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@ Introduction
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Multiscale problems

Many scientific/engineering problems involve multiscale phenomena:

@ Flow and transport in porous media,
@ Turbulent flows at high Reynolds numbers,

@ Physical processes in composite materials.

Figure: Oil reservoir exploration (SPE10 benchmark)
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Structural Engineering (composites & additive manufacturing)

Linear elasticity equations:

a(u,v) ::/QC(X)E(U):s(v)dx:/Qf-vdx—i—/r(o-n)-vdx YWweV
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Structural Engineering (composites & additive manufacturing)

Linear elasticity equations:

a(u,v) ::/QC(X)E(U):s(v)dx:/Qf-vdx—i—/r(o-n)-vdx YWweV

small length scales (<mm), high contrast and strongly anisotropic

CERTEST (EPSRC Project, UK) STEAM (Turing/Royce Project)
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Why not use standard FEMs for such problems?

lllustrating Example: Steady-state diffusion in heterogeneous

medium
—div(AVu)=f in Q + BGs,

By Cea's lemma, for classical, conforming FEs, we have
lu— upllpo) < Cvig\ﬂh |u = vlH(q)

Accuracy depends solely on the approximation properties of the FE space.
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Why not use standard FEMs for such problems?

lllustrating Example: Steady-state diffusion in heterogeneous

medium
—div(AVu)=f in Q + BCs,

By Cea's lemma, for classical, conforming FEs, we have
lu— upllpo) < Cvig\ih |u = vlH(q)

Accuracy depends solely on the approximation properties of the FE space.
If the coefficient A € L>°(Q2) is strongly varying on fine scale, then

e theoretically: v ¢ H?() (in general) and it is difficult to obtain
an explicit convergence rate for classical FEs;

e numerically: a sufficiently small h is required to achieve an
acceptable accuracy, leading to huge computational cost.
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Two Possible Aims

o Complicated variation of A(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh, e.g.

Ply with individual fibres  Coupon with defect whole wing spar
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Two Possible Aims

o Complicated variation of A(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh, e.g.

Ply with individual fibres  Coupon with defect whole wing spar

o Goal A: Efficient, scalable multilevel parallel solver |Peter's Talk

o robust w.r.t. mesh size h + coefficient variation A(x) !
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Ply with individual fibres  Coupon with defect

whole wing spar

o Goal A: Efficient, scalable multilevel parallel solver |Peter's Talk

o robust w.r.t. mesh size h + coefficient variation A(x) !

@ Goal B: Simulate on coarse mesh where A(x) is not resolved !

o Discretisation in bespoke (adapted) A-dependent space V'
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Two Possible Aims

o Complicated variation of A(x) on many scales (h < diam(2))
Hard to resolve by “geometric’ coarse mesh, e.g.

ST

Ply with individual fibres  Coupon with defect whole wing spar

e Goal A: Efficient, scalable multilevel parallel solver
o robust w.r.t. mesh size h + coefficient variation A(x) !

@ Goal B: Simulate on coarse mesh where A(x) is not resolved !
o Discretisation in bespoke (adapted) A-dependent space V'

o Key Question (for both): Robust coarse space

(coefficient-robust theory for Goal B much less well developed)
Rob Scheichl (Heidelberg)
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Multiscale methods

Multiscale methods are effective techniques to reduce computational
cost by incorporating fine-scale information into coarse-scale models.
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Multiscale methods

Multiscale methods are effective techniques to reduce computational
cost by incorporating fine-scale information into coarse-scale models.

Traditionally: Asymptotic homogenization (Lions, Olenik, Allaire,...)

Various multiscale methods (initially focussing only on related ones):
© Multiscale Finite Element Method (MsFEM) (Hou, Wu, Efendiev,...)
@ Generalized Multiscale FE Method (GMsFEM) (Hou, Efendiev,...)
@ Localized Orthogonal Decomposition (LOD) (Peterseim, Malqvist,...)

© Multiscale Spectral Generalized FE Method (MS-GFEM)
[Babuska & Lipton, Multiscale Model Sim (SIAM) 9, 2011], ...

All these are based on enriching FE space with pre-computed multiscale
basis functions containing fine-scale information of the solution.
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Other Types of Multiscale Methods

@ Adaptive FEs ..., [Babuska, Rheinboldt, 1978]

@ Generalised FEs [Babuska, Osborn, 1983]

@ Numerical Upscaling ..., [Durlofsky, 1991]

@ Variational Multiscale Method [Hughes et al, 1998]

e Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]

@ Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]

@ Heterogeneous Multiscale Method [E, Engquist, 2003]

@ Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007]

e Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]
@ Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]

@ ... etc ...
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Some Context

@ Construction of robust multiscale FE spaces is very expensive
for general coefficients!

@ Unless we can reuse (most parts of) the space multiple times
(particular structure, multiple RHS, optimisation, uncertainty quantif.,...)
no clear gains over efficient, scalable multilevel parallel solver!

e Important to define context and to embed it in an efficient
offline/online, adaptive, multi-level scheme!

@ Also strong links to local model order reduction methods
[Smetana, Patera, 2016], [Buhr, Smetana, 2018],. ..
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Some Context

@ Construction of robust multiscale FE spaces is very expensive
for general coefficients!

@ Unless we can reuse (most parts of) the space multiple times
(particular structure, multiple RHS, optimisation, uncertainty quantif.,...)
no clear gains over efficient, scalable multilevel parallel solver!

e Important to define context and to embed it in an efficient
offline/online, adaptive, multi-level scheme! ‘Ongoing work!‘

@ Also strong links to local model order reduction methods

[Smetana, Patera, 2016], [Buhr, Smetana, 2018],... ‘Ongoing work! ‘

TODAY: Novel spectral GFEM, novel analysis & implementation

Coefficient-robust theory for multiscale approximation without periodicity or
scale separation & links to multilevel domain decomposition preconditioners.
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Problem formulation

Find u € H () such that (Q C RY, d = 2,3, bdd. with 9Q Lipschitz)

, a(u,v) = F(v), Vv € Hip(Q),
H;D(Q) ={ve HYQ) : v=gq(x) on 0Qp},

and the bilinear form a(-,-) and the functional F are defined by

a(u, v):/A(x)Vu-Vvdx, F(v):/ gvds+/fvdx.
Q o Q
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Problem formulation

Find u € H () such that (Q C RY, d = 2,3, bdd. with 9Q Lipschitz)

a(u,v) = F(v), Vv € Hip(Q),
where

Hip(Q) ={v e H(Q) : v =q(x) on dQp},

and the bilinear form a(-,-) and the functional F are defined by

a(u, v):/A(x)Vu-Vvdx, F(v):/ gvds+/fvdx.
Q o Q

Coefficient A(x) € L°(Q)9*? assumed SPD w. 0 < apin < amax < 00
s.t.

amin|€]? < A(X)E € < amnl€]® VEERY, xe€Q.

No a priori regularity, periodicity or scale separation of A assumed!
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Outline

© Generalized Finite Element Method (GFEM)
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Generalized Finite Element Method (GFEM)

Key features

@ Extension of the FEM based on domain decomposition and a
partition of unity (PoU) approach.
@ GFEMs consist of three steps:
@ Construct local spaces with good approximation properties;
@ Glue together local spaces by PoU to form global approximation;

© Solve the problem over the global approximation space.

@ Global error fully determined by local approximation errors.

o Allows design of special approximation spaces tailored to
particular problem.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School '21 13 / 52



Generalized Finite Element Method (GFEM)

Partition of Unity

o Let Q C R? be a bounded domain and {w;}, be an open cover
of € satisfying a pointwise overlap condition, i.e.

each x € ) isin at most ~ subdomains w;.
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Generalized Finite Element Method (GFEM)

Partition of Unity
o Let Q C R? be a bounded domain and {w;}, be an open cover
of €2 satisfying a pointwise overlap condition, i.e.

each x € ) isin at most ~ subdomains w;.

Definition (Partition of Unity)

A set of functions {\;}M, is called a (sufficiently smooth) partition
of unity subordinate to the open cover {w;}M, w. H; = diam(w;) if

0 < xi(x Zx, =1, VxeqQ,

X,’(X)ZO’ VXQ(,‘J,-,/:]_... M,
Xi € Cl(w,), max (H IVXille) < G

v

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School '21 14 / 52



Local and global approximation spaces

Given an open cover {w;}M, of Q with partition of unity {y;}M:

each x in < k subdomains w; Yoixi(x) =1 and max; Hi||Vxille < G
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Local and global approximation spaces

Given an open cover {w;}M, of Q with partition of unity {y;}¥,:
each x in < k subdomains w; Yoixi(x) =1 and max; Hi|| Vxille < G
@ Choose local particular solutions u? € H*(w;) to satisfy
u? = qon dw! NOQp and u? = 0 otherwise on Jw;

(for an oversampling domain w; D w; defined below)

@ Choose local approximation spaces S, (w;) C H*(w;) of dimension
n; s.t. they are in some sense optimal (nearly exponential error decay)
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Local and global approximation spaces

Given an open cover {w;}M, of Q with partition of unity {y;}¥,:
each x in < k subdomains w; Yoixi(x) =1 and max; Hi|| Vxille < G
@ Choose local particular solutions u? € H*(w;) to satisfy

u? = qon dw! NOQp and u? = 0 otherwise on Jw;
(for an oversampling domain w; D w; defined below)

@ Choose local approximation spaces S, (w;) C H*(w;) of dimension
n; s.t. they are in some sense optimal (nearly exponential error decay)

Global particular function u” and trial space S,(Q2) then defined as:

uP —Zx,u € Hip(Q), Si(Q) = {Zx;qﬁ; = Sn,(w,-)}.

i=1

The approximate (Galerkin) solution u® = u” + u° is then sought

such that u® € 5,(Q) C Hyp(Q) (n-dimensional).
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New Global Approximation Theorem

Theorem (Ma, RS, Dodwell, 2021)
Assume that there exists ¢; € S,.(w;), i =1,---, M, such that

Ixi(e = 07 = ¢i)lla,; < €illullae;,

M
where w; C wi C Q and ||v|, ;== \/a(v, v). Let uf = uP + > xi¢;.
i=1
Then u* € H}(Q) and
lu = uFlls < Vi (_max &) .

Here we assume that each point x € § belongs to at most K* subdomains w.

4
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New Global Approximation Theorem

Theorem (Ma, RS, Dodwell, 2021)
Assume that there exists ¢; € S,.(w;), i =1,---, M, such that

Ixi(e = 07 = ¢i)lla,; < €illullae;,

M
where w; C wi C Q and ||v|, ;== \/a(v, v). Let uf = uP + > xi¢;.

i=1
Then u* € H}(Q) and

lu—u®lls < llu—u"lla < Vst _max ei)|ulla.
i=1,,M

Here we assume that each point x € § belongs to at most K* subdomains w.

4
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New Global Approximation Theorem

Theorem (Ma, RS, Dodwell, 2021)
Assume that there exists ¢; € S,.(w;), i =1,---, M, such that

Ixi(e = 07 = ¢i)lla,; < €illullae;,
M
where w; C wi C Q and ||v|, ;== \/a(v, v). Let uf = uP + > xi¢;.
i=1
Then u* € H}(Q) and
lu=u®lls < flu=uFlla < Vens( max, <)l

Here we assume that each point x € Q belongs to at most k* subdomains w; .

y

Traditional GFEM [Melenk, Babuska, 1996], [Babuska, Lipton, 2011]:
@ Exact solution v and not y;u is approximated in each subdomain w;.

@ Need to have bounds on local L2- and H!-error.
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Outline

© Local approximation
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Roadmap for local approximation

@ Introduce oversampling domain w; s.t. w; € w; C Q

(assume first w; does not touch 0%2)
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Roadmap for local approximation

@ Introduce oversampling domain w; s.t. w; € w; C Q

(assume first w; does not touch 0%Q)
e Decompose u into two orthogonal parts w.r.t. a(-,-):

@ Particular solution 1); that satisfies the PDE locally
(subject to homogeneous Dirichlet BCs 1);(x) = 0 on dw}):

—div(A(x)Vi(x)) = f(x), for x € w;.
@ Locally a-harmonic part in

Ha(w}) = {v € H'(w}) : aur(v,p) =0 VYp € Hy (wi)}.
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Roadmap for local approximation

@ Introduce oversampling domain w; s.t. w; € w; C Q

(assume first w; does not touch 0Q)
e Decompose u into two orthogonal parts w.r.t. a(-,-):

@ Particular solution 1); that satisfies the PDE locally
(subject to homogeneous Dirichlet BCs 1);(x) = 0 on dw}):

—div(A(x)Vi(x)) = f(x), for x € w;.
@ Locally a-harmonic part in

Ha(w}) = {v € Hl(w}*) : aw;«(v,cp) =0 VYp e H&(w}k)}.

o To approximate optimally the a-harmonic part:

@ associate this with a compact operator related to the PoU
function and finding its Kolmogorov n-width;

@ construct an optimal approximation space based on its SVD.
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The compact operator

@ We introduce the operator P : Hao(w?) — Hg(w;) such that
Pv(x) = xi(x)v(x), Vx €w;, Vv € Hap(w}),
where Y; is the PoU function supported on w; and
Hao(wi) = {v € Ha(wi) : au,(xiv, xi) = 0}.
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The compact operator

@ We introduce the operator P : Hao(w?) — Hg(w;) such that
Pv(x) = xi(x)v(x), Vx €w;, Vv € Hap(w}),
where Y; is the PoU function supported on w; and
Hao(w?) = {v € Ha(w}) : aw(xiv, x;) = 0}.

e Since H'(w?) CC L?(w;), it follows from the following

Caccioppoli-type inequality that P is a compact operator:

Lemma (Caccioppoli-type inequality)
Assume that n € WY (w?) N H}(w?) and v € Ha(w?). Then

9v1Be; = [ (AVH- V)2 dx < amadl Vil

V||i2(w7) c

i

Recall: amax = spectral upper bound of A and ||Vl < CXH,*1
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Kolmogorov n-width

Finding the optimal n-dim'l subspace @(n) to approximate the range
PHao(w?) in Hi(w;) is equivalent to finding the Kolmogorov

1

n-width d, of the compact operator P, i.e.

'D - a,wj
d, = inf sup inf w
Qn) ueHawr)/r vEQM  |ulla
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Kolmogorov n-width

Finding the optimal n-dim'l subspace @(n) to approximate the range
PHuo(w?) in Hy(w;) is equivalent to finding the Kolmogorov

1

n-width d, of the compact operator P, i.e.

'D - a, wj
d, = inf sup inf w
Qn) ueHawr)/r vEQM  |ulla

Theorem (A. Pinkus, 1985)

The optimal approximation space associated with the Kolmogorov
n-width is given by Q(n) = span{Pvy,---, Pv,} and d, = \/[ins1,
where {vi} and {1} denote the eigenfunctions and eigenvalues of
the problem

P*Pv = pv.
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Local particular sol'n & optimal approxim'n space

Let the local particular solution & the local approximation space on w;
for the GFEM be defined as

U,P = P

Wi Sn(wi) = Span{vllwn"' 7Vn|w,'}’

where v, denotes the k-th eigenfunction of the (GenEO-type)
eigenproblem [Spillane et al, 2014]

3. (v, ) = Aay,(xiv, Xip);, Ve € Ha(wy)).

Then, there exists a ¢; € S,(w;) such that

Ixi(u = uf = @i)lla,w; < dnllu

*
|a,wrs

where u is the exact solution of the elliptic equation and d,, = )\;if
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Bounding the local error

By assuming that w; and w; are concentric cubes of side lengths H;
and H! (H > H;), respectively, we have

Theorem (Ma, RS, Dodwell, 2021)
Fore € (0

,d+r1), there exists an N, > 0, such that for any n > N,

_ /2 2 (@I p(H;/H) @
d, = A5 < | Cee i e :

N N\ J/
-~ -~

where we recall that H||V il < C,
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Bounding the local error

By assuming that w; and w; are concentric cubes of side lengths H;
and H! (H > H;), respectively, we have

Theorem (Ma, RS, Dodwell, 2021)
Fore € (0

1
) d+1

_ /2 2 (@I p(H;/H) @
d, = A5 < | Cee i e :

N N\ J/
-~ -~

NEW (oversampling-dependent factor) [Babuska, Lipton, 2011]

), there exists an N, > 0, such that for any n > N,

where we recall that Hi||Vxillcc < C, and h(s) =1+ Slloif(ss) (see above)

’
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Bounding the local error

By assuming that w; and w; are concentric cubes of side lengths H;
and H! (H > H;), respectively, we have

Theorem (Ma, RS, Dodwell, 2021)
Fore € (0

1
7d_+]_)

_ /2 2 (@I p(H;/H) @
d, = A5 < | Cee i e :

N N\ J/
-~ -~

NEW (oversampling-dependent factor) [Babuska, Lipton, 2011]

, there exists an N, > 0, such that for any n > N,

where we recall that Hi||Vxillcc < C, and h(s) =1+ Slfif(:) (see above)

’

With ~4 denoting the volume of the unit ball in RY, we explicitly have

1/d 1/2 * —d

Vd dmax H,' e(1+d)

N, < (3 1.
_<eﬁ<amin> H,*—H,-> "
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Remarks on new error bound

@ The n-width decays nearly exponentially with respect to n and
the decay rate becomes higher with increasing oversampling size.
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Remarks on new error bound

@ The n-width decays nearly exponentially with respect to n and
the decay rate becomes higher with increasing oversampling size.

. . . H; .
@ Using estimates for h(s), can prove exponential decay w.r.t. (g
H;
2—1 75n(d+*-1_6) n(d%*-l_s) GH
d, < Geo ™ e .

No analysis of oversampling in [Babuska, Lipton, 2011] (where Pv := v|w,.)J
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Remarks on new error bound

@ The n-width decays nearly exponentially with respect to n and
the decay rate becomes higher with increasing oversampling size.

o Using estimates for h(s), can prove exponential decay w.r.t. /::
2—-1 75n(d+*-1_6) n(d%*-l_s) ’TL
d, < Ce" ™ e .

No analysis of oversampling in [Babuska, Lipton, 2011] (where Pv := v|w,.)J

o If w! = w; (no oversampling), it can further be proved that
1

1/d 1/2 _1
dp < 3C, 2 (20) 2n=3.

Approach in [Babuska, Lipton, 2011] not possible without oversampling! J
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Remarks on new error bound

@ The n-width decays nearly exponentially with respect to n and
the decay rate becomes higher with increasing oversampling size.

o Using estimates for h(s), can prove exponential decay w.r.t. /::
2—-1 75n(d+*-1_6) n(d%*-l_s) ’TL
d, < Ce" ™ e .

No analysis of oversampling in [Babuska, Lipton, 2011] (where Pv := v|w,.)J

o If w! = w; (no oversampling), it can further be proved that
1

1/d 1/2 _1
dp < 3C, 2 (20) 2n=3.

Approach in [Babuska, Lipton, 2011] not possible without oversampling! J

@ Ongoing work: Reduce dependence on a.,.,/amin in N, .
IWR Summer School '21

Generalised Multiscale FEs
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Boundary subdomains

e Same results for subdomains w; that intersect the (global)

boundary 02, but this requires additional work.

@ Again an oversampling domain is introduced s.t. w; C w? C

L
Wi
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Boundary subdomains

e Same results for subdomains w; that intersect the (global)

boundary 02, but this requires additional work.

@ Again an oversampling domain is introduced s.t. w; C w? C

R
Wi

@ We only require OS2 to be Lipschitz. For mixed BCs, we need
to compute two local particular solutions.

The analysis in [Babuska, Lipton, 2011] does not extend to mixed BCs! J

Due to harmonic extension [Babuska, Lipton '11] need to assume 99 € C? J
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Outline

@ Discrete MS-GFEM
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Finite element (FE) discretisation

e Take a conforming FE space Vj, in H(Q2) w.r.t. a mesh 7, with
mesh size h small enough to resolve all fine-scale details of A(x).
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Finite element (FE) discretisation

e Take a conforming FE space Vj, in H(Q2) w.r.t. a mesh 7, with
mesh size h small enough to resolve all fine-scale details of A(x).

@ The local particular solution (interior domain only) is defined as
u,"i,- = Uhilw;, where 1, ; € Vj,o(w)) satisfies

aur (ﬁh,,‘, V) = fw.* fv (J'X7 Vv € Vh70(w;-k).
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Finite element (FE) discretisation

e Take a conforming FE space Vj, in H(Q2) w.r.t. a mesh 7, with
mesh size h small enough to resolve all fine-scale details of A(x).

@ The local particular solution (interior domain only) is defined as
u,"i,- = Uhilw;, where 1, ; € Vj,o(w)) satisfies

aur (¢h7,', V) = fw.* fv O’X7 Vv € Vh70(w;-k).

@ The local approximation space (again interior only) is defined as

Sh,ni(wi) = Span{¢;771 wi}7
where {(bﬂ,J}}’;l are the eigenfcts. of the GenEO-type problem
aw?((b? V) = A aw,-(Xin, Xiv)a Vv e Wh(w;k)

i
wjs ) ¢h,n,~

and
Wh(w?) = {u € Vypo(w) : aw;«(u7 v) =0, Vv € Vyo(w)}.
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Discrete MS-GFEM

@ Define the global particular function and the trial space as

M M
up = Zx,-u,‘;i . Sp(Q) = {Zx,-v,- DV € Sh,ni(w;)}.
i—1 i—1
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Discrete MS-GFEM

@ Define the global particular function and the trial space as
M M
up = Zx,-u,‘;i . Sp(Q) = {Zx,-v,- DV € Sh,ni(w;)}.
i=1 i=1

e Finite-dimensional Galerkin approximation: find uf = uf + us,
where uj € 5,(9) satisfies

a(up, v) = F(v) —a(ul,v), Vv e S5,(Q).
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Discrete MS-GFEM

@ Define the global particular function and the trial space as
M M
UZ = ZX,'UZJ , Sh(Q) = {ZX;V; V€ Shjni(w,-)}.
i=1 i=1

e Finite-dimensional Galerkin approximation: find uf = uf + us,
where uj € 5,(9) satisfies

a(up, v) = F(v) —a(ul,v), Vv e S5,(Q).

@ Discrete local orthogonal decomposition:
wr = Uni € Wi(wi),  auw(upler — ¥ni, ¥ni) = 0.

uf is fine-scale solution; W, (w!) is discrete a-harmonic space.

1

uj
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Optimal local approximation spaces (discrete version)

Theorem
Let A\, « and ¢y, be the k-th eigenvalue and eigenfunction of the

. . . . ~1/2
discrete GenEO-type eigenproblem. The n-width d,(w;, w}) = )\hm{‘rl
and the optimal approximation space is given by

é(”) = span{x,-qu, ce ,Xi¢h,n} = Xi 5h,n(wi)-

In addition, there exists a &; € Sp, ,(w;) such that

xi(uf = up; = &llaw; < dn(wi, i) [lUgllaw;

Equivalently, xi(up — uﬁ’, — s < /\/:,}7421 | h |l oo

/\h:lt;l

Ph.iPhi on = pndn aur (Pns V) = A au, (Xi®n, Xiv)-
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Error bound of the discrete MS-GFEM

Theorem

Let u® and u; be the weak solution and fine-scale FE approximation

of the model problem, resp, and let uf be the discrete MS-GFEM
approximation. Then,

= Pl < = il V(e X2

where Ay 11 is the (n; + 1)-th eigenvalue of the discrete eigenproblem.

v
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Error bound of the discrete MS-GFEM

Theorem

Let u® and u; be the weak solution and fine-scale FE approximation

of the model problem, resp, and let uf be the discrete MS-GFEM
approximation. Then,

lu = uF|l, < llu® = uflls + Vism" (_max A, 220) 0.

h,n;+1

where Ay 11 is the (n; + 1)-th eigenvalue of the discrete eigenproblem.

v

@ An equivalent error bound is

Ju® = ui ||, < llu® = uilla +\/_*(.ma.XMd(wn wi))llugla-
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Error bound of the discrete MS-GFEM

Theorem

Let u® and u; be the weak solution and fine-scale FE approximation

of the model problem, resp, and let uf be the discrete MS-GFEM
approximation. Then,

o = ufl, < lo® = gl + VR (max A2 el

h,n;+1

where Ay 11 is the (n; + 1)-th eigenvalue of the discrete eigenproblem.

o’

@ An equivalent error bound is

Ju® = ui ||, < llu® = uilla +\/_*(.maXMd(wn wi))llugla-

@ By implementing the method on a sufficiently fine mesh, we only
need focus on the local approximation errors.
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Roadmap for convergence analysis

@ The local approximation errors in the discrete MS-GFEM are
bounded by A, or the n-widths d,(w;, w?).

1/2
h,n;j+11
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Roadmap for convergence analysis

@ The local approximation errors in the discrete MS-GFEM are
bounded by A, /2., or the n-widths d,(w;,w?).

h,n; +1'
@ We prove the convergence of the method in two ways:

@ We prove that

T2

Bl /\n {1 (decaylng nearly exponentially), as h — 0,

where A\, ;1 is the eigenvalue of the continuous eigenproblem.
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Roadmap for convergence analysis

@ The local approximation errors in the discrete MS-GFEM are
bounded by A, /2., or the n-widths d,(w;,w?).

h,n; +1'
@ We prove the convergence of the method in two ways:

@ We prove that

/\;}71/ _QH /\n {1 (decaylng nearly exponentially), as h — 0,
where A\, ;1 is the eigenvalue of the continuous eigenproblem.

@ We prove directly that the n-width d,(wj,w;) decays nearly
exponentially with respect to n if h is sufficiently small.
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Continuous and discrete operators

o Define the operator T = P*P : Hap(w*) — Hap(w*) such that
for each u € Hap(w*), Tu € Ha p(w*) satisfies

a,+(Tu,v) = a,(xu, xv), Vv e Hap(w).

P : Hap(w*) — Hp,(w*) is defined as Pv = xv.
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Continuous and discrete operators

o Define the operator T = P*P : Hap(w*) — Hap(w*) such that
for each u € Hap(w*), Tu € Ha p(w*) satisfies

a,+(Tu,v) = a,(xu, xv), Vv e Hap(w).

P : Hap(w*) = Hp(w*) is defined as Pv = xv.

o Define the discrete operators T, = P; P, : Wy(w*) — Wj(w?)
such that for each u € W, (w*), Thu € W, (w*) satisfies

aw*(ThUa V) = aw(Xu7XV)7 Vv e Wh(w*)'
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Continuous and discrete operators

o Define the operator T = P*P : Hap(w*) — Hap(w*) such that
for each u € Hap(w*), Tu € Ha p(w*) satisfies

a,+(Tu,v) = a,(xu, xv), Vv e Hap(w).

P : Hap(w*) = Hp(w*) is defined as Pv = xv.

o Define the discrete operators T, = P; P, : Wy(w*) — Wj(w?)
such that for each u € W, (w*), Thu € W, (w*) satisfies

aw*(ThUa V) = aw(Xu7XV)7 Vv e Wh(w*)'

e T, T, (0 < h<1) are positive, self-adjoint, compact operators.
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Convergence of the eigenvalues

The convergence analysis is challenging:

@ Non-conforming approximations since Wj,(w*) € Ha p(w*);

© The discrete operators T}, are defined on different spaces.
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Convergence of the eigenvalues

The convergence analysis is challenging:

@ Non-conforming approximations since Wj,(w*) € Ha p(w*);

© The discrete operators T}, are defined on different spaces.

Theorem

Let jup i and 1 be the eigenvalues of the operators T), and T, resp.
For each k € N,

Mhk — Mk, as h—0.

Explicit convergence rate (under some further assumptions):

|k — pni| < Ch.

@ Proof is based on abstract theoretical framework developed in
the context of homogenization theory [Jikov, Kozlov, Olenik 2012].
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Upper bound for the n-width

@ We assume that w and w* are (truncated) concentric cubes with

side lengths H and H*, respectively.

Theorem (Nearly exponential decay)

For € € (0, d%rl) there exists an n. > 0, such that for any n > n,, if h

is sufficiently small, then

11 _ o o (g =)
do(w, w*) < (3n2(@T79) 4 Ce?)e " 7T e RIA/H) a0

where R(s) = 1+ slog(s)/(1 — s).
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Outline

© Practical algorithm & Efficient eigensolver
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Practical Algorithm — Main Steps

@ Discretise PDE in conforming FE space V, € HY(Q) w.r.t. Tj:
Mesh size h small enough to resolve fine-scale details of A(x).
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Practical Algorithm — Main Steps

@ Discretise PDE in conforming FE space V, € HY(Q) w.r.t. Tj:
Mesh size h small enough to resolve fine-scale details of A(x).
Q@ Fori=1--- M
@ Solve the local elliptic problem on the oversampling domain w;
to get the local particular solution.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School '21 35 /52



Practical Algorithm — Main Steps

@ Discretise PDE in conforming FE space V, € HY(Q) w.r.t. Tj:
Mesh size h small enough to resolve fine-scale details of A(x).
Q@ Fori=1--- M
@ Solve the local elliptic problem on the oversampling domain w;
to get the local particular solution.

O Construct the discrete a-harmonic space

Wi(wi') = {u € Vho(w;) : aw: (u,v) =0, Vv € Vpo(w;)}
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Practical Algorithm — Main Steps

@ Discretise PDE in conforming FE space V, € HY(Q) w.r.t. Tj:

Mesh size h small enough to resolve fine-scale details of A(x).
Q@ Fori=1--- M

@ Solve the local elliptic problem on the oversampling domain w;
to get the local particular solution.

O Construct the discrete a-harmonic space
Wh(wi) = {u € Vho(w) : auws(u,v) =0, Vv € Vho(wi)}-

@ Solve the GenEO-type eigenproblem over the discrete
a-harmonic space to build the local approximation space on w;.

© Build the global particular solution and trial space and then solve
the coarse problem to get the approximate solution.
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Practical Algorithm — Main Steps

@ Discretise PDE in conforming FE space V, € HY(Q) w.r.t. Tj:

Mesh size h small enough to resolve fine-scale details of A(x).
Q@ Fori=1--- M

@ Solve the local elliptic problem on the oversampling domain w;
to get the local particular solution.

O Construct the discrete a-harmonic space
Wh(wi) = {u € Vho(w) : auws(u,v) =0, Vv € Vho(wi)}-

@ Solve the GenEO-type eigenproblem over the discrete
a-harmonic space to build the local approximation space on w;.

© Build the global particular solution and trial space and then solve
the coarse problem to get the approximate solution.

Steps la-c can be carried out in parallel and we can reuse

precomputed bases (offline/online). J
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Discrete a-harmonic spaces

Main computational cost: Building the discrete a-harmonic spaces

@ [Babuska, Lipton '11] a-harmonic extension of all boundary hat functions
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Discrete a-harmonic spaces

Main computational cost: Building the discrete a-harmonic spaces

@ [Babuska, Lipton '11] a-harmonic extension of all boundary hat functions
@ [Calo et al '16; Chen et al '20] random sampling techniques

@ [Babuska, Lipton et al "20] a-harmonic extension of s; < n!V boundary

hat functions with wider support to approximate Wj(w}). | How to choose?
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Discrete a-harmonic spaces

Main computational cost: Building the discrete a-harmonic spaces

@ [Babuska, Lipton '11] a-harmonic extension of all boundary hat functions
@ [Calo et al '16; Chen et al '20] random sampling techniques

@ [Babuska, Lipton et al "20] a-harmonic extension of s; < n!V boundary
hat functions with wider support to approximate Wj(w}). ‘ How to choose? ‘

Idea 1: Instead, we can generate (approximate) W, (w?) by using
eigenfunctions of Steklov (DtN) eigenproblem [Dolean et al, 2012]

a.:(C,v) = )‘fawj* Cvds, Vv e Viho(w)),

For n;-dimensional local approximation space, it is sufficient to

approximate W, (w;) using the first s; ~ 5n; functions {¢/}7 ;.

Easy to implement, error under control & much lower cost! J
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Idea 2: Eigensolver based on mixed formulation

Lagrange multiplier

——N—
e Find A\, € R, ¢, € Vi, p(w*), and p, € V}, py(w”) such that

aw*(gbh, V) + aw*(v, Ph) = /\haw(xgzﬁh, XV) Yv € Vh,D(W*)7
aw*(@,,f) =0 \Vlf S V,,?D,(w*).

Note. The a-harmonic constraint is incorporated into the eigenproblem.
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Idea 2: Eigensolver based on mixed formulation

Lagrange multiplier

e Find A\, € R, ¢, € Vi, p(w*), and p, € V}, py(w”) such that
3w (Gn, v) + au (v, pn) = Apaw(Xdn, xv) Vv € Vpp(w"),
aw*(¢h7£) =0 \V/£ S Vh,D,(w*).

Note. The a-harmonic constraint is incorporated into the eigenproblem.

@ Matrix eigenvalue problem: find A € R, ¢ = (¢1, o) € R,
and p € R™ such that

Ai; A Agp b1 Bi; 00 b1
Ay Axp Ay ¢ | =A 0 0O b2 |,
Ay A 0 [ 0 00O p

¢1: DOFs in the interior; ¢o: DOFs on the boundary.
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Efficient and accurate eigensolver

@ By block-elimination, it follows that

Bll¢1 = /\_1A11p7 All is SPD (2)
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Efficient and accurate eigensolver

@ By block-elimination, it follows that
Bug, = A AP, A, is SPD (2)

where ¢; is computed from p by

o1\ 0 _( A Ap
A<¢2>_<—A21P>’ A_<A21 Ay )
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Efficient and accurate eigensolver

@ By block-elimination, it follows that
Bug, = A AP, A, is SPD (2)

where ¢; is computed from p by
1 > ( 0 ) < Ain A )
< P2 —Axp )’ Ax; Ax

@ A is SPD = Cholesky factorization A = LL". ¢, can be
computed by solving an upper and lower triangular system:

(&) (me) o
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Efficient and accurate eigensolver

@ By block-elimination, it follows that
Bug, = A AP, A, is SPD (2)

where ¢; is computed from p by
1 > ( 0 ) < Ain A )
< P2 —Axp )’ Ax; Ax

@ A is SPD = Cholesky factorization A = LL". ¢, can be
computed by solving an upper and lower triangular system:

(&) (me) o

o Together (2) & (3) form the reduced eigenproblem to be solved.

Note. Original eigenproblem is solved accurately instead of approximately.
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Two favourable features

@ A posteriori error bound:
o We have a sharp, computable upper bound on the local
_1
approximation error, i.e., A, ,27_+1, from computed eigenvalues.
This property is lost if the eigenproblem is not solved accurately.
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Two favourable features

@ A posteriori error bound:
o We have a sharp, computable upper bound on the local
1

approximation error, i.e., )\;g_ﬂ, from computed eigenvalues.
2t

This property is lost if the eigenproblem is not solved accurately.

o Enables adaptive selection of number of eigenvectors to be used.
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Two favourable features

@ A posteriori error bound:
o We have a sharp, computable upper bound on the local
1

approximation error, i.e., )\;g_ﬂ, from computed eigenvalues.
2t

This property is lost if the eigenproblem is not solved accurately.

o Enables adaptive selection of number of eigenvectors to be used.

@ Large relative gap between eigenvalues:

o Nearly exponential decay of the eigenvalues.
This property doesn't hold for general PDE eigenproblems.
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Two favourable features

@ A posteriori error bound:
o We have a sharp, computable upper bound on the local
1

approximation error, i.e., )\;g_ﬂ, from computed eigenvalues.
2t

This property is lost if the eigenproblem is not solved accurately.

o Enables adaptive selection of number of eigenvectors to be used.

@ Large relative gap between eigenvalues:

o Nearly exponential decay of the eigenvalues.
This property doesn't hold for general PDE eigenproblems.

o Classical iterative methods work very well for solving the
eigenvalue problem under these circumstances.
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Summary of the algorithm

Q@Fori=1---,M

© Solve the elliptic equation on the oversampling domain w? to
get the local particular function.
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Summary of the algorithm

Q@ Fori=1--- M
© Solve the elliptic equation on the oversampling domain w? to
get the local particular function.

O Perform a Cholesky factorization and solve the reduced
eigenproblem to build the local approximation space on wj.
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Summary of the algorithm

Q@ Fori=1--- M
© Solve the elliptic equation on the oversampling domain w? to
get the local particular function.

O Perform a Cholesky factorization and solve the reduced
eigenproblem to build the local approximation space on wj.

@ Build the global particular function and trial space and then
solve the coarse problem to get the approximate solution.
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Summary of the algorithm

Q@Fori=1---,M

© Solve the elliptic equation on the oversampling domain w? to
get the local particular function.

O Perform a Cholesky factorization and solve the reduced
eigenproblem to build the local approximation space on wj.

@ Build the global particular function and trial space and then
solve the coarse problem to get the approximate solution.

Main features:
@ Step 1 can be carried out fully in parallel (no communication!).
© The coarse problem is small (nearly exponential error bound).

© The precomputed local approximation spaces can be reused.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School '21 40 / 52



Outline

@ Numerical experiments
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Problem setting

Consider the steady-state heat conduction (or Darcy) problem:
—div(A(x)Vu(x)) = f(x), in Q=(0,1)?
n-Ax)Vu(x) =1, for xo =0o0r1,
u(x) =1, for xy =0or1,
with the source term
f(x) = 103ef10(x170.15)2710(X270.55)2.
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Problem setting

Consider the steady-state heat conduction (or Darcy) problem:
—div(A(x)Vu(x)) = f(x), in Q=(0,1)?
n-Ax)Vu(x) =1, for xo =0o0r1,

u(x) =1, for xy =0or1,
with the source term
f(x) = 103ef10(x170.15)2710(X270.55)2.

and high-contrast heterogeneous thermal conductivity (permeability)
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The coefficient A(x) = a(x)I (left) and the fine-scale solution uf (right).
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Computational settings

@ Local computations are performed on a uniform Cartesian grid
7, with piecewise bilinear FEs and h = 1/500.

e M = m? overlapping subdomains w; (overlap 21), extended by ¢
layers of fine mesh elements to create oversampling domains w?.

@ Dimension of each local approximation space is nc.
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Computational settings

@ Local computations are performed on a uniform Cartesian grid
7, with piecewise bilinear FEs and h = 1/500.

e M = m? overlapping subdomains w; (overlap 21), extended by ¢
layers of fine mesh elements to create oversampling domains w?.

@ Dimension of each local approximation space is nc.

@ Define the (relative) error
error := ||up — vyl / ||zl

between the GFEM solution uf and the fine-scale solution uf.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School '21 43 / 52



Numerical results (error vs. local dimension)

Moe

Figure: njoc is the dimension of the local approximation space.
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Numerical results (error vs. oversampling size)

o TNge =8
10°E| 4 _
i Bl d nloc == 16

| %% nye=24

5 | | H | | | i
101.00 095 090 085 080 075 0.70 0.65 0.60

H/H”

Figure: H and H* are subdomain and oversampling domain sizes, resp.
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Numerical results (A1 vs. )

102 m= 8, /—16
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Figure: Eigenvalues of the local eigenproblems in an interior subdomain
and a boundary subdomain.
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@ HPC Implementation: Offline/Online Approach
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HPC Implementation: Offline/Online Approach

Presentation of Postdoc Jean Benezech (Bath) at

VIII ECCOMAS Thematic Conference on the Mechanical Response
ofComposites, Sep '21, Gteborg

“Scalable Localized Model Order Reduction Applied to
Composite Aero-Structures”
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© Conclusions, Outlook & Hardware-Awareness
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Conclusions

@ GenEO-type eigenproblems to construct new optimal local
spaces for GFEM to approximate y,u instead of u on each w;.

@ Sharper bound for local approximation error: nearly exponential
decay with the local dimension and the amount of oversampling.

e Two ideas for efficient approaches to solve the eigenproblems
with discrete a-harmonic constraint.

@ First fully discrete analysis of MS-GFEM.
o Efficient offline/online implementation.

@ Application to aerospace composites.
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Outlook & Hardware-Awareness

Theory for linear elasticity.

Cruder approximation and iteration (like iterative refinement).

Extend approach to other PDEs (even indefinite. ones!):
Helmholtz (done!), Maxwell, Darcy in mixed form, ...

Extension to nonlinear problems.

More robust error estimates depending only on 10g(amax/amin)
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Outlook & Hardware-Awareness

@ Theory for linear elasticity.

Cruder approximation and iteration (like iterative refinement).

o Extend approach to other PDEs (even indefinite. ones!):
Helmholtz (done!), Maxwell, Darcy in mixed form, ...

@ Extension to nonlinear problems.

@ More robust error estimates depending only on log(amax/amin)

@ Ideally suited for communication-avoidance and asynchrony.

o Exploit parallelism at all levels to optimise components

(eigensolver, Galerkin projection, local factorisations, global solve,...)

@ Implement full adaptive scheme — load balancing

@ Extend the approach to multilevel scheme |Peter’s lecture]
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