
Introduction to Accelerated HPC
Architectures

Dirk Pleiter

KTH, EECS, PDC and CST

2021-10-07

Overview

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 2 / 42

Content

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 3 / 42

GPU Computing

I GPU architecture is optimized for high degree of regular
parallelism

I Relevant features
I High memory bandwidth
I Highly multithreaded
I Hardware thread scheduling

I GPUs enabled for HPC
I NVIDIA GPUs with CUDA, OpenACC, OpenMP, OpenCL

support
I Upcoming: AMD GPUs with OpenCL, OpenACC, HIP support

I GPUs are not stand-alone devices
+ Host CPU required

2021-10-07 4 / 42

Simple GPU Node Architecture

GPU

MEMMEM

CPU

~200 GByte/s

network

~16−40 GByte

8−32 GByte/s (PCIe GEN2−4)

40−50 GByte/s (NVLink)

~300−1600 GByte/s

~256−512 GByte

I Different storage devices
I Host memory attached to CPU
I Device memory attached to GPU

I Capacity and performance differ by O(5 . . . 10)

2021-10-07 5 / 42

JUWELS Booster Node Architecture

PCIe Gen4 Switch

AMD Epyc
Rome CPU 1

AMD Epyc
Rome CPU 2

A100 A100

A100 A100

PCIe Gen4 Switch
HDR HCA

DRAM

DRAM

HDR HCA

HDR HCA

HDR HCA

PCIe Gen4 2×16

PCIe Gen4 2×16

×16 ×16

×16 ×16 ×16

×16

×16

×16

2021-10-07 6 / 42

GPU Programming

I Accelerator model
I Main application running on CPU
I Kernel offload on GPU
I Overall performance may suffer from Amdahl’s law

I Typical kernel execution flow:
I Allocate memory on GPU
I Initialise memory on GPU or transfer data from host to GPU
I Launch kernel
I Transfer results from GPU to host
I Deallocate memory on GPU

2021-10-07 7 / 42

GPU Programming Models (1/2)

I Native GPU programming
I CUDA

I Proprietary programming model from NVIDIA that extends C
and C++

I Also a version for Fortran available (CUDA Fortran)

I HIP
I C++-based programming model from AMD also supporting

NVIDIA devices

I OpenCL (Open Computing Language)
I Open standard for parallel programming of heterogeneous

systems
I Support of different devices: CPU, GPU, DSP, FPGA

I SYCL
I Open standard for a higher-level programming model for

various hardware accelerators

2021-10-07 8 / 42

GPU Programming Models (2/2)

I Use of libraries
I Examples: cuBLAS, cuFFT, CUSP, MAGMA, Thrust

I Directive based programming
I Definition of directives to specify loops and regions of code to

be offloaded to GPU
I Supported languages: C, C++, Fortran
I OpenACC

I OpenACC 3.1 released in November 2020

I OpenMP
I OpenMP 4.0 or newer required
I OpenMP 5.1 released in November 2020

2021-10-07 9 / 42

Content

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 10 / 42

Ampere GA100 Architecture Overview

[NVIDIA, 2020]

I NVIDIA Ampere architecture introduced in 2020

I Up to 128 Streaming Multiprocessors (SM)

I Shared L2 caches

I Memory (HBM), host interface (PCIe GEN4), interconnect
(NVLink)

I Thread block scheduler (GigaThread Engine)

2021-10-07 11 / 42

GA100: Streaming Multiprocessor

I 4 processing blocks
I Processing

I 4× 8 FP64 units
I 4× 16 FP32 units
I 4× 1 Tensor Cores
I 4× 8 load/store units

I Data memory
I 65,536 32-bit registers
I 192 kByte shared memory/

L1 cache

I Instructions
I L1 and L0 instruction cache
I 4 warp schedulers
I 4 dispatch units [NVIDIA, 2020]

2021-10-07 12 / 42

GA100: FP64/FP32/FP16

I IEEE 754-2008 double-/single-precision FMA
I Performance due to massive parallelism

I 2 Flop/cycle per floating-point unit
I Double precision performance (assuming 108 SMs):

I (108SM) · (32FP64/SM) · (2Flop/FP64/cycle) =
6, 912Flop/cycle

I At f = 1410MHz (boost clock): 9.7 TFlop/s

I Support for 2× the throughput of FP32 operations

2021-10-07 13 / 42

GA100: Tensor Cores

I Each Tensor Core performs D ← A× B + C
I A, B, C , and D are 4× 4 matrices

I Different data types supported
I FP64, FP32, FP16, INT8, INT4
I Options for using higher precision data types for accumulation

I Double precision performance
I (108 SM) · (1TC/SM) · (128Flop/cycle) = 13, 824Flop/cycle
I At f = 1410MHz (boost clock): 19.5 TFlop/s

2021-10-07 14 / 42

GA100: Thread Scheduling

I Thread block = set of threads

I SM schedules threads in groups of 32 threads = Warp

I Scheduling parameters (for GA100):

Number of threads/warp 32
Maximum number of warps/SM 64
Maximum number of threads/SM 2048
Maximum number of thread blocks/SM 32

2021-10-07 15 / 42

GA100: Memory Subsystem

I In-package HBM2 memory

I 5 memory stacks,
8 GByte/stack

I Very wide bus (2 · 512 bit) and
relative low data rate
(2.43 GT/s)

I Aggregate bandwidth:
1.555 TByte/s

[H. Jun (SK Hynix), 2013]

[Wikipedia]

2021-10-07 16 / 42

GA100: Memory Hierarchy

I Register file
I Size: 256 kiByte/SM

I L1 data cache and shared
memory
I Size 192 kiByte/SM or

20 MiByte/GPU

I L2 cache
I 40 MiByte/GPU

1.56 TByte/s

Register file

L1 cache

L2 cache

Global memory

Device memory /

GPU private

SM private

Processing block private

2021-10-07 17 / 42

Comparison of NVIDIA GPUs

M2075 K20 P100 V100 A100
Clock [GHz] 1.15 0.71 1.33 1.31 1.10
Boost clock [GHz] 1.48 1.53 1.41
Number of SMs 14 13 56 80 108
Number of FP64 units 224 832 1,792 2,560 3,456
Peak FP64 [TFlop/s] 0.5 1.2 4.8 6.7 7.6
Peak FP64 [TFlop/s,TC] 15.1
Peak FP32 [TFlop/s] 1.0 3.5 9.5 13.4 15.1
Peak FP16/BF16 [TFlop/s,TC] 107 242
Memory capacity [GiByte] 6 5 16 16/32 40
Memory bandwidth [TByte/s] 0.15 0.21 0.72 0.90 1.56

2021-10-07 18 / 42

Content

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 19 / 42

CUDA

I CUDA = Compute Unified Device Architecture

I Parallel programming language based on an extension of C
and C++

I First SDK released in 2007

I Current version: 11.4.2 (September 2021)
I Language developed and controlled by NVIDIA

I Only supported GPU devices are from NVIDIA
I Available for x86, POWER and Arm host CPUs

2021-10-07 20 / 42

CUDA Compilation

Query device information:

#inc l u d e <s t d i o . h>

i n t main ()
{

cudaDev iceProp dev i c eP rop ;

i f (c udaGe tDev i c eP r op e r t i e s (&dev i ceProp , 0) == cudaSucces s)
p r i n t f (”Dev i ce : %s\n” , dev i c eP rop . name) ;

r e t u r n 0 ;
}

I CUDA source files must have extension .cu

I Compile using nvcc

I nvcc can be used to compile CUDA source files without
linking and use gcc/g++ to generate final executable

2021-10-07 21 / 42

CUDA Select Device

Query number of devices and select device #0:

#inc l u d e <s t d i o . h>
#inc l u d e <s t d l i b . h>

i n t main ()
{

i n t ndev ;

cudaGetDev iceCount (&ndev) ;
i f (ndev == 0) {

f p r i n t f (s t d e r r , ”No d e v i c e s\n”) ;
e x i t (1) ;

}
p r i n t f (”Number o f d e v i c e s : %d\n” , ndev) ;

/* S e l e c t d e v i c e #0 */
cudaSetDev i ce (0) ;

r e t u r n 0 ;
}

I Device allocated at first access

2021-10-07 22 / 42

CUDA Memory Allocation

Allocate memory on device and copy data to/from device

cudaError t cudaMalloc (void **devPtr, size t size)

cudaError t cudaMemcpy(void *dst, const void *src, size t count, enum cudaMemcpyKind kind)

cudaError t cudaFree (void *devPtr)

#de f i n e N 32

i n t main ()
{

i n t i ;
f l o a t ha [N] ; /* Array on hos t */
f l o a t *da ; /* Po i n t e r to a r r a y on d e v i c e */

f o r (i = 0 ; i < N; i++)
ha [i] = i ;

cudaMal loc ((vo id **) &da , N * s i z e o f (f l o a t)) ;

cudaMemcpy (da , ha , N* s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;
cudaMemcpy (ha , da , N* s i z e o f (f l o a t) , cudaMemcpyDeviceToHost) ;

cudaFree (da) ;

r e t u r n 0 ;
}

2021-10-07 23 / 42

CUDA Kernel

I Kernel = C function which is executed in parallel by
N ≥ 1 different threads

I Declaration specifiers:

global Function on device, callable from host
device Function on device, callable from device
host Function on host, callable from host

(default)

I Kernel launch syntax:

mykernel<<<Dg,Db>>>(...)

I Dg: Size of the grid
I Db: Size of each block

I Each thread is given a unique ID: threadIdx
I threadIdx is structure with 3 components: x, y, z

2021-10-07 24 / 42

CUDA Vector Copy

#inc l u d e <s t d i o . h>
#de f i n e N 32

g l o b a l vo id copy (f l o a t *b , f l o a t *a)
{

i n t i = t h r e a d I d x . x ;
b [i] = a [i] ;

}

i n t main ()
{

i n t i ;
f l o a t ha [N] , hb [N] ; /* Ar ray s on hos t */
f l o a t *da , *db ; /* Po i n t e r to a r r a y s on d e v i c e */

f o r (i = 0 ; i < N; i++) ha [i] = i ;

cudaMal loc ((vo id **) &da , N * s i z e o f (f l o a t)) ;
cudaMal loc ((vo id **) &db , N * s i z e o f (f l o a t)) ;

cudaMemcpy (da , ha , N* s i z e o f (f l o a t) , cudaMemcpyHostToDevice) ;

dim3 Dg (1 , 1 , 1) ;
dim3 Db(N, 1 , 1) ;
copy<<<Dg , Db>>>(db , da) ;

cudaMemcpy (hb , db , N* s i z e o f (f l o a t) , cudaMemcpyDeviceToHost) ;

r e t u r n 0 ;
}

2021-10-07 25 / 42

CUDA Thread Hierarchy

I Block = Set of threads

I 1-, 2- or 3-dimensional index
I Synchronization within threads

possible
I Maximum number of threads:

1024
I Branching with penalty
I Identifier: threadIdx

I Grid = Set of blocks

I 1-, 2- or 3-dimensional index
I Synchronization not possible
I Branching without penalty
I Identifier: blockIdx

2021-10-07 26 / 42

Warps as Scheduling Units

I Each block is divided into thread warps running multiple
threads
I An implementation technique, not part of the CUDA

programming model
I Warps are scheduling units in SM
I Threads in a warp execute in Single Instruction Multiple Data

(SIMD) manner
I The number of threads in a warp may vary in future

generations

2021-10-07 27 / 42

Warps in Multi-dimensional Thread Blocks

I The thread blocks are first linearized into 1D in row major
order
I In x-dimension first, y-dimension next, and z-dimension last

2021-10-07 28 / 42

Blocks are Partitioned after Linearization

I Linearized thread blocks are partitioned
I Thread indices within a warp are consecutive and increasing
I Warp 0 starts with Thread 0

I Partitioning scheme is consistent across devices
I Thus you can use this knowledge in control flow
I However, the exact size of warps may change from generation

to generation

I DO NOT rely on any ordering within or between warps
I If there are any dependencies between threads, you must

syncthreads() to get correct results

2021-10-07 29 / 42

SMs are SIMD Processors

I SM acts as control unit for instruction fetch, decode, and
control for multiple shared processing units

I All threads in a warp must execute the same instruction at
any point in time

I This works efficiently if all threads follow the same control
flow path
I All if-then-else statements make the same decision
I All loops iterate the same number of times

2021-10-07 30 / 42

Control Divergence

I Control divergence occurs when threads in a warp take
different control flow paths by making different control
decisions
I Some take the then-path and others take the else-path of an

if-statement
I Some threads take different number of loop iterations than

others

I The execution of threads taking different paths are serialized
in current GPUs
I The control paths taken by the threads in a warp are traversed

one at a time until there is no more
I During the execution of each path, all threads taking that path

will be executed in parallel
I The number of different paths can be large when considering

nested control flow statements

2021-10-07 31 / 42

Control Divergence Examples

I Divergence can arise when branch or loop condition is a
function of thread indices

I Example kernel statement with divergence:

i f (t h r e a d I d x . x > 2)
{ . . . }

I This creates two different control paths for threads in a block
I Decision granularity < warp size
I Threads 0, 1 and 2 follow different path than the rest of the

threads in the first warp

I Example without divergence:

i f (b l o c k I d x . x > 2)
{ . . . }

I Decision granularity is a multiple of blocks size
I All threads in any given warp follow the same path

2021-10-07 32 / 42

CUDA Memory Hierarchy

I Each thread can access registers and
local memory

I Shared memory is visible to all threads
of a block

I Global memory space
I Resides in device memory
I Accessible by all threads

I Texture memory space
I Resides in device memory
I Read via texture cache optimized for

2-d locality

I Constant memory space
I Resides in device memory
I Read-only, not dependent on thread

ID
2021-10-07 33 / 42

CUDA Streams

I Stream = Sequence of operations that execute in
issue-order on the GPU

I Streams can be used to improve device utilization
I CUDA operations in different streams may run concurrently
I CUDA operations from different streams may be interleaved

I Extended kernel launch syntax:

mykernel<<<Dg,Db,Ns,S>>>(...)

I Dg: Size of the grid
I Db: Size of each block
I Ns: Bytes dynamically allocated in shared memory
I S : Associated stream (default 0)

2021-10-07 34 / 42

Content

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 35 / 42

OpenACC: Introduction

I Approach: Provide guidance to compiler through directives
I Ignored by compiler which does not understand OpenACC

I Programming model for CPUs and GPUs
I OpenACC elements:

I Compiler directives
I Library routines
I Environment variables

I Portable across different architectures
I Compiler support

I NVIDIA HPC Compilers (good)
I gcc (improving)
I clang (early technology)

2021-10-07 36 / 42

OpenACC parallel loop

I (Combined) construct that starts a parallel loop

I The reduction clause specifies a reduction operator on one
or more variables

1 double sum = 0 . 0 ;
2

3 #pragma acc p a r a l l e l l oop
4 f o r (i n t i = 0 ; i < N; i++) {
5 x [i] = 1 . 0 ;
6 y [i] = 2 . 0 ;
7 }
8

9 #pragma acc p a r a l l e l l oop r e d u c t i o n (+:sum)
10 f o r (i n t i =0; i < N; i++) {
11 y [i] = i * x [i] + y [i] ;
12 sum += y [i] ;
13 }

2021-10-07 37 / 42

OpenACC kernel

I Construct defines a program region that is to be compiled into
a sequence of kernels

1 double sum = 0 . 0 ;
2

3 #pragma acc k e r n e l s
4 {
5 f o r (i n t i = 0 ; i < N; i++) {
6 x [i] = 1 . 0 ;
7 y [i] = 2 . 0 ;
8 }
9

10 f o r (i n t i = 0 ; i < N; i++) {
11 y [i] = i * x [i] + y [i] ;
12 sum += y [i] ;
13 }
14 }

2021-10-07 38 / 42

OpenACC parallel versus kernel

I kernel construct
I Identification of parallelisation opportunities is left to the

compiler
I Compiler has potentially more freedoms
I Can cover large area of code with single directive

I parallel construct
I User has to identify parallelisation opportunities
I Will work where compiler fails to identify such opportunities
I More explicit

2021-10-07 39 / 42

Content

Introduction

Example: NVIDIA A100

CUDA Programming Model

OpenACC Programming Model

Conclusion

2021-10-07 40 / 42

Conclusion

I GPUs programming can be challenging
I High level of parallelism and simplified architecture requires

hardware aware programming
I Note that optimisation strategies are typically also beneficial

on CPUs

I Different programming models are available
I A good choice is in the currently difficult as more GPU types

are becoming available

I GPUs allow to significantly increase performance within a
given power envelope resulting in an increasing number of
GPU-accelerated systems

2021-10-07 41 / 42

Finish with an Architecture from Turing:
Bombe

[United Kingdom Government, 1945]

2021-10-07 42 / 42

https://commons.wikimedia.org/wiki/File:Wartime_picture_of_a_Bletchley_Park_Bombe.jpg

	Introduction
	Example: NVIDIA A100
	CUDA Programming Model
	OpenACC Programming Model
	Conclusion

