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Multiscale problems

Many scientific/engineering problems involve multiscale phenomena:

Flow and transport in porous media,

Turbulent flows at high Reynolds numbers,

Physical processes in composite materials.

Figure: Oil reservoir exploration (SPE10 benchmark)
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Structural Engineering (composites & additive manufacturing)

Linear elasticity equations:

a(u, v) :=

∫
Ω
C (x)ε(u) : ε(v) dx =

∫
Ω

f · v dx +

∫
Γ
(σ · n) · v dx ∀v ∈ V

small length scales (<mm), high contrast and strongly anisotropic

CERTEST (EPSRC Project, UK) STEAM (Turing/Royce Project)
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Why not use standard FEMs for such problems?

Illustrating Example: Steady-state diffusion in heterogeneous
medium

−div(A∇u) = f in Ω + BCs,

By Cea’s lemma, for classical, conforming FEs, we have

‖u − uh‖H1(Ω) ≤ C inf
v∈Vh

‖u − v‖H1(Ω).

Accuracy depends solely on the approximation properties of the FE space.

If the coefficient A ∈ L∞(Ω) is strongly varying on fine scale, then

theoretically: u /∈ H2(Ω) (in general) and it is difficult to obtain
an explicit convergence rate for classical FEs;

numerically: a sufficiently small h is required to achieve an
acceptable accuracy, leading to huge computational cost.
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Two Possible Aims

Complicated variation of A(x) on many scales (h� diam(Ω))
Hard to resolve by “geometric” coarse mesh, e.g.

Ply with individual fibres Coupon with defect whole wing spar

Goal A: Efficient, scalable multilevel parallel solver Peter’s Talk

robust w.r.t. mesh size h + coefficient variation A(x) !

Goal B: Simulate on coarse mesh where A(x) is not resolved !

Discretisation in bespoke (adapted) A-dependent space VH

Key Question (for both): Robust coarse space
(coefficient-robust theory for Goal B much less well developed)
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Multiscale methods

Multiscale methods are effective techniques to reduce computational
cost by incorporating fine-scale information into coarse-scale models.

Traditionally: Asymptotic homogenization (Lions, Olenik, Allaire,...)

Various multiscale methods (initially focussing only on related ones):

1 Multiscale Finite Element Method (MsFEM) (Hou, Wu, Efendiev,...)

2 Generalized Multiscale FE Method (GMsFEM) (Hou, Efendiev,...)

3 Localized Orthogonal Decomposition (LOD) (Peterseim, Malqvist,...)

4 Multiscale Spectral Generalized FE Method (MS-GFEM)
[Babuska & Lipton, Multiscale Model Sim (SIAM) 9, 2011], . . .

All these are based on enriching FE space with pre-computed multiscale

basis functions containing fine-scale information of the solution.
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Other Types of Multiscale Methods

Adaptive FEs ..., [Babuska, Rheinboldt, 1978]

Generalised FEs [Babuska, Osborn, 1983]

Numerical Upscaling ..., [Durlofsky, 1991]

Variational Multiscale Method [Hughes et al, 1998]

Multigrid Based Upscaling [Moulton, Dendy, Hyman, 1998]

Multiscale Finite Volume Methods [Jenny, Lee, Tchelepi, 2003]

Heterogeneous Multiscale Method [E, Engquist, 2003]

Multiscale Mortar Spaces [Arbogast, Wheeler et al, 2007]

Adaptive Multiscale FVMs/FEs [Durlovsky, Efendiev, Ginting, 2007]

Energy minimising bases [Dubois, Mishev, Zikatanov, 2009]

... etc ...
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Some Context

Construction of robust multiscale FE spaces is very expensive
for general coefficients!

Unless we can reuse (most parts of) the space multiple times
(particular structure, multiple RHS, optimisation, uncertainty quantif.,. . . )

no clear gains over efficient, scalable multilevel parallel solver!

Important to define context and to embed it in an efficient
offline/online, adaptive, multi-level scheme!

Ongoing work!

Also strong links to local model order reduction methods
[Smetana, Patera, 2016], [Buhr, Smetana, 2018],. . .

Ongoing work!

TODAY: Novel spectral GFEM, novel analysis & implementation

Coefficient-robust theory for multiscale approximation without periodicity or
scale separation & links to multilevel domain decomposition preconditioners.
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Problem formulation

Find u ∈ H1
qD(Ω) such that (Ω ⊂ Rd , d = 2, 3, bdd. with ∂Ω Lipschitz)

a(u, v) = F (v), ∀v ∈ H1
0D(Ω),

where

H1
qD(Ω) = {v ∈ H1(Ω) : v = q(x) on ∂ΩD},

and the bilinear form a(·, ·) and the functional F are defined by

a(u, v) =

∫
Ω

A(x)∇u · ∇v dx , F (v) =

∫
∂ΩN

gv ds +

∫
Ω

fv dx .

Coefficient A(x) ∈ L∞(Ω)d×d assumed SPD w. 0 < amin < amax <∞
s.t.

amin|ξ|2 ≤ A(x)ξ · ξ ≤ amax|ξ|2 ∀ξ ∈ Rd , x ∈ Ω.

No a priori regularity, periodicity or scale separation of A assumed!
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Generalized Finite Element Method (GFEM)
Key features

Extension of the FEM based on domain decomposition and a
partition of unity (PoU) approach.

GFEMs consist of three steps:

1 Construct local spaces with good approximation properties;

2 Glue together local spaces by PoU to form global approximation;

3 Solve the problem over the global approximation space.

Global error fully determined by local approximation errors.

Allows design of special approximation spaces tailored to
particular problem.
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Generalized Finite Element Method (GFEM)
Partition of Unity

Let Ω ⊂ Rd be a bounded domain and {ωi}Mi=1 be an open cover
of Ω satisfying a pointwise overlap condition, i.e.

each x ∈ Ω is in at most κ subdomains ωi .

Definition (Partition of Unity)

A set of functions {χi}Mi=1 is called a (sufficiently smooth) partition
of unity subordinate to the open cover {ωi}Mi=1 w. Hi = diam(ωi) if

0 ≤ χi(x) ≤ 1,
M∑
i=1

χi(x) = 1, ∀ x ∈ Ω,

χi(x) = 0, ∀ x 6∈ ωi , i = 1, · · · ,M ,

χi ∈ C 1(ωi), max
i=1,...,M

(
Hi‖∇χi‖∞

)
≤ C1
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Local and global approximation spaces

Given an open cover {ωi}Mi=1 of Ω with partition of unity {χi}Mi=1:

each x in ≤ κ subdomains ωi

∑
i χi (x) = 1 and maxi Hi‖∇χi‖∞ ≤ Cχ

Choose local particular solutions up
i ∈ H1(ωi) to satisfy

up
i = q on ∂ω∗i ∩ ∂ΩD and up

i = 0 otherwise on ∂ω∗i
(for an oversampling domain ω∗i ⊇ ωi defined below)

Choose local approximation spaces Sni (ωi)⊂H1(ωi) of dimension
ni s.t. they are in some sense optimal (nearly exponential error decay)

Global particular function up and trial space Sn(Ω) then defined as:

up :=
M∑
i=1

χiu
p
i ∈ H1

qD(Ω), Sn(Ω) :=

{
M∑
i=1

χiφi : φi ∈ Sni (ωi)

}
.

The approximate (Galerkin) solution uG = up + us is then sought
such that us ∈ Sn(Ω) ⊂ H1

0D(Ω) (n-dimensional).
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New Global Approximation Theorem

Theorem (Ma, RS, Dodwell, 2021)

Assume that there exists φi ∈ Sni (ωi), i = 1, · · · ,M, such that

‖χi(u − up
i − φi)‖a, ωi

≤ εi‖u‖a, ω∗i ,

where ωi ⊂ ω∗i ⊂ Ω and ‖v‖a :=
√

a(v , v). Let uF = up +
M∑
i=1

χiφi .

Then uF ∈ H1
qD(Ω) and

‖u − uG‖a ≤

‖u − uF‖a ≤
√
κκ∗
(

max
i=1,··· ,M

εi

)
‖u‖a.

Here we assume that each point x ∈ Ω belongs to at most κ∗ subdomains ω∗i .

Traditional GFEM [Melenk, Babuska, 1996], [Babuska, Lipton, 2011]:

Exact solution u and not χiu is approximated in each subdomain ωi .

Need to have bounds on local L2- and H1-error.
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Roadmap for local approximation

Introduce oversampling domain ω∗i s.t. ωi ⊆ ω∗i ⊂ Ω
(assume first ωi does not touch ∂Ω)

Decompose u into two orthogonal parts w.r.t. a(·, ·):

1 Particular solution ψi that satisfies the PDE locally
(subject to homogeneous Dirichlet BCs ψi (x) = 0 on ∂ω∗i ):

−div(A(x)∇ψi (x)) = f (x), for x ∈ ω∗i .

2 Locally a-harmonic part in

HA(ω∗i ) =
{
v ∈ H1(ω∗i ) : aω∗i (v , ϕ) = 0 ∀ϕ ∈ H1

0 (ω∗i )
}
.

To approximate optimally the a-harmonic part:

1 associate this with a compact operator related to the PoU
function and finding its Kolmogorov n-width;

2 construct an optimal approximation space based on its SVD.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School ’21 18 / 52



Roadmap for local approximation

Introduce oversampling domain ω∗i s.t. ωi ⊆ ω∗i ⊂ Ω
(assume first ωi does not touch ∂Ω)

Decompose u into two orthogonal parts w.r.t. a(·, ·):

1 Particular solution ψi that satisfies the PDE locally
(subject to homogeneous Dirichlet BCs ψi (x) = 0 on ∂ω∗i ):

−div(A(x)∇ψi (x)) = f (x), for x ∈ ω∗i .

2 Locally a-harmonic part in

HA(ω∗i ) =
{
v ∈ H1(ω∗i ) : aω∗i (v , ϕ) = 0 ∀ϕ ∈ H1

0 (ω∗i )
}
.

To approximate optimally the a-harmonic part:

1 associate this with a compact operator related to the PoU
function and finding its Kolmogorov n-width;

2 construct an optimal approximation space based on its SVD.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School ’21 18 / 52



Roadmap for local approximation

Introduce oversampling domain ω∗i s.t. ωi ⊆ ω∗i ⊂ Ω
(assume first ωi does not touch ∂Ω)

Decompose u into two orthogonal parts w.r.t. a(·, ·):

1 Particular solution ψi that satisfies the PDE locally
(subject to homogeneous Dirichlet BCs ψi (x) = 0 on ∂ω∗i ):

−div(A(x)∇ψi (x)) = f (x), for x ∈ ω∗i .

2 Locally a-harmonic part in

HA(ω∗i ) =
{
v ∈ H1(ω∗i ) : aω∗i (v , ϕ) = 0 ∀ϕ ∈ H1

0 (ω∗i )
}
.

To approximate optimally the a-harmonic part:

1 associate this with a compact operator related to the PoU
function and finding its Kolmogorov n-width;

2 construct an optimal approximation space based on its SVD.

Rob Scheichl (Heidelberg) Generalised Multiscale FEs IWR Summer School ’21 18 / 52



The compact operator

We introduce the operator P : HA,0(ω∗i )→ H1
0 (ωi) such that

Pv(x) = χi(x)v(x), ∀x ∈ ωi , ∀v ∈ HA,0(ω∗i ) ,

where χi is the PoU function supported on ωi and

HA,0(ω∗i ) = {v ∈ HA(ω∗i ) : aωi
(χiv , χi) = 0}.

Since H1(ω∗i ) ⊂⊂ L2(ω∗i ), it follows from the following
Caccioppoli-type inequality that P is a compact operator:

Lemma (Caccioppoli-type inequality)

Assume that η ∈ W 1,∞(ω∗i ) ∩ H1
0 (ω∗i ) and v ∈ HA(ω∗i ). Then

‖ηv‖2
a, ω∗i

=

∫
ω∗i

(
A∇η · ∇η

)
v 2 dx ≤ amax‖∇η‖2

L∞(ω∗i )‖v‖2
L2(ω∗i ) .

Recall: amax = spectral upper bound of A and ‖∇χi‖L∞ ≤ CχH
−1
i
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The compact operator

We introduce the operator P : HA,0(ω∗i )→ H1
0 (ωi) such that

Pv(x) = χi(x)v(x), ∀x ∈ ωi , ∀v ∈ HA,0(ω∗i ) ,

where χi is the PoU function supported on ωi and

HA,0(ω∗i ) = {v ∈ HA(ω∗i ) : aωi
(χiv , χi) = 0}.

Since H1(ω∗i ) ⊂⊂ L2(ω∗i ), it follows from the following
Caccioppoli-type inequality that P is a compact operator:
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Kolmogorov n-width

Finding the optimal n-dim’l subspace Q̂(n) to approximate the range
PHA,0(ω∗i ) in H1

0 (ωi) is equivalent to finding the Kolmogorov
n-width dn of the compact operator P , i.e.

dn := inf
Q(n)

sup
u∈HA(ω∗i )/R

inf
v∈Q(n)

‖Pu − v‖a, ωi

‖u‖a, ω∗i
.

Theorem (A. Pinkus, 1985)

The optimal approximation space associated with the Kolmogorov
n-width is given by Q̂(n) = span{Pv1, · · · ,Pvn} and dn =

√
µn+1,

where {vk} and {µk} denote the eigenfunctions and eigenvalues of
the problem

P∗Pv = µv .
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Local particular sol’n & optimal approxim’n space

Theorem
Let the local particular solution & the local approximation space on ωi

for the GFEM be defined as

up
i := ψi |ωi

, Sn(ωi) := span{v1|ωi
, · · · , vn|ωi

},

where vk denotes the k-th eigenfunction of the (GenEO-type)
eigenproblem [Spillane et al, 2014]

aω∗i (v , ϕ) = λ aωi
(χiv , χiϕ), ∀ϕ ∈ HA(ω∗i ).

Then, there exists a φi ∈ Sn(ωi) such that

‖χi(u − up
i − φi)‖a, ωi

≤ dn ‖u‖a, ω∗i ,

where u is the exact solution of the elliptic equation and dn = λ
−1/2
n+1 .
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Bounding the local error

By assuming that ωi and ω∗i are concentric cubes of side lengths Hi

and H∗i (H∗i > Hi), respectively, we have

Theorem (Ma, RS, Dodwell, 2021)

For ε ∈ (0, 1
d+1

), there exists an Nε > 0, such that for any n > Nε

dn = λ
1/2
n+1 ≤

(
Cχe

2e−n
( 1
d+1
−ε)

h(Hi/H
∗
i )

)
︸ ︷︷ ︸

NEW (oversampling-dependent factor)

(
e−n

( 1
d+1
−ε)
)

︸ ︷︷ ︸

[Babuska, Lipton, 2011]

,

where we recall that Hi‖∇χi‖∞ ≤ Cχ

and h(s) = 1 + s log(s)
1−s (see above)

With γd denoting the volume of the unit ball in Rd , we explicitly have

Nε ≤
(

3e
γ

1/d
d√
π

(
amax

amin

)1/2 H∗i
H∗i − Hi

) d
ε(1+d)

+ 1.
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Remarks on new error bound

The n-width decays nearly exponentially with respect to n and
the decay rate becomes higher with increasing oversampling size.

Using estimates for h(s), can prove exponential decay w.r.t. Hi

H∗i
:

dn ≤ Cχe
2−1.75n

( 1
d+1
−ε)
(
en

( 1
d+1
−ε)
) Hi

H∗
i .

No analysis of oversampling in [Babuska, Lipton, 2011] (where Pv := v |ωi )

If ω∗i = ωi (no oversampling), it can further be proved that

dn ≤ 3Cχ
γ

1/d
d√
4π

(
amax

amin

)1/2
n−

1
d .

Approach in [Babuska, Lipton, 2011] not possible without oversampling!

Ongoing work: Reduce dependence on amax/amin in Nε .
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Boundary subdomains

Same results for subdomains ωi that intersect the (global)
boundary ∂Ω, but this requires additional work. I will skip this!

Again an oversampling domain is introduced s.t. ωi ⊆ ω∗i ⊂ Ω:

ωi

ω∗i

∂ΩD

∂ΩN

We only require ∂Ω to be Lipschitz. For mixed BCs, we need
to compute two local particular solutions.

The analysis in [Babuska, Lipton, 2011] does not extend to mixed BCs!

Due to harmonic extension [Babuska, Lipton ’11] need to assume ∂Ω ∈ C 1
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Finite element (FE) discretisation

Take a conforming FE space Vh in H1(Ω) w.r.t. a mesh Th with
mesh size h small enough to resolve all fine-scale details of A(x).

The local particular solution (interior domain only) is defined as
up
h,i = ψh,i |ωi

, where ψh,i ∈ Vh,0(ω∗i ) satisfies

aω∗i (ψh,i , v) =
∫
ω∗i
fv dx , ∀v ∈ Vh,0(ω∗i ).

The local approximation space (again interior only) is defined as

Sh,ni (ωi) = span{φi
h,1|ωi

, · · · , φi
h,ni
|ωi
},

where {φi
h,j}

ni
j=1 are the eigenfcts. of the GenEO-type problem

aω∗i (φ, v) = λ aωi
(χiφ, χiv), ∀ v ∈ Wh(ω∗i ).

and

Wh(ω∗i ) = {u ∈ Vh,0(ω∗i ) : aω∗i (u, v) = 0, ∀v ∈ Vh,0(ω∗i )}.
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Discrete MS-GFEM

Define the global particular function and the trial space as

up
h :=

M∑
i=1

χiu
p
h,i , Sh(Ω) :=

{ M∑
i=1

χivi : vi ∈ Sh,ni (ωi)
}
.

Finite-dimensional Galerkin approximation: find uG
h = up

h + us
h,

where us
h ∈ Sh(Ω) satisfies

a(us
h, v) = F (v)− a(up

h , v), ∀v ∈ Sh(Ω).

Discrete local orthogonal decomposition:

ue
h|ω∗i − ψh,i ∈ Wh(ω∗i ), aω∗i (ue

h|ω∗i − ψh,i , ψh,i) = 0.

ue
h is fine-scale solution; Wh(ω∗i ) is discrete a-harmonic space.
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Optimal local approximation spaces (discrete version)

Theorem
Let λh,k and φh,k be the k-th eigenvalue and eigenfunction of the

discrete GenEO-type eigenproblem. The n-width dn(ωi , ω
∗
i ) = λ

−1/2
h,n+1

and the optimal approximation space is given by

Q̂(n) = span{χiφh,1, · · · , χiφh,n} = χi Sh,n(ωi).

In addition, there exists a ξi ∈ Sh,n(ωi) such that

‖χi(u
e
h − up

h,i − ξi)‖a,ωi
≤ dn(ωi , ω

∗
i ) ‖ue

h‖a,ω∗i .

Equivalently, ‖χi(u
e
h − up

h,i − ξi)‖a,ωi
≤ λ

−1/2
h,n+1 ‖u

e
h‖a,ω∗i .

P∗h,iPh,i φh = µhφh

λh=µ−1
h⇐===⇒ aω∗i (φh, v) = λh aωi

(χiφh, χiv).
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Error bound of the discrete MS-GFEM

Theorem
Let ue and ue

h be the weak solution and fine-scale FE approximation
of the model problem, resp, and let uG

h be the discrete MS-GFEM
approximation. Then,∥∥ue − uG

h

∥∥
a
≤ ‖ue − ue

h‖a +
√
κκ∗
(

max
i=1,··· ,M

λ
−1/2
h,ni+1

)
‖ue

h‖a,

where λh,ni+1 is the (ni + 1)-th eigenvalue of the discrete eigenproblem.

An equivalent error bound is∥∥ue − uG
h

∥∥
a
≤ ‖ue − ue

h‖a +
√
κκ∗
(

max
i=1,··· ,M

dn(ωi , ω
∗
i )
)
‖ue

h‖a.

By implementing the method on a sufficiently fine mesh, we only
need focus on the local approximation errors.
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Roadmap for convergence analysis

The local approximation errors in the discrete MS-GFEM are
bounded by λ

−1/2
h,ni+1, or the n-widths dn(ωi , ω

∗
i ).

We prove the convergence of the method in two ways:

1 We prove that

λ
−1/2
h,ni+1 → λ

−1/2
ni+1 (decaying nearly exponentially), as h→ 0,

where λni+1 is the eigenvalue of the continuous eigenproblem.

2 We prove directly that the n-width dn(ωi , ω
∗
i ) decays nearly

exponentially with respect to n if h is sufficiently small.
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Continuous and discrete operators

Define the operator T = P∗P : HA,D(ω∗)→ HA,D(ω∗) such that
for each u ∈ HA,D(ω∗), Tu ∈ HA,D(ω∗) satisfies

aω∗(Tu, v) = aω(χu, χv), ∀v ∈ HA,D(ω∗).

P : HA,D(ω∗)→ H1
DI (ω

∗) is defined as Pv = χv .

Define the discrete operators Th = P∗hPh : Wh(ω∗)→ Wh(ω∗)
such that for each u ∈ Wh(ω∗), Thu ∈ Wh(ω∗) satisfies

aω∗(Thu, v) = aω(χu, χv), ∀v ∈ Wh(ω∗).

T , Th (0 < h ≤ 1) are positive, self-adjoint, compact operators.
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aω∗(Thu, v) = aω(χu, χv), ∀v ∈ Wh(ω∗).

T , Th (0 < h ≤ 1) are positive, self-adjoint, compact operators.
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Convergence of the eigenvalues

The convergence analysis is challenging:

1 Non-conforming approximations since Wh(ω∗) * HA,D(ω∗);

2 The discrete operators Th are defined on different spaces.

Theorem
Let µh,k and µk be the eigenvalues of the operators Th and T , resp.
For each k ∈ N,

µh,k → µk , as h→ 0.

Explicit convergence rate (under some further assumptions):

|µk − µh,k | ≤ Ch.

Proof is based on abstract theoretical framework developed in
the context of homogenization theory [Jikov, Kozlov, Olenik 2012].
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Upper bound for the n-width

We assume that ω and ω∗ are (truncated) concentric cubes with
side lengths H and H∗, respectively.

Theorem (Nearly exponential decay)

For ε ∈ (0, 1
d+1

), there exists an nε > 0, such that for any n > nε, if h
is sufficiently small, then

dn(ω, ω∗) ≤
(
e3n

1
2

( 1
d+1
−ε) + Cpe

2
)
e−n

( 1
d+1
−ε)

e−R(H/H∗) n
( 1
d+1
−ε)

,

where R(s) = 1 + s log(s)/(1− s).
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Practical Algorithm – Main Steps

1 Discretise PDE in conforming FE space Vh ⊂ H1(Ω) w.r.t. Th:
Mesh size h small enough to resolve fine-scale details of A(x).

2 For i = 1, · · · ,M
a Solve the local elliptic problem on the oversampling domain ω∗i

to get the local particular solution.

b Construct the discrete a-harmonic space See below!

Wh(ω∗i ) = {u ∈ Vh,0(ω∗i ) : aω∗i (u, v) = 0, ∀v ∈ Vh,0(ω∗i )}.
c Solve the GenEO-type eigenproblem over the discrete

a-harmonic space to build the local approximation space on ω∗i .

3 Build the global particular solution and trial space and then solve
the coarse problem to get the approximate solution.

Steps 1a-c can be carried out in parallel and we can reuse
precomputed bases (offline/online). Part 2
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Discrete a-harmonic spaces

Main computational cost: Building the discrete a-harmonic spaces

[Babuska, Lipton ’11] a-harmonic extension of all boundary hat functions

[Calo et al ’16; Chen et al ’20] random sampling techniques

[Babuska, Lipton et al ’20] a-harmonic extension of si � nWi boundary

hat functions with wider support to approximate Wh(ω∗i ). How to choose?

Idea 1: Instead, we can generate (approximate) Wh(ω∗i ) by using
eigenfunctions of Steklov (DtN) eigenproblem [Dolean et al, 2012]

aω∗j (ζ, v) = λ
∫
∂ω∗j

ζv ds, ∀v ∈ Vh,0(ω∗j ),

For ni -dimensional local approximation space, it is sufficient to
approximate Wh(ω∗i ) using the first si ≈ 5ni functions {ζ ij }

si
j=1.

Easy to implement, error under control & much lower cost!
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Idea 2: Eigensolver based on mixed formulation

Find λh ∈ R, φh ∈ Vh,D(ω∗), and

Lagrange multiplier︷ ︸︸ ︷
ph ∈ Vh,DI (ω

∗) such that

aω∗(φh, v) + aω∗(v , ph) =λhaω(χφh, χv) ∀v ∈ Vh,D(ω∗),

aω∗(φh, ξ) = 0 ∀ξ ∈ Vh,DI (ω
∗).

Note. The a-harmonic constraint is incorporated into the eigenproblem.

Matrix eigenvalue problem: find λ ∈ R, φ = (φ1,φ2) ∈ Rn1+n2 ,
and p ∈ Rn1 such that A11 A12 A11

A21 A22 A21

A11 A12 0

 φ1

φ2

p

 = λ

 B11 0 0
0 0 0
0 0 0

 φ1

φ2

p

,
φ1: DOFs in the interior; φ2: DOFs on the boundary.
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Efficient and accurate eigensolver

By block-elimination, it follows that

B11φ1 = λ−1A11p, A11 is SPD (2)

where φ1 is computed from p by

A

(
φ1

φ2

)
=

(
0

−A21p

)
, A =

(
A11 A12

A21 A22

)
.

A is SPD ⇒ Cholesky factorization A = LLT . φ1 can be
computed by solving an upper and lower triangular system:(

φ1

φ2

)
= L−TL−1

(
0

−A21p

)
, (3)

Together (2) & (3) form the reduced eigenproblem to be solved.
Note. Original eigenproblem is solved accurately instead of approximately.
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Two favourable features

1 A posteriori error bound:

We have a sharp, computable upper bound on the local

approximation error, i.e., λ
− 1

2
h,ni+1, from computed eigenvalues.

This property is lost if the eigenproblem is not solved accurately.

Enables adaptive selection of number of eigenvectors to be used.

2 Large relative gap between eigenvalues:

Nearly exponential decay of the eigenvalues.
This property doesn’t hold for general PDE eigenproblems.

Classical iterative methods work very well for solving the
eigenvalue problem under these circumstances.
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Summary of the algorithm

1 For i = 1, · · · ,M
a Solve the elliptic equation on the oversampling domain ω∗i to

get the local particular function.

b Perform a Cholesky factorization and solve the reduced
eigenproblem to build the local approximation space on ωi .

2 Build the global particular function and trial space and then
solve the coarse problem to get the approximate solution.

Main features:

1 Step 1 can be carried out fully in parallel (no communication!).

2 The coarse problem is small (nearly exponential error bound).

3 The precomputed local approximation spaces can be reused.
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Problem setting

Consider the steady-state heat conduction (or Darcy) problem:

−div(A(x)∇u(x)) = f (x), in Ω = (0, 1)2,

n · A(x)∇u(x) = 1, for x2 = 0 or 1,

u(x) = 1, for x1 = 0 or 1,
with the source term

f (x) = 103e−10(x1−0.15)2−10(x2−0.55)2
.

and high-contrast heterogeneous thermal conductivity (permeability)

The coefficient A(x) = a(x)I (left) and the fine-scale solution ueh (right).
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Computational settings

Local computations are performed on a uniform Cartesian grid
τh with piecewise bilinear FEs and h = 1/500.

M = m2 overlapping subdomains ωi (overlap 2h), extended by `
layers of fine mesh elements to create oversampling domains ω∗i .

Dimension of each local approximation space is nloc.

Define the (relative) error

error := ‖ue
h − uG

h ‖a / ‖ue
h‖a.

between the GFEM solution uG
h and the fine-scale solution ue

h .
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Numerical results (error vs. local dimension)

Figure: nloc is the dimension of the local approximation space.
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Numerical results (error vs. oversampling size)

Figure: H and H∗ are subdomain and oversampling domain sizes, resp.
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Numerical results (λ−1
h,k vs. k)

Figure: Eigenvalues of the local eigenproblems in an interior subdomain
and a boundary subdomain.
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HPC Implementation: Offline/Online Approach

Presentation of Postdoc Jean Benezech (Bath) at

VIII ECCOMAS Thematic Conference on the Mechanical Response
ofComposites, Sep ’21, Gteborg

“Scalable Localized Model Order Reduction Applied to
Composite Aero-Structures”
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Conclusions

GenEO-type eigenproblems to construct new optimal local
spaces for GFEM to approximate χiu instead of u on each ωi .

Sharper bound for local approximation error: nearly exponential
decay with the local dimension and the amount of oversampling.

Two ideas for efficient approaches to solve the eigenproblems
with discrete a-harmonic constraint.

First fully discrete analysis of MS-GFEM.

Efficient offline/online implementation.

Application to aerospace composites.
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Outlook & Hardware-Awareness

Theory for linear elasticity.

Cruder approximation and iteration (like iterative refinement).

Extend approach to other PDEs (even indefinite. ones!):

Helmholtz (done!), Maxwell, Darcy in mixed form, . . .

Extension to nonlinear problems.

More robust error estimates depending only on log(amax/amin)

Ideally suited for communication-avoidance and asynchrony.

Exploit parallelism at all levels to optimise components
(eigensolver, Galerkin projection, local factorisations, global solve,...)

Implement full adaptive scheme → load balancing

Extend the approach to multilevel scheme Peter’s lecture
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More robust error estimates depending only on log(amax/amin)

Ideally suited for communication-avoidance and asynchrony.

Exploit parallelism at all levels to optimise components
(eigensolver, Galerkin projection, local factorisations, global solve,...)

Implement full adaptive scheme → load balancing

Extend the approach to multilevel scheme Peter’s lecture
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