Memory Access Locality

I Empirical observation: Programs tend to reuse data and
instructions they have used recently

I Observation can be exploited to
I Improve performance
I Optimize use of more/less expensive memory

I Types of localities
I Temporal locality: Recently accessed items are likely to be

accessed in the near future
I Spatial locality: Items whose addresses are near one another

tend to be referenced close together in time

2021-10-05 23 / 40

Memory Access Locality: Example

double a [N] [N] , b [N] [N] ;

f o r (i =0; i<N; i ++)
f o r (j =1; j<N; j ++)

a [i] [j] = b [j −1] [0] + b [j] [0] ;

I Assume right-most index being fastest running index

I Temporal locality: b[j][0]

I Spatial locality: a[i][j] and a[i][j+1] (j + 1 < N)

2021-10-05 24 / 40

Memory: Cache

Cache miss = Word not found in cache

I Word has to be fetched from next memory level

I Typically a full cache line (=multiple words) is fetched

Cache organisation: Set associative cache
I Match line onto a set and then place line within the set

I Choice of set address: (address) mod (number of sets)

I Types:
I Direct-mapped cache: 1 cache line per set

I Each line has only one place it can appear in the cache

I Fully associative cache: 1 set only
I A line can be placed anywhere in the cache

I n-way set associative cache: n cache lines per set
I A line can be placed in a restricted set of places (1 out of n

different places) in the cache

2021-10-05 25 / 40

Cache misses

I Categories of cache misses

Compulsory: Occurs when cache line is accessed
the first time

Capacity: Re-fetch of cache lines due to lack of
cache capacity

Conflict: Cache line was discharged due to lack
of associativity

I Average memory access time =

hit time + miss rate ·miss penalty

Hit time . . . Time to hit in the cache
Miss penalty . . . Time to load cache line from memory

2021-10-05 26 / 40

Exploiting Caches: Cache Blocking

I Cache blocking is a strategy where data
structures or memory access patterns are
changed such that capacity cache misses
are reduced
I Optimisation strategy sometimes also

called loop tiling or loop blocking

I Example: DGEMM

Wij ← σ ·
N∑

k=1

Uik · Vkj + ρ ·Wij

I Advantage: U and V needs to be loaded
only once per block

I Disadvantage: Non-linear read of U, V

2021-10-05 27 / 40

Cache-blocked DGEMM

I Let B be the block size with B ≤ N and N being a multiple
of B

I Information exchange analysis without blocking:

Ifp(N) = (2 · N3 + 3 · N2)Flop

Imem(N) =
(
2 · N3 + 2 · N2

)
8Byte

AI = Ifp/Imem ' (1/8)Flop/Byte

I Information exchange analysis with blocking:

Ifp(N,B) = (2 · N3 + 3 · N2)Flop

Imem(N,B) =

[
2 ·
(
N

B

)2

·
(
N

B

)
· B2 + 2 · N2

]
· 8Byte

=
[
2 · (N3/B) + 2 · N2

]
· 8Byte

AI = Ifp/Imem ' (B/8)Flop/Byte

2021-10-05 28 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 29 / 40

Instruction Set Architecture

Typically supported instruction can be categorised as follows:

Operator type Examples

Data transfer Load and store operations

Arithmetic and logic Integer arithmetics, bitwise opera-
tions, compare operations

Control Branch, jump, procedure call and re-
turn

Floating point Floating point arithmetics
Mathemetical functions Inverse, square root

2021-10-05 30 / 40

Instruction Level Parallelism (ILP)

I ILP = Parallelism among instructions from small code
areas which are independent of one another

I Exploitation of ILP
I Overlapping of instructions in a pipeline
I Parallel execution of instructions in multiple functional units

I Modern processors support issuing of several instructions per
cycle
I Example: superscalar processors

I Optimisation strategy: Reduce number of instructions by
performing multiple operations per instruction

2021-10-05 31 / 40

SIMD Parallelism

I Single Instruction Multiple Data (SIMD) instructions exploit
data-level parallelism by operating on data items in parallel
I E.g., SIMD add

z0

z1

z2

z3

←

x0

x1

x2

x3

+

y0

y1

y2

y3

I Example ISA:

I Intel Streaming SIMD Extensions (SSE)
I POWER ISA (VMX/AltiVec, VSX)
I ARMv7 NEON, ARMv8, ARM SVE
I Intel Advanced Vector Extensions:

I AVX/AVX2: 256 bit
I AVX512: 512 bit

2021-10-05 32 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 33 / 40

x86 Architecture: Intel Xeon Platinum
(1/2)

Hardware parameters of Intel Platinum 8358 (Ice Lake)

Number of cores 32
Base core clock 2.6 GHz
Max. core clock 3.4 GHz

L1 cache (data+instr) 48+32 kBytes/core
L2 cache 1280 kBytes/core
L3 cache 48 MBytes

Memory technology DDR4
Number of channels 8
Max. memory bandwidth 205 GBytes/s

Peak DP performance 32 Flop/cycle/core

Max. TDP 250 Watt

Lithography 10 nm

Release date Q1/2021

Nominal performance numbers as specified by manufacturer

[Intel, Hotchips, 2020]

2021-10-05 34 / 40

https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

x86 Architecture: Intel Xeon Platinum
(2/2)

Intel Platinum 8358 (Ice Lake) micro-architecture:

[Intel, Hotchips, 2020]

2021-10-05 35 / 40

https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_Intel_Irma_ICX-CPU-final3.pdf

x86 Architecture: AMD EPYC

Hardware parameters of AMD EPYC 7742 (Rome)

Number of cores 64
Base core clock 2.25 GHz
Max. core clock 3.4 GHz

L1 cache (data+instr) 32+32 kBytes/core
L2 cache 512 kBytes/core
L3 cache 256 MBytes

Memory technology DDR4
Number of channels 8
Max. memory bandwidth 205 GBytes/s

Peak DP performance 16 Flop/cycle/core

Max. TDP 225 Watt

Lithography 7/14 nm

Release date 2019

[AMD]

2021-10-05 36 / 40

https://developer.amd.com/wp-content/resources/56783_1.0.pdf

Fujitsu’s A64FX Processor

I ARMv8 + Scalable Vector Extension
(SVE)
I SVE width: 512 bit

I Number of cores: 4× (12 + 1)

I Normal/boost frequency:
2.0 GHz/2.2 GHz

I Cache parameters
I L1-D/L1-I: 64/64 kiByte per core, 4-way
I L2: 8 MiByte per (12+1) cores, 16-way
I Cache line size: 256 Byte

I Performance figures
I Floating-point performance:

2× 16 FP64/cycle/core
I HBM memory bandwidth: 1024 GByte/s

2021-10-05 37 / 40

Content

Introduction

Basic Architecture

Performance Model

Memory Hierarchy

Instruction Processing

Example Architectures

Summary

2021-10-05 38 / 40

Summary

I Modern processors feature a significant amount of parallelism
I Examples:

I 32 . . . 64 cores
I SIMD instructions with operands of 256 . . . 512 bits

I Need suitable programming models to exploit parallelism
I Multi-threading programming models like OpenMP
I Auto-vectorising compilers, SIMD intrinsics, . . .

I Compute capabilities versus data transport capabilities are
typically relatively large
I Methodologies: information exchange analysis and roofline

model
I Need algorithms and suitable data layouts that allow to exploit

data locality using available caches

2021-10-05 39 / 40

Finish with a Simple Architecture:
Leibniz’ Reckoner

[Museum Schloss Herrenhausen]

2021-10-05 40 / 40

	Introduction
	Basic Architecture
	Performance Model
	Memory Hierarchy
	Instruction Processing
	Example Architectures
	Summary

