Large-Scale Bayesian Inference: Efficient Sampling-Based Approaches

Robert Scheichl

Institute for Applied Mathematics & Interdisciplinary Center for Sceintific Computing

Collaborators: Teckentrup (Edinburgh), Dodwell (Exeter), Ketelsen (Boulder), Seelinger (Heidelberg), Reinarz (Durham), Bader (TUM), Bastian (Heidelberg)

Summer School on *"Hardware-Aware Scientific Computing"* Heidelberg, Oct 7, 2021

R. Scheichl (Heidelberg)

Large-Scale Bayesian Inference: Sampling

Many aspects of modern life involve uncertainty:

- **Biology:** health, medicine, pharmaceuticals, gene expression, cancer research
- Engineering: automobiles, aircraft, structures, materials
- Environment: weather, climate, seismic, subsurface geophysics
- Physics: quantum physics, radioactive decay
- Society: finance, insurance industry, elections, military

What is Uncertainty Quantification (UQ)? Examples

Source: National Hurricane Center, USA

Predicted storm path with uncertainty cones.

R. Scheichl (Heidelberg)

Large-Scale Bayesian Inference: Sampling

Heidelberg, Oct 7, 2021 3 / 61

What is Uncertainty Quantification (UQ)? Examples

Source: GKN Aerospace

Predicted strength of carbon fibre wing subject to manufacturing defects

What is Uncertainty Quantification (UQ)?

Uncertainty Quantification and the Scientific Computing Paradigm

What is Uncertainty Quantification (UQ)?

Uncertainty Quantification and the Scientific Computing Paradigm

What is Uncertainty Quantification (UQ)? The "Fruit Fly" of UQ

The most popular **model problem** in the UQ community is the steady-state diffusion problem with uncertain coefficient function:

 $-\nabla \cdot (k \nabla p) = f$ on domain $D \subset \mathbb{R}^d$.

(an elliptic partial differential equation modelling many processes)

What is Uncertainty Quantification (UQ)? The "Fruit Fly" of UQ

The most popular **model problem** in the UQ community is the steady-state diffusion problem with uncertain coefficient function:

 $-\nabla \cdot (k \nabla p) = f$ on domain $D \subset \mathbb{R}^d$.

(an elliptic partial differential equation modelling many processes)

Typically only interested in a functional Q of the solution p, known as a quantity of interest (Qol):

e.g.
$$Q(p) = p(\mathbf{x}_0)$$
 or $Q(p) = \frac{1}{|D_0|} \int_{D_0} p(\mathbf{x}) d\mathbf{x}$.

How can uncertainty in the coefficient k be addressed?

What is Uncertainty Quantification (UQ)? The "Fruit Fly" of UQ

The most popular **model problem** in the UQ community is the steady-state diffusion problem with uncertain coefficient function:

 $-\nabla \cdot (k \nabla p) = f$ on domain $D \subset \mathbb{R}^d$.

(an elliptic partial differential equation modelling many processes)

Typically only interested in a functional Q of the solution p, known as a quantity of interest (Qol):

e.g.
$$Q(p) = p(\mathbf{x}_0)$$
 or $Q(p) = \frac{1}{|D_0|} \int_{D_0} p(\mathbf{x}) d\mathbf{x}$.

How can uncertainty in the coefficient k be addressed?

• Worst case analysis: Calculate uncertainty interval

$$\mathscr{I} = \Big[\inf_{\|k-k_0\|<\varepsilon} Q(p(k)), \sup_{\|k-k_0\|<\varepsilon} Q(p(k))\Big].$$

What is Uncertainty Quantification (UQ)? Probabilistic model

But, in general, some coefficients with $||k - k_0|| < \varepsilon$ are more likely than others

\Rightarrow Probabilistic approach

• Introduce probability measure on $S := \{k : ||k - k_0|| < \varepsilon\}$.

What is Uncertainty Quantification (UQ)? Probabilistic model

But, in general, some coefficients with $||k - k_0|| < \varepsilon$ are more likely than others

⇒ Probabilistic approach

- Introduce probability measure on $S := \{k : ||k k_0|| < \varepsilon\}$.
- Then Q(p(·)), as a (measurable) mapping on S, induces a probability measure for the Qol (Uncertainty Propagation)
- Big issue: choice of distribution, information too subjective?

What is Uncertainty Quantification (UQ)? Probabilistic model

But, in general, some coefficients with $||k - k_0|| < \varepsilon$ are more likely than others

\Rightarrow Probabilistic approach

- Introduce probability measure on $S := \{k : ||k k_0|| < \varepsilon\}$.
- Then Q(p(·)), as a (measurable) mapping on S, induces a probability measure for the Qol (Uncertainty Propagation)
- Big issue: choice of distribution, information too subjective?
- The point of departure for *Bayesian inference* is to choose the distribution based on (output) data (Uncertainty Quantification) ("prior" distribution on *S* becomes less important)

What is Uncertainty Quantification (UQ)? Probabilistic model

But, in general, some coefficients with $||k - k_0|| < \varepsilon$ are more likely than others

\Rightarrow Probabilistic approach

- Introduce probability measure on $S := \{k : ||k k_0|| < \varepsilon\}$.
- Then Q(p(·)), as a (measurable) mapping on S, induces a probability measure for the Qol (Uncertainty Propagation)
- Big issue: choice of distribution, information too subjective?
- The point of departure for *Bayesian inference* is to choose the distribution based on (output) data (Uncertainty Quantification) ("prior" distribution on *S* becomes less important)
- Additional goal: robust and efficient deterministic solvers and discretisations for multiscale problems First Lecture!

Heidelberg, Oct 7, 2021

7 / 61

Numerical Analysis / Method Design / Applications

A Case Study: Radioactive Waste Disposal EPSRC project with UK Nuclear Decommisioning Authority (with Cliffe & Giles)

UQ scenario: accidental release of radionuclides and then transport by groundwater. Quantity of interest: \log_{10} of particle travel time.

WIPP repository, NM

A Case Study: Radioactive Waste Disposal EPSRC project with UK Nuclear Decommisioning Authority (with Cliffe & Giles)

UQ scenario: accidental release of radionuclides and then transport by groundwater. Quantity of interest: \log_{10} of particle travel time.

• Steady-state *Darcy flow* for *pressure p*:

 $-\nabla \cdot (\mathbf{k} \nabla p) = 0$ on D, $p = p_0$ on ∂D .

• Permeability k modelled as random field.

UQ scenario: accidental release of radionuclides and then transport by groundwater. Quantity of interest: \log_{10} of particle travel time.

• Steady-state Darcy flow for pressure p:

 $-\nabla \cdot \left(\mathbf{k} \nabla p \right) = 0$ on D, $p = p_0$ on ∂D .

- Permeability k modelled as random field.
- In hydrology typically lognormal:

log $k(\mathbf{x}, \omega) =: Z(\mathbf{x}, \omega)$ Gaussian w. mean $\overline{Z}(\mathbf{x})$ and stationary and isotropic covariance

$$\mathbb{E}\left[\left(Z(\mathbf{x},\cdot)-\overline{Z}(\mathbf{x})\right)\left(Z(\mathbf{y},\cdot)-\overline{Z}(\mathbf{y})\right)\right]=c\left(\|\mathbf{x}-\mathbf{y}\|_{2}\right)$$

Large-Scale Bayesian Inference: Sampling

Matérn covariance functions c(r)e.g. for $\nu = 0.5$: $c(r) := \sigma^2 \exp\left(-\frac{r}{\lambda}\right)$

Matérn covariance functions c(r)e.g. for $\nu = 0.5$: $c(r) := \sigma^2 \exp\left(-\frac{r}{\lambda}\right)$

 $\nu = 0.5, \ \lambda = 0.5$

Matérn covariance functions c(r)e.g. for $\nu = 0.5$: $c(r) := \sigma^2 \exp\left(-\frac{r}{\lambda}\right)$

 $\nu = 0.5, \ \lambda = 0.05$

Matérn covariance functions c(r)e.g. for $\nu = 0.5$: $c(r) := \sigma^2 \exp\left(-\frac{r}{\lambda}\right)$

 $\nu = 2.5, \ \lambda = 0.05$

e.g. for $\nu = 0.5$: $c(r) := \sigma^2 \exp\left(-\frac{r}{\lambda}\right)$

 $\nu = 2.5, \ \lambda = 0.05$

Smoothness: Realisations $Z(\cdot, \omega) \in C^{\eta}(D)$ (Hölder), for any $\eta < \nu$, Typically $\nu < 1$, $\lambda \ll 1 \implies$ fine mesh $h \ll 1$ Karhunen-Loève expansion $(\mu_m \downarrow 0 \text{ as } m \to \infty)$:

$$Z(\mathbf{x},\omega) = \overline{Z}(\mathbf{x}) + \sum_{m=1}^{\infty} \sqrt{\mu_m} \phi_m(\mathbf{x}) Z_m(\omega)$$

 $\{\phi_m\}_{m\in\mathbb{N}}$ are the normalised eigenfunctions and $Z_m \sim N(0,1)$ (i.i.d.)

In practice: truncated Karhunen-Loève expansion:

$$Z^{s}(\mathbf{x},\omega) = \overline{Z}(\mathbf{x}) + \sum_{m=1}^{s} \sqrt{\mu_{m}} \phi_{m}(\mathbf{x}) Z_{m}(\omega)$$

 $\{\phi_m\}_{m\leq s}$ are the normalised eigenfunctions and $Z_m \sim N(0,1)$ (i.i.d.)

In practice: truncated Karhunen-Loève expansion:

$$Z^{s}(x,\omega) = \overline{Z}(\mathbf{x}) + \sum_{m=1}^{s} \sqrt{\mu_{m}} \phi_{m}(\mathbf{x}) Z_{m}(\omega)$$

 $\{\phi_m\}_{m\leq s}$ are the normalised eigenfunctions and $Z_m \sim N(0,1)$ (i.i.d.)

Typically $\lambda \ll 1$ and $\nu < 1$

slow KL-eigenvalue decay

high stochastic dimension $s \gg 1$

Uncertainty Propagation The Forward Problem

Uncertainty Propagation - High-dimensional Quadrature

 $Z(\mathbf{x},\omega) \in X \xrightarrow{\text{Model}} p(\mathbf{x},\omega) \in V \xrightarrow{\text{Output}} Q(\omega) \in \mathbb{R}(\text{or } \mathbb{R}^J) \xrightarrow{\text{Statistics}}$ $\mathbb{E}[Q]$ RF input RF output quantity of interest

Uncertainty Propagation - High-dimensional Quadrature

• In practice, we need to use finite representations of Z and p: (e.g. truncated KL expansion and FE discretisation of the PDE)

$$\mathsf{Z}(\omega) \in \mathbb{R}^{s} \xrightarrow{\mathsf{Model}(h)} \mathsf{P}(\omega) \in \mathbb{R}^{M_{h}} \xrightarrow{\mathsf{Output}} Q_{h,s}(\omega) \in \mathbb{R}(\mathsf{or } \mathbb{R}^{J}) \xrightarrow{\mathsf{Quadrature}} \widehat{Q}_{h,s}$$

Uncertainty Propagation - High-dimensional Quadrature

• In practice, we need to use **finite representations** of Z and p: (e.g. truncated KL expansion and FE discretisation of the PDE)

$$\mathbf{Z}(\omega) \in \mathbb{R}^{s} \xrightarrow{\mathsf{Model}(h)} \mathbf{P}(\omega) \in \mathbb{R}^{M_{h}} \xrightarrow{\mathsf{Output}} Q_{h,s}(\omega) \in \mathbb{R}(\mathsf{or } \mathbb{R}^{J}) \xrightarrow{\mathsf{Quadrature}} \widehat{Q}_{h,s}$$
random input FE state vector quantity of interest

• Consider only equal weight quadrature rules

$$\widehat{Q}_{h,s} := rac{1}{N} \sum_{i=1}^{N} Q_{h,s}(\mathbf{Z}^{(i)})$$

• Monte Carlo: Z⁽ⁱ⁾ i.i.d. random (N(0, I) for lognormal diffusion)

• Depending on how smooth $Q_{h,s}$ is w.r.t. **Z**, the **quadrature error** is

$$\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\| = \mathscr{O}(N^{-\eta}), \quad \text{for some } \eta > 0$$

• Depending on how smooth $Q_{h,s}$ is w.r.t. Z, the quadrature error is

 $\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\| = \mathscr{O}(N^{-\eta}), \quad \text{for some } \eta > 0$

• For discretisation & truncation error we assume weak convergence:

 $\|\mathbb{E}[Q_{h,s}-Q]\| = \mathscr{O}(M_h^{-\alpha}), \quad \text{for some } \alpha > 0$

- Depending on how smooth $Q_{h,s}$ is w.r.t. Z, the quadrature error is $\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\| = \mathcal{O}(N^{-\eta}), \quad \text{for some } \eta > 0$
- For discretisation & truncation error we assume weak convergence:

 $\|\mathbb{E}[Q_{h,s}-Q]\| = \mathscr{O}(M_h^{-\alpha}), \quad \text{for some } \alpha > 0$

• Then the **total error** is:

 $\left\|\widehat{Q}_{h,s} - \mathbb{E}[Q]\right\| \le \left\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\right\| + \left\|\mathbb{E}[Q_{h,s} - Q]\right\| = \mathscr{O}(M_h^{-\alpha} + N^{-\eta})$

- Depending on how smooth $Q_{h,s}$ is w.r.t. Z, the quadrature error is $\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\| = \mathcal{O}(N^{-\eta}), \quad \text{for some } \eta > 0$
- For discretisation & truncation error we assume weak convergence:

 $\|\mathbb{E}[Q_{h,s}-Q]\| = \mathscr{O}(M_h^{-lpha}), \quad \text{for some } \alpha > 0$

• Then the total error is:

 $\left\|\widehat{Q}_{h,s} - \mathbb{E}[Q]\right\| \le \left\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\right\| + \left\|\mathbb{E}[Q_{h,s} - Q]\right\| = \mathscr{O}(M_h^{-\alpha} + N^{-\eta})$

• Assuming cost per sample $\operatorname{Cost}(Q_{h,s}^{(i)}) = \mathscr{O}(M_h^{\gamma})$, for some $\gamma \geq 1$.

13 / 61

- Depending on how smooth $Q_{h,s}$ is w.r.t. Z, the quadrature error is $\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\| = \mathcal{O}(N^{-\eta}), \quad \text{for some } \eta > 0$
- For discretisation & truncation error we assume weak convergence:

 $\left\|\mathbb{E}[Q_{h,s}-Q]\right\| = \mathscr{O}(M_h^{-lpha}), \qquad ext{for some } \alpha > 0$

• Then the **total error** is:

 $\left\|\widehat{Q}_{h,s} - \mathbb{E}[Q]\right\| \leq \left\|\widehat{Q}_{h,s} - \mathbb{E}[Q_{h,s}]\right\| + \left\|\mathbb{E}[Q_{h,s} - Q]\right\| = \mathscr{O}(M_h^{-\alpha} + N^{-\eta})$

• Assuming cost per sample $\operatorname{Cost}(Q_{h,s}^{(i)}) = \mathscr{O}(M_h^{\gamma})$, for some $\gamma \geq 1$.

The ε -Cost (i.e. the cost to achieve error $< \varepsilon$) is

$$\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}) = \mathscr{O}(\mathsf{NM}_{h}^{\gamma}) = \mathscr{O}(\varepsilon^{-1/\eta - \gamma/\alpha})$$

Example: Standard Monte Carlo 2D lognormal Darcy (with $\nu = 1/2$), AMG solver, $Q = \| -k \frac{\partial p}{\partial x_1} \|_{L^1(D)}$

• Standard MC: $\eta = 1/2$

Independent of s !
Example: Standard Monte Carlo 2D lognormal Darcy (with $\nu = 1/2$), AMG solver, $Q = \| -k \frac{\partial p}{\partial x_i} \|_{L^1(D)}$

- Standard MC: $\eta = 1/2$ Independent of *s* !
- Numerically observed cost/sample: $\approx \mathscr{O}(M_h) = \mathscr{O}(h^{-2}) \implies \gamma \approx 1.$
- Numerically observed FE-error: $\approx \mathcal{O}(M_h^{-3/8}) \implies \alpha \approx 3/8$. (rigorous analysis also exists)

Example: Standard Monte Carlo 2D lognormal Darcy (with $\nu = 1/2$), AMG solver, $Q = \| -k \frac{\partial p}{\partial x_i} \|_{L^1(D)}$

- Standard MC: $\eta = 1/2$ Independent of *s* !
- Numerically observed cost/sample: $\approx \mathscr{O}(M_h) = \mathscr{O}(h^{-2}) \implies \gamma \approx 1.$
- Numerically observed FE-error: $\approx \mathcal{O}(M_h^{-3/8}) \implies \alpha \approx 3/8$. (rigorous analysis also exists)
- Hence, total cost to get error O(ε): ≈ O(ε^{-14/3})
 to get error reduction by a factor 2 → cost has to grow by a factor 25!

Example: Standard Monte Carlo 2D lognormal Darcy (with $\nu = 1/2$), AMG solver, $Q = \| -k \frac{\partial p}{\partial x_1} \|_{L^1(D)}$

- Standard MC: $\eta = 1/2$ Independent of s !
- Numerically observed cost/sample: $\approx \mathscr{O}(M_h) = \mathscr{O}(h^{-2}) \implies \gamma \approx 1$.
- Numerically observed FE-error: $\approx \mathcal{O}(M_{h}^{-3/8}) \implies \alpha \approx 3/8$. (rigorous analysis also exists)
- Hence, total cost to get error $\mathscr{O}(\varepsilon)$: $\approx \mathscr{O}(\varepsilon^{-14/3})$ to get error reduction by a factor $2 \rightarrow \text{cost}$ has to grow by a factor 25!

ε	h^{-1}	Ν	Cost
0.01	129	$1.4 imes10^4$	$21\mathrm{min}$
0.002	1025	3.5×10^5	$30\mathrm{days}$

Case 1: $\sigma^2 = 1$, $\lambda = 0.3$, $\nu = 0.5$ **Case 2:** $\sigma^2 = 3$, $\lambda = 0.1$, $\nu = 0.5$

ε	h^{-1}	N	Cost
0.01	513	$8.5 imes10^3$	$4\mathrm{h}$
0.002	Prohibitively large!!		

(actual numbers & CPU times from 2010 on cluster of 2GHz Intel T7300 procs)

Multilevel Quadrature [Heinrich, 1998], [Giles, 2008], ...

Key idea: "sample" from Q on a hierarchy of levels with different discretization parameters h₀,..., h_L = h and s₀,..., s_L = s, and use

$$Q_{h,s} = \underbrace{Q_0}_{=:Y_0} + \sum_{\ell=1}^{L} \left(\underbrace{Q_{\ell} - Q_{\ell-1}}_{=:Y_{\ell}} \right) = \sum_{\ell=0}^{L} Y_{\ell} \quad (\text{telescoping sum})$$

e.g. uniform mesh refinement $h_{\ell} = h_{\ell-1}/2$ (write $Q_{\ell} := Q_{h_{\ell},s_{\ell}}$).

Multilevel Quadrature [Heinrich, 1998], [Giles, 2008], ...,

Key idea: "sample" from Q on a hierarchy of levels with different discretization parameters h₀,..., h_L = h and s₀,..., s_L = s, and use

$$Q_{h,s} = \underbrace{Q_0}_{=:Y_0} + \sum_{\ell=1}^{L} \left(\underbrace{Q_{\ell} - Q_{\ell-1}}_{=:Y_{\ell}} \right) = \sum_{\ell=0}^{L} Y_{\ell} \quad (\text{telescoping sum})$$

e.g. uniform mesh refinement $h_{\ell} = h_{\ell-1}/2$ (write $Q_{\ell} := Q_{h_{\ell},s_{\ell}}$).

Given a (single-level) quadrature rule \widehat{Y}_{ℓ} , define the **multilevel quadrature rule** for $\mathbb{E}[Q]$ by

$$\widehat{Q}_{h,s}^{\mathsf{ML}} := \sum_{\ell=0}^{L} \widehat{Y}_{\ell}$$

Multilevel Quadrature [Heinrich, 1998], [Giles, 2008], ...,

Key idea: "sample" from Q on a hierarchy of levels with different discretization parameters h₀,..., h_L = h and s₀,..., s_L = s, and use

$$Q_{h,s} = \underbrace{Q_0}_{=:Y_0} + \sum_{\ell=1}^{L} \left(\underbrace{Q_{\ell} - Q_{\ell-1}}_{=:Y_{\ell}} \right) = \sum_{\ell=0}^{L} Y_{\ell} \quad (\text{telescoping sum})$$

e.g. uniform mesh refinement $h_{\ell} = h_{\ell-1}/2$ (write $Q_{\ell} := Q_{h_{\ell},s_{\ell}}$).

Given a (single-level) quadrature rule \widehat{Y}_{ℓ} , define the **multilevel quadrature rule** for $\mathbb{E}[Q]$ by

$$\widehat{Q}_{h,s}^{\mathsf{ML}} := \sum_{\ell=0}^{L} \widehat{Y}_{\ell}.$$

• e.g. Multilevel Monte Carlo $Q_{h,s}^{\text{MLMC}} := \sum_{\ell=0}^{L} \left(\frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell}(\mathbf{Z}^{(i)}) \right)$

Where does the cost reduction come from? Multilevel Monte Carlo case

• Level 0: $N_0 \approx N^{MC} \approx \varepsilon^{-2}$, but cost per sample reduced to

$$\mathsf{Cost}(Y_0^{(i)}) = \mathsf{Cost}(Q_0^{(i)}) = \mathscr{O}(h_0^{-\gamma}) = \mathscr{O}(1)$$

Hence,
$$\mathscr{C}_{\varepsilon}(\widehat{Y}_0) = \mathscr{O}(\varepsilon^{-2})$$

Where does the cost reduction come from? Multilevel Monte Carlo case

• Level 0: $N_0 \approx N^{MC} \approx \varepsilon^{-2}$, but cost per sample reduced to

$$\operatorname{Cost}(Y_0^{(i)}) = \operatorname{Cost}(Q_0^{(i)}) = \mathscr{O}\left(h_0^{-\gamma}\right) = \mathscr{O}(1)$$

Hence,
$$\mathscr{C}_{\varepsilon}(\widehat{Y}_0) = \mathscr{O}(\varepsilon^{-2})$$
.

• Level L: provided discretisation error converges strongly (pathwise) $\|Y_L^{(i)}\| = \|Q_L(\mathbf{Z}^{(i)}) - Q_{L-1}(\mathbf{Z}^{(i)})\| = \mathscr{O}(h_L^{\alpha}) = \mathscr{O}(\varepsilon).$

(Assuming same weak and strong convergence rates - not always the case!)

Where does the cost reduction come from? Multilevel Monte Carlo case

• Level 0: $N_0 \approx N^{\rm MC} \approx \varepsilon^{-2}$, but cost per sample reduced to

$$\operatorname{Cost}(Y_0^{(i)}) = \operatorname{Cost}(Q_0^{(i)}) = \mathscr{O}\left(h_0^{-\gamma}\right) = \mathscr{O}(1)$$

Hence,
$$\mathscr{C}_{\varepsilon}(\widehat{Y}_0) = \mathscr{O}(\varepsilon^{-2})$$
.

• Level L: provided discretisation error converges strongly (pathwise) $\|Y_L^{(i)}\| = \|Q_L(\mathbf{Z}^{(i)}) - Q_{L-1}(\mathbf{Z}^{(i)})\| = \mathscr{O}(h_L^{\alpha}) = \mathscr{O}(\varepsilon).$

(Assuming same weak and strong convergence rates - not always the case!)

Then the Law of Large Numbers gives

$$\mathbb{E}\left[\mathbb{E}[Y_L] - \widehat{Y}_L^{\mathsf{MC}}\right]^{1/2} = \mathscr{O}(\varepsilon) N_L^{-1/2} \,.$$

We can choose $N_L = \mathscr{O}(1)$ and

$$d \quad \mathscr{C}_{\varepsilon}(\widehat{Y}_L) = \mathscr{O}(h_L^{-\gamma}) = \mathscr{O}(\varepsilon^{-\gamma/\alpha}) \,.$$

Theorem (Cliffe, Giles, RS, Teckentrup, '11 & Teckentrup, Thesis '13) Suppose there are constants $\alpha, \beta, \gamma, \eta > 0$ s.t., for all $\ell = 0, ..., L$, (M1) $\|\mathbb{E}[Q_{\ell} - Q]\| = \mathcal{O}(M_{\ell}^{-\alpha})$, (M2) $\|\widehat{Y}_{\ell} - \mathbb{E}[Y_{\ell}]\| = \mathcal{O}(N_{\ell}^{-\eta}M_{\ell}^{-\beta/2})$, (M3) $\operatorname{Cost}(\widehat{Y}_{\ell}) = \mathcal{O}(N_{\ell}M_{\ell}^{\gamma})$.

Then there are L and $\{N_\ell\}_{\ell=0}^L$ such that (in the special case $\beta = 2\alpha$)

$$\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,\varepsilon}^{ML}) = \begin{cases} \mathscr{O}(\varepsilon^{-1/\eta}), & \text{if } \alpha > \gamma\eta, \\ \mathscr{O}(\varepsilon^{-1/\eta}) |\log(\varepsilon)|^{(2\eta+1)/(2\eta)}, & \text{if } \alpha = \gamma\eta, \\ \mathscr{O}(\varepsilon^{-\gamma/\alpha}), & \text{if } \alpha < \gamma\eta. \end{cases}$$

Example: Multilevel Monte Carlo for 2D lognormal diffusion and linear FEs

Multilevel Monte Carlo: $\eta = \frac{1}{2}$ (using $||X|| := \sqrt{\mathbb{E}[X^2]}$, i.e. RMSE)

• Using truncated KLE: $\alpha = \min(1, \nu), \ \gamma = \min(2, 1 + \frac{1}{\nu})$

$$\Rightarrow \ \mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMC}}) = \mathscr{O}\left(\varepsilon^{-\max(2,2/\nu)}\right)$$

Example: Multilevel Monte Carlo for 2D lognormal diffusion and linear FEs

Multilevel Monte Carlo: $\eta = \frac{1}{2}$ (using $||X|| := \sqrt{\mathbb{E}[X^2]}$, i.e. RMSE) • Using truncated KLE: $\alpha = \min(1, \nu), \ \gamma = \min(2, 1 + \frac{1}{\nu})$

$$\Rightarrow \mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMC}}) = \mathscr{O}\left(\varepsilon^{-\max(2,2/\nu)}\right) \qquad \boxed{\mathsf{Independent of } s \;!}$$

(Can be improved using FFT-based sampling to $\mathscr{O}\left(\varepsilon^{-2}\right)$ for all ν .)

Example: Multilevel Monte Carlo for 2D lognormal diffusion and linear FEs

Multilevel Monte Carlo: $\eta = \frac{1}{2}$ (using $||X|| := \sqrt{\mathbb{E}[X^2]}$, i.e. RMSE) • Using truncated KLE: $\alpha = \min(1, \nu), \ \gamma = \min(2, 1 + \frac{1}{\nu})$

 $\Rightarrow \mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMC}}) = \mathscr{O}\left(\varepsilon^{-\max(2,2/\nu)}\right) \qquad \boxed{\mathsf{Independent of } s !}$

(Can be improved using FFT-based sampling to $\mathscr{O}(\varepsilon^{-2})$ for all ν .)

Very interesting Numerical Analysis questions to prove (M1) and (M2) [Charrier, RS, Teckentrup, SINUM '13], [Teckentrup, RS, Giles, Ullmann, NM '13] as well as to prove (M3)

Example: Multilevel Monte Carlo for 2D lognormal diffusion and linear FEs

Multilevel Monte Carlo: $\eta = \frac{1}{2}$ (using $||X|| := \sqrt{\mathbb{E}[X^2]}$, i.e. RMSE) • Using truncated KLE: $\alpha = \min(1, \nu), \ \gamma = \min(2, 1 + \frac{1}{\nu})$

 $\Rightarrow \mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMC}}) = \mathscr{O}\left(\varepsilon^{-\max(2,2/\nu)}\right) \qquad \boxed{\mathsf{Independent of } s !}$

(Can be improved using FFT-based sampling to $\mathscr{O}(\varepsilon^{-2})$ for all ν .)

Very interesting Numerical Analysis questions to prove (M1) and (M2) [Charrier, RS, Teckentrup, SINUM '13], [Teckentrup, RS, Giles, Ullmann, NM '13] as well as to prove (M3)

Can this be improved?

Multilevel Quasi-Monte Carlo [Kuo et al, 2015], [Kuo et al, 2017]

$$\mathbb{E}\left[Y_{\ell}\right] = \int_{[0,1]^s} Y_{\ell}\left(\Phi^{-1}(\boldsymbol{\xi})\right) \mathrm{d}\boldsymbol{\xi} \; \approx \; \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell}\left(\Phi^{-1}(\boldsymbol{\xi}^{(i)})\right) =: \widehat{Y}_{\ell}^{\mathsf{QMC}}$$

with $\mathbf{\Phi}: \mathbb{R}^s \to [0,1]^s$ the cumulative normal distribution function.

Multilevel Quasi-Monte Carlo [Kuo et al, 2015], [Kuo et al, 2017]

$$\mathbb{E}\left[Y_{\ell}\right] = \int_{[0,1]^{s}} Y_{\ell}\left(\Phi^{-1}(\boldsymbol{\xi})\right) \mathrm{d}\boldsymbol{\xi} \; \approx \; \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell}\left(\Phi^{-1}\left(\boldsymbol{\xi}^{(i)}\right)\right) =: \widehat{Y}_{\ell}^{\mathsf{QMC}}$$

with $\boldsymbol{\Phi}:\mathbb{R}^s\rightarrow [0,1]^s$ the cumulative normal distribution function.

Monte Carlo: $\xi^{(i)}$ unif. random $\mathcal{O}(N^{-1/2})$ convergence (order of variables irrelevant)

QMC: $\xi^{(i)}$ deterministic close to $\mathcal{O}(N^{-1})$ convergence (order of variables important !)

64 random points

64 Sobol' points

Multilevel Quasi-Monte Carlo [Kuo et al, 2015], [Kuo et al, 2017]

$$\mathbb{E}\left[Y_{\ell}\right] = \int_{[0,1]^{s}} Y_{\ell}\left(\Phi^{-1}(\boldsymbol{\xi})\right) \mathrm{d}\boldsymbol{\xi} \; \approx \; \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} Y_{\ell}\left(\Phi^{-1}\left(\boldsymbol{\xi}^{(i)}\right)\right) =: \widehat{Y}_{\ell}^{\mathsf{QMC}}$$

with $\boldsymbol{\Phi}:\mathbb{R}^s\rightarrow [0,1]^s$ the cumulative normal distribution function.

Monte Carlo: $\xi^{(i)}$ unif. random $\mathcal{O}(N^{-1/2})$ convergence (order of variables irrelevant)

QMC: $\xi^{(i)}$ deterministic close to $\mathcal{O}(N^{-1})$ convergence (order of variables important !)

Theorem. For $\nu > \frac{3d}{2} + 1$ and any $\delta > 0$: $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMC}}) = \mathscr{O}(\varepsilon^{-1+\delta})$

Multilevel Quasi-Monte Carlo

Numerical Comparison for 2D lognormal diffusion

 $D = (0, 1)^2$; linear FEs; $Q = \frac{1}{|D^*|} \int_{D^*} p \, dx$; truncated KLE w. $s \sim h^{-2/\nu}$; using a randomised lattice rule with product weights $\gamma_i = 1/j^2$.

Uncertainty Quantification The Inverse Problem

Uncertainty Quantification - The Inverse Problem

Bayesian interpretation of an inverse problem

The (physical) model gives us $\pi(y|x)$, the conditional probability of observing y given x ("likelihood"), e.g. assuming additive Gaussian noise:

$$y = H(x) + \eta$$

where $H: X \to \mathbb{R}^m$ is the forward operator and $\eta \sim N(\mathbf{0}, \Sigma)$ is the noise.

• So the *maximum likelihood estimate* in the Bayesian interpretation is the solution of the least squares problem

 $\operatorname{argmin}_{x\in X} \|y - H(x)\|_{\Sigma^{-1}}^2$

Uncertainty Quantification - The Inverse Problem

Bayesian interpretation of an inverse problem

The (physical) model gives us $\pi(y|x)$, the conditional probability of observing y given x ("likelihood"), e.g. assuming additive Gaussian noise:

$$y = H(x) + \eta$$

where $H: X \to \mathbb{R}^m$ is the forward operator and $\eta \sim N(\mathbf{0}, \Sigma)$ is the noise.

• So the *maximum likelihood estimate* in the Bayesian interpretation is the solution of the least squares problem

$$\operatorname{argmin}_{x\in X} \|y - H(x)\|_{\Sigma^{-1}}^2$$

But often we are really interested in $\pi(x|y)$, i.e. the conditional probability of possible causes x given the observed data y ("posterior" density).

Uncertainty Quantification – The Inverse Problem Bayes' rule and MAP estimate

A simple result about conditional probabilities states

$$\pi(x|y) = \frac{\pi(y|x)\pi(x)}{\pi(y)}$$
 (Bayes' rule)

where $\pi(x) = \text{prior density} - \text{our knowledge/belief about } x$ $(\pi(y) = \text{marginal of } \pi(x, y) \text{ over all possible } x, \text{ an unimportant scaling factor.})$

Uncertainty Quantification – The Inverse Problem Bayes' rule and MAP estimate

A simple result about conditional probabilities states

 $\pi(x|y) = rac{\pi(y|x)\pi(x)}{\pi(y)}$ (Bayes' rule)

where $\pi(x) = \text{prior density} - \text{our knowledge/belief about } x$ ($\pi(y) = \text{marginal of } \pi(x, y)$ over all possible x, an unimportant scaling factor.)

• The maximum a posteriori (MAP) estimate with Gaussian prior $x \sim N(x_0, R)$ is the solution of the regularised least squares problem

$$\operatorname{argmin}_{x \in X} \|y - H(x)\|_{\Sigma^{-1}}^2 + \|x - x_0\|_{R^{-1}}^2$$

(in addition, we can also get the posterior covariance at the MAP point)

Uncertainty Quantification – The Inverse Problem Bayes' rule and MAP estimate

A simple result about conditional probabilities states

 $\pi(x|y) = rac{\pi(y|x)\pi(x)}{\pi(y)}$ (Bayes' rule)

where $\pi(x) = \text{prior density} - \text{our knowledge/belief about } x$ ($\pi(y) = \text{marginal of } \pi(x, y)$ over all possible x, an unimportant scaling factor.)

• The maximum a posteriori (MAP) estimate with Gaussian prior $x \sim N(x_0, R)$ is the solution of the regularised least squares problem

$$\operatorname{argmin}_{x \in X} \|y - H(x)\|_{\Sigma^{-1}}^2 + \|x - x_0\|_{R^{-1}}^2$$

(in addition, we can also get the posterior covariance at the MAP point)

Can we do better than finding the MAP estimate and its covariance?

Metropolis-Hastings Markov Chain Monte Carlo

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^0 \in X$ (typically "burn in").
- At state xⁿ generate proposal x' ∈ X from distribution q(x'|xⁿ) (e.g. via a random walk x' ~ N(xⁿ, B))
- Accept x' as a sample with probability

$$\boldsymbol{\alpha}(x'|x^n) = \min\left(1, \frac{\pi(x'|y) q(x^n|x')}{\pi(x^n|y) q(x'|x^n)}\right)$$

i.e. $x^{n+1} = x'$ with probability $\alpha(x'|x^n)$; otherwise $x^{n+1} = x^n$.

Metropolis-Hastings Markov Chain Monte Carlo

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^0 \in X$ (typically "burn in").
- At state xⁿ generate proposal x' ∈ X from distribution q(x'|xⁿ) (e.g. via a random walk x' ~ N(xⁿ, B))
- Accept x' as a sample with probability

$$\boldsymbol{\alpha}(x'|x^n) = \min\left(1, \frac{\pi(x'|y) q(x^n|x')}{\pi(x^n|y) q(x'|x^n)}\right)$$

i.e. $x^{n+1} = x'$ with probability $\alpha(x'|x^n)$; otherwise $x^{n+1} = x^n$.

The samples $f(x^n)$ of some output function ("statistic") $f(\cdot)$ can be used for inference as usual (even though not i.i.d.):

$$\widehat{f}^{ ext{MetH}} := rac{1}{N} \sum_{i=1}^{N} f(x^n) \approx \mathbb{E}_{\pi(x|y)}[f(x)]$$

BUT asymptotic variance (and thus N) scales w. integr. autocorrelation time!

MCMC Example (Sample 1)

MCMC Example (Sample 2)

MCMC Example (Sample 3)

MCMC Example (Sample 4)

MCMC Example (Sample 5)

MCMC Example (Sample 6)

MCMC Example (Sample 7)

MCMC Example (Sample 8)

MCMC Example (Sample 9)

MCMC Example (Sample 20)

MCMC Example (Sample 30)

MCMC Example (Sample 40)

MCMC Example (Sample 50)

MCMC Example (Sample 60)

MCMC Example (Sample 70)

MCMC Example (Sample 80)

MCMC Example (Sample 90)

MCMC Example (Sample 100)

Particulary important when studying complex physical or biological systems where only **very sparse and noisy data** is available, but good mathematical models exist to describe the system.

Examples:

- Atmospheric, ocean or subsurface flow
- Cardiovascular system or tracer diffusion in brain imaging
- Structural mechanics of composite materials or bones

Particulary important when studying complex physical or biological systems where only **very sparse and noisy data** is available, but good mathematical models exist to describe the system.

Examples:

- Atmospheric, ocean or subsurface flow
- Cardiovascular system or tracer diffusion in brain imaging
- Structural mechanics of composite materials or bones

Machine Learning and Neural Networks alone will not be sufficient!

Need to add mathematical modelling & scientific computing to toolkit:

New Challenges!

Sashi's first lecture

Data for Radioactive Waste Example (WIPP) Prior Model [Ernst et al, 2014]

log
$$a \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j^{\text{cond}}(x) \theta_j(\omega)$$
 with i.i.d. $\theta_j \sim N(0, 1)$

Karhunen-Loève modes (j = 1, 2, 9, 16) conditioned on 38 permeability observations

(via kriging = Gaussian process regression = low-rank change to covariance operator)

Data for Radioactive Waste Example (WIPP) Prior Model [Ernst et al, 2014]

log
$$a \approx \sum_{j=1}^{s} \sqrt{\mu_j} \phi_j^{\text{cond}}(x) \theta_j(\omega)$$
 with i.i.d. $\theta_j \sim N(0, 1)$

Karhunen-Loève modes (j = 1, 2, 9, 16) conditioned on 38 permeability observations

(via kriging = Gaussian process regression = low-rank change to covariance operator)

Prior model: $\pi_{pr,s}(\theta)$ is multivariate standard Gaussian density for $\theta \in \mathbb{R}^{s}$

R. Scheichl (Heidelberg)

Data for Radioactive Waste Example (WIPP) Likelihood Model [Ernst et al, 2014]

- Data y are pressure measurements.
- $F_h(\theta)$ is the model response.

Data for Radioactive Waste Example (WIPP) Likelihood Model [Ernst et al, 2014]

Likelihood model: assuming Gaussian errors with covariance Σ

$$\pi_{h,s}(y|\boldsymbol{ heta}) \ = \ \exp(-\|y - F_h(\boldsymbol{ heta})\|_{\Sigma^{-1}}^2)$$

Posterior through **Bayes'** rule: $\pi_{h,s}(\theta | y) \approx \pi_{h,s}(y|\theta) \pi_{pr,s}(\theta)$

Posterior through **Bayes'** rule: $\pi_{h,s}(\theta | y) \approx \pi_{h,s}(y|\theta) \pi_{pr,s}(\theta)$

Use **Metropolis-Hastings MCMC** (Algorithm 1) to produce samples θ^n . Then use the samples to estimate the posterior expectation of Q:

$$\widehat{Q}_{h,s}^{ ext{MetH}} := rac{1}{N} \sum_{n=1}^{N} Q_{h,s}(oldsymbol{ heta}^n) ~pprox ~\mathbb{E}_{\pi^\infty}\left[Q
ight]$$

29 / 61

Posterior through **Bayes'** rule: $\pi_{h,s}(\theta | y) \approx \pi_{h,s}(y|\theta) \pi_{pr,s}(\theta)$

Use **Metropolis-Hastings MCMC** (Algorithm 1) to produce samples θ^n . Then use the samples to estimate the posterior expectation of Q:

$$\widehat{Q}_{h,s}^{ ext{MetH}} := rac{1}{N} \sum_{n=1}^{N} Q_{h,s}(oldsymbol{ heta}^n) ~pprox ~\mathbb{E}_{\pi^\infty} \left[Q
ight]$$

Pros:

- Markov chain $\theta^n \sim \pi_{h,s}$ as $n \to \infty$ \Rightarrow "gold standard" [Stuart et al]
- s-independent, e.g. via pCN sampler [Cotter, Dashti, Stuart, 2012]

Posterior through **Bayes'** rule: $\pi_{h,s}(\theta | y) \approx \pi_{h,s}(y|\theta) \pi_{pr,s}(\theta)$

Use **Metropolis-Hastings MCMC** (Algorithm 1) to produce samples θ^n . Then use the samples to estimate the posterior expectation of Q:

$$\widehat{Q}_{h,s}^{ ext{MetH}} := rac{1}{N} \sum_{n=1}^{N} Q_{h,s}(oldsymbol{ heta}^n) ~pprox ~\mathbb{E}_{\pi^\infty} \left[Q
ight]$$

Pros:

- Markov chain θⁿ ~ π_{h,s} as n → ∞
 ⇒ "gold standard" [Stuart et al]
- s-independent, e.g. via pCN sampler [Cotter, Dashti, Stuart, 2012]

Cons:

- $\alpha_{h,s}$ very expensive for $h \ll 1$.
- $\alpha_{h,s} < 10\%$ for large s.
- $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\text{MetH}}) = \mathscr{O}(\varepsilon^{-2-\gamma/\alpha}),$ but much bigger constant !

Posterior through **Bayes'** rule: $\pi_{h,s}(\theta | y) \approx \pi_{h,s}(y|\theta) \pi_{pr,s}(\theta)$

Use **Metropolis-Hastings MCMC** (Algorithm 1) to produce samples θ^n . Then use the samples to estimate the posterior expectation of Q:

$$\widehat{Q}_{h,s}^{ ext{MetH}} := rac{1}{N} \sum_{n=1}^{N} Q_{h,s}(oldsymbol{ heta}^n) ~pprox ~\mathbb{E}_{\pi^\infty} \left[Q
ight]$$

Pros:

- Markov chain θⁿ ~ π_{h,s} as n → ∞
 ⇒ "gold standard" [Stuart et al]
- s-independent, e.g. via pCN sampler [Cotter, Dashti, Stuart, 2012]

Cons:

- $\alpha_{h,s}$ very expensive for $h \ll 1$.
- $\alpha_{h,s} < 10\%$ for large s.
- $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\text{MetH}}) = \mathscr{O}(\varepsilon^{-2-\gamma/\alpha}),$ but much bigger constant !

Can we again apply the multilevel idea?

Multilevel Markov Chain Monte Carlo

Multilevel Markov Chain Monte Carlo – Idea

[Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015] & [Dodwell et al, SIAM Rev. 2019]

What were the key ingredients of "standard" multilevel Monte Carlo?

31 / 61

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell Q_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(h_0^{-d} \ll h_L^{-d})$.

• $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much fewer samples on finer levels.

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell Q_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(h_0^{-d} \ll h_L^{-d})$.
- $\mathbb{V}[Q_{\ell} Q_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much fewer samples on finer levels.

But Important! Now target distribution $\pi_{\ell} := \pi_{h_{\ell}, s_{\ell}}(\cdot | y)$ depends on ℓ :

$$\mathbb{E}_{\pi_L} \left[Q_L \right] = \mathbb{E}_{\pi_0} \left[Q_0 \right] + \sum_{\ell} \mathbb{E}_{\pi_\ell} \left[Q_\ell \right] - \mathbb{E}_{\pi_{\ell-1}} \left[Q_{\ell-1} \right]$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell Q_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(h_0^{-d} \ll h_L^{-d})$.
- $\mathbb{V}[Q_{\ell} Q_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much fewer samples on finer levels.

But Important! Now target distribution $\pi_{\ell} := \pi_{h_{\ell},s_{\ell}}(\cdot | y)$ depends on ℓ : $\mathbb{E}_{\pi_{L}}[Q_{L}] = \underbrace{\mathbb{E}_{\pi_{0}}[Q_{0}]}_{\text{standard MCMC}} + \sum_{\ell} \underbrace{\mathbb{E}_{\pi_{\ell}}[Q_{\ell}] - \mathbb{E}_{\pi_{\ell-1}}[Q_{\ell-1}]}_{\text{multilevel MCMC (NEW)}}$ $\widehat{Q}_{h,s}^{\text{MLMH}} := \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}(\Theta_{0,0}^{n}) + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}} \left(Q_{\ell}(\Theta_{\ell,\ell}^{n}) - Q_{\ell-1}(\Theta_{\ell,\ell-1}^{n})\right)$ with correlated Markov chains $\{\Theta_{\ell,\ell-1}^{n}\}$ and $\{\Theta_{\ell,\ell}^{n}\}$ (see below).

What were the **key ingredients** of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell Q_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(h_0^{-d} \ll h_i^{-d})$.
- $\mathbb{V}[Q_{\ell} Q_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much **fewer samples** on finer levels.

But Important! Now target distribution $\pi_{\ell} := \pi_{h_{\ell}, s_{\ell}}(\cdot | y)$ depends on ℓ : $\mathbb{E}_{\pi_{L}}\left[Q_{L}\right] = \underbrace{\mathbb{E}_{\pi_{0}}\left[Q_{0}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell-1}}\left[Q_{\ell-1}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell-1}}\left[Q_{\ell-1}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right] - \mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi_{\ell}}\left[Q_{\ell}\right]}_{+\sum_{\ell}\underbrace{\mathbb{E}_{\pi}\left[Q_{\ell}\right]}_{+\sum_{\ell}$ standard MCMC multilevel MCMC (NEW) $\widehat{Q}_{h,s}^{\text{MLMH}} := \frac{1}{N_0} \sum_{n=1}^{N_0} Q_0(\Theta_{0,0}^n) + \sum_{\ell=1}^{L} \frac{1}{N_\ell} \sum_{n=1}^{N_\ell} \left(Q_\ell(\Theta_{\ell,\ell}^n) - Q_{\ell-1}(\Theta_{\ell,\ell-1}^n) \right)$

with **correlated** Markov chains $\{\Theta_{\ell,\ell-1}^n\}$ and $\{\Theta_{\ell,\ell}^n\}$ (see below).

For simplicity we describe only the case $s_{\ell} = s_{\ell-1} = \ldots = s_0$. (In practice, useful to reduce also number $s_{\ell-1}$ of random parameters on coarser levels.

Choose subsampling rates $t_0 \dots t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{i=k}^{\ell-1} t_i$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n \dots \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $0 \le k \le \ell$.

• k = 0: Set $\mathbf{x}_0^0 := \boldsymbol{\theta}_{\ell,0}^n$. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples $\mathbf{x}_0^i \sim \pi_0$, $i = 1, ..., T_{\ell,0}$. Set $\boldsymbol{\theta}_{\ell,0}^{n+1} := \mathbf{x}_0^{T_{\ell,0}}$.

Choose subsampling rates $t_0 \dots t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{i=k}^{\ell-1} t_i$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n \dots \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $0 \le k \le \ell$.

- k = 0: Set $\mathbf{x}_0^0 := \boldsymbol{\theta}_{\ell,0}^n$. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples $\mathbf{x}_0^i \sim \pi_0$, $i = 1, ..., T_{\ell,0}$. Set $\boldsymbol{\theta}_{\ell,0}^{n+1} := \mathbf{x}_0^{T_{\ell,0}}$.
- **2** k > 0: Set $\mathbf{x}_k^0 := \frac{\theta_{\ell,k}^n}{\theta_{\ell,k}}$. Generate samples $\mathbf{x}_k^i \sim \pi_k$, $i = 1 \dots T_{\ell,k}$ as follows:
 (a) Propose $\mathbf{x}_k' = \mathbf{x}_{k-1}^{(i+1)t_{k-1}}$ Subsample to reduce correlation!

Choose subsampling rates $t_0 \dots t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{j=k}^{\ell-1} t_j$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n \dots \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $0 \le k \le \ell$.

- k = 0: Set x₀⁰ := θⁿ_{ℓ,0}. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples x₀ⁱ ~ π₀, i = 1,..., T_{ℓ,0}. Set θⁿ⁺¹_{ℓ,0} := x₀<sup>T_{ℓ,0}.
 </sup>
- (a) Propose $\mathbf{x}'_k = \mathbf{a}^{(i+1)t_{k-1}}_{k-1}$ (b) Accept \mathbf{x}'_k and set $\mathbf{x}^{i+1}_k = \mathbf{x}'_k$ with probability
 $\mathbf{a}^{\mathsf{ML}}_k(\mathbf{x}'_k|\mathbf{x}^i_k) = \min\left(1, \frac{\pi_k(\mathbf{x}'_k) \operatorname{q}^{\mathsf{ML}}_k(\mathbf{x}^n_k|\mathbf{x}^i_k)}{\pi^k(\mathbf{x}^n_k) \operatorname{q}^{\mathsf{ML}}_k(\mathbf{x}'_k|\mathbf{x}^n_k)}\right)$ Otherwise set $\mathbf{x}^{i+1}_k = \mathbf{x}^i_k$.

32 / 61

Choose subsampling rates $t_0 \dots t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{i=k}^{\ell-1} t_i$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n \dots \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $0 \le k \le \ell$.

- k = 0: Set x₀⁰ := θⁿ_{ℓ,0}. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples x₀ⁱ ~ π₀, i = 1,..., T_{ℓ,0}. Set θⁿ⁺¹_{ℓ,0} := x₀<sup>T_{ℓ,0}.
 </sup>
- k > 0: Set x⁰_k := θⁿ_{ℓ,k}. Generate samples xⁱ_k ~ π_k, i = 1... T_{ℓ,k} as follows:
 (a) Propose xⁱ_k = x<sup>(i+1)t_{k-1} (b) Accept xⁱ_k and set xⁱ⁺¹_k = xⁱ_k with probability α^{ML}_k(xⁱ_k|xⁱ_k) = min (1, π_k(xⁿ_k)π_{k-1}(xⁿ_k)) (1, π_k(xⁿ_k)π_{k-1}(xⁿ_k)) JS Liu, 2001 Otherwise set xⁱ⁺¹_k = xⁱ_k.
 (c) Set θⁿ⁺¹_{ℓ,k} := x^{T_{ℓ,k}} with T_{ℓ,k} := Π^{ℓ-1}_{i=k} t_i.
 </sup>

Choose subsampling rates $t_0 \dots t_L \in \mathbb{N}$ (see below) and set $T_{\ell,k} := \prod_{i=k}^{\ell-1} t_i$.

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell} - Q_{\ell-1}$)

Given realisations $\theta_{\ell,0}^n \dots \theta_{\ell,\ell}^n$ at state *n* of Markov chains on levels $0 \le k \le \ell$.

- k = 0: Set x₀⁰ := θⁿ_{ℓ,0}. Use Algorithm 1 (standard Metropolis-Hastings) to generate samples x₀ⁱ ~ π₀, i = 1,..., T_{ℓ,0}. Set θⁿ⁺¹_{ℓ,0} := x₀<sup>T_{ℓ,0}.
 </sup>
- 2 k > 0: Set $\mathbf{x}_k^0 := \boldsymbol{\theta}_{\ell,k}^n$. Generate samples $\mathbf{x}_k^i \sim \pi_k$, $i = 1 \dots T_{\ell,k}$ as follows: (a) Propose $\mathbf{x}'_{k} = \mathbf{x}^{(i+1)t_{k-1}}_{k-1}$ Subsample to reduce correlation! (b) Accept \mathbf{x}'_{k} and set $\mathbf{x}'^{i+1}_{k} = \mathbf{x}'_{k}$ with probability $\boldsymbol{\alpha}_{k}^{\mathsf{ML}}(\mathbf{x}_{k}'|\mathbf{x}_{k}') = \min\left(1, \frac{\pi_{k}(\mathbf{x}_{k}')\pi_{k-1}(\mathbf{x}_{k}^{n})}{\pi_{k}(\mathbf{x}_{k}')\pi_{k-1}(\mathbf{x}_{k}')}\right)$ JS Liu, 2001 Otherwise set $\mathbf{x}_{k}^{i+1} = \mathbf{x}_{k}^{i}$. (c) Set $\theta_{\ell,k}^{n+1} := \mathbf{x}_{k}^{T_{\ell,k}}$ with $T_{\ell,k} := \prod_{i=k}^{\ell-1} t_{i}$. 3 Set $Y_{\ell}^n := Q_{\ell}(\theta_{\ell}^n) - Q_{\ell-1}(\theta_{\ell}^n)$. R. Scheichl (Heidelberg) Large-Scale Bayesian Inference: Sampling Heidelberg, Oct 7, 2021 32 / 61

• Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k = 0, \ldots, \ell$, is a Markov chain with $\Theta_{\ell,k}^n \sim \pi_k$ as $n \to \infty$ and $t_\ell \to \infty$.

- Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k = 0, \ldots, \ell$, is a Markov chain with $\Theta_{\ell,k}^n \sim \pi_k$ as $n \to \infty$ and $t_\ell \to \infty$.
- Theoretically need $t_{\ell} \to \infty$ to guarantee **consistency** of multilevel algorithm (no bias between levels)

- Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k = 0, \ldots, \ell$, is a Markov chain with $\Theta_{\ell,k}^n \sim \pi_k$ as $n \to \infty$ and $t_\ell \to \infty$.
- Theoretically need $t_{\ell} \to \infty$ to guarantee **consistency** of multilevel algorithm (no bias between levels)
- In practice, suffices to choose $t_{\ell} \approx 1 2$ times the i.a.c.t.

(integrated autocorrelation time)

33 / 61

• States may differ between level ℓ and $\ell - 1$:

State $n+1$	Level $\ell-1$	Level ℓ
accept on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$
reject on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell}^n$

- Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k = 0, \ldots, \ell$, is a Markov chain with $\Theta_{\ell,k}^n \sim \pi_k$ as $n \to \infty$ and $t_\ell \to \infty$.
- Theoretically need $t_{\ell} \to \infty$ to guarantee **consistency** of multilevel algorithm (no bias between levels)
- In practice, suffices to choose $t_{\ell} \approx 1 2$ times the i.a.c.t.

(integrated autocorrelation time)

• States may differ between level ℓ and $\ell - 1$:

State $n+1$	Level $\ell - 1$	Level ℓ
accept on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$
reject on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell}^n$

but not often for larger ℓ since acceptance probability $\alpha_{\ell}^{\mathsf{ML}} \stackrel{\ell \to \infty}{\longrightarrow} 1$:

- Each $\{\Theta_{\ell,k}^n\}_{n\geq 1}$, $k = 0, ..., \ell$, is a Markov chain with $\Theta_{\ell,k}^n \sim \pi_k$ as $n \to \infty$ and $t_\ell \to \infty$.
- Theoretically need $t_{\ell} \to \infty$ to guarantee **consistency** of multilevel algorithm (no bias between levels)
- In practice, suffices to choose $t_{\ell} \approx 1 2$ times the i.a.c.t.

(integrated autocorrelation time)

• States may differ between level ℓ and $\ell - 1$:

State $n+1$	Level $\ell-1$	Level ℓ
accept on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$
reject on level ℓ	$oldsymbol{ heta}_{\ell,\ell-1}^{n+1}$	$oldsymbol{ heta}_{\ell,\ell}^n$

but not often for larger ℓ since acceptance probability $\alpha_{\ell}^{\mathsf{ML}} \stackrel{\ell \to \infty}{\longrightarrow} 1$:

Lemma (Dodwell, Ketelsen, RS, Teckentrup, '15)

$$\mathbb{E}_{\pi_{\ell},\pi_{\ell}} \left[1 - \alpha_{\ell}^{ML}(\cdot|\cdot) \right] = \mathscr{O} \left(\mathbb{E}_{\pi_{pr}} \left[\left| F(\cdot) - F_{\ell}(\cdot) \right| \right] \right) = \mathscr{O}(h_{\ell}^{\alpha})$$
R. Scheichl (Heidelberg) Large-Scale Bayesian Inference: Sampling Heidelberg, Oct 7, 2021 33 / 61

Complexity Theorem for Multilevel MCMC (Dodwell et al. '15) Suppose there are constants $\alpha, \beta, \gamma, \eta > 0$ such that, for all $\ell = 0, \dots, L$, **M1** $\left| \mathbb{E}_{\pi_{\ell}}[Q_{\ell}] - \mathbb{E}_{\pi(\cdot|v)}[Q] \right| = \mathcal{O}(h_{\ell}^{\alpha})$ (discretisation and truncation error) M2' $\operatorname{Var}_{\operatorname{alg}}[\widehat{Y}_{\ell}] + \left(\mathbb{E}_{\operatorname{alg}}[\widehat{Y}_{\ell}] - \mathbb{E}_{\pi_{\ell},\pi_{\ell-1}}[\widehat{Y}_{\ell}] \right)^2 = \operatorname{Var}_{\pi_{\ell},\pi_{\ell-1}}[Y_{\ell}] \mathcal{O}(N_{\ell}^{-1}) (\operatorname{MCMC-error})$ **M2** Var_{$\pi_{\ell},\pi_{\ell},\pi_{\ell}$, $[Y_{\ell}] = \mathcal{O}(h_{\ell}^{\beta})$} (multilevel variance decay) **M3** Cost $(\widehat{Y}_{\ell}^{MC}) = \mathcal{O}(N_{\ell} h_{\ell}^{-\gamma}).$ (cost per sample) Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ s.t. MSE $< \varepsilon^2$ and $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMH}}) = \mathscr{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) \quad (+ \text{ log-factor when } \beta = \gamma)$
Complexity Theorem for Multilevel MCMC (Dodwell et al. '15) Suppose there are constants $\alpha, \beta, \gamma, \eta > 0$ such that, for all $\ell = 0, \dots, L$, M1 $|\mathbb{E}_{\pi_{\ell}}[Q_{\ell}] - \mathbb{E}_{\pi(\cdot|v)}[Q]| = \mathcal{O}(h_{\ell}^{\alpha})$ (discretisation and truncation error) $\mathbf{M2' Var}_{\mathsf{alg}}[\widehat{Y}_{\ell}] + \left(\mathbb{E}_{\mathsf{alg}}[\widehat{Y}_{\ell}] - \mathbb{E}_{\pi_{\ell},\pi_{\ell-1}}[\widehat{Y}_{\ell}]\right)^2 = \mathbf{Var}_{\pi_{\ell},\pi_{\ell-1}}[Y_{\ell}] \, \mathscr{O}(N_{\ell}^{-1}) (\mathsf{MCMC}\operatorname{-error})$ **M2** Var_{$\pi_{\ell},\pi_{\ell},\pi_{\ell}$, $[Y_{\ell}] = \mathcal{O}(h_{\ell}^{\beta})$} (multilevel variance decay) **M3** Cost $(\widehat{Y}_{\ell}^{MC}) = \mathcal{O}(N_{\ell} h_{\ell}^{-\gamma}).$ (cost per sample) Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ s.t. MSE $< \varepsilon^2$ and $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMH}}) = \mathscr{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) \quad (+ \text{ log-factor when } \beta = \gamma)$

• Proof of Assumptions M1 and M3 similar to i.i.d. case.

• M2' not specific to MLMCMC; first steps in [Hairer, Stuart, Vollmer, '11].

Complexity Theorem for Multilevel MCMC (Dodwell et al. '15) Suppose there are constants $\alpha, \beta, \gamma, \eta > 0$ such that, for all $\ell = 0, \dots, L$, **M1** $|\mathbb{E}_{\pi_{\ell}}[Q_{\ell}] - \mathbb{E}_{\pi(\cdot|v)}[Q]| = \mathcal{O}(h_{\ell}^{\alpha})$ (discretisation and truncation error) $\mathbf{M2' Var}_{\mathsf{alg}}[\widehat{Y}_{\ell}] + \left(\mathbb{E}_{\mathsf{alg}}[\widehat{Y}_{\ell}] - \mathbb{E}_{\pi_{\ell},\pi_{\ell-1}}[\widehat{Y}_{\ell}]\right)^2 = \mathbf{Var}_{\pi_{\ell},\pi_{\ell-1}}[Y_{\ell}] \, \mathscr{O}(N_{\ell}^{-1}) (\mathsf{MCMC}\operatorname{-error})$ **M2** Var_{$\pi_{\ell},\pi_{\ell},\pi_{\ell}$, $[Y_{\ell}] = \mathcal{O}(h_{\ell}^{\beta})$} (multilevel variance decay) **M3** Cost $(\widehat{Y}_{\ell}^{MC}) = \mathcal{O}(N_{\ell} h_{\ell}^{-\gamma}).$ (cost per sample) Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ s.t. MSE $< \varepsilon^{2}$ and $\mathscr{C}_{\varepsilon}(\widehat{Q}_{h,s}^{\mathsf{MLMH}}) = \mathscr{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) \quad (+ \text{ log-factor when } \beta = \gamma)$ Proof of Assumptions M1 and M3 similar to i.i.d. case. • M2' not specific to MLMCMC; first steps in [Hairer, Stuart, Vollmer, '11].

Proof of M2 for lognormal diffusion & linear FEs (Dodwell et al '15) $Var_{\pi_{\ell},\pi_{\ell-1}} \left[Q_{\ell}(\Theta_{\ell,\ell}^{n}) - Q_{\ell-1}(\Theta_{\ell,\ell-1}^{n}) \right] = \mathcal{O}(h_{\ell}^{\alpha}) \quad (\text{unfortunately } \beta = \alpha \text{ not } 2\alpha)$ R. Scheichl (Heidelberg) Large-Scale Bayesian Inference: Sampling Heidelberg, Oct 7, 2021 34 / 61

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- **Subsampling** essential (exact only in limit of infinite subsampling), but small bias for sampling rates of the size of the i.a.c.t.

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- **Subsampling** essential (exact only in limit of infinite subsampling), but small bias for sampling rates of the size of the i.a.c.t.
- New ('multiplicative') version: Current work with Colin Fox (Otago)

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- **Subsampling** essential (exact only in limit of infinite subsampling), but small bias for sampling rates of the size of the i.a.c.t.
- New ('multiplicative') version: Current work with Colin Fox (Otago)
- Algorithm 2 is a special case of a surrogate transition method [Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]
- and of delayed acceptance Metropolis-Hastings [Christen, Fox, '05]

35 / 61

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- **Subsampling** essential (exact only in limit of infinite subsampling), but small bias for sampling rates of the size of the i.a.c.t.
- New ('multiplicative') version: Current work with Colin Fox (Otago)
- Algorithm 2 is a special case of a surrogate transition method [Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]
- and of delayed acceptance Metropolis-Hastings [Christen, Fox, '05]

But crucially exploit also variance reduction & prove rates in MLMCMC

(Current work with C. Fox: adaptive error estimates using the multilevel Markov chains)

- Typically also increase number of parameters s_{ℓ} from level to level and use standard proposal kernel for new parameters (see paper).
- **Subsampling** essential (exact only in limit of infinite subsampling), but small bias for sampling rates of the size of the i.a.c.t.
- New ('multiplicative') version: Current work with Colin Fox (Otago)
- Algorithm 2 is a special case of a surrogate transition method [Liu, Monte Carlo Strategies in Scientific Computing, 2001, §9.4.3]
- and of delayed acceptance Metropolis-Hastings [Christen, Fox, '05]

But crucially exploit also variance reduction & prove rates in MLMCMC

(Current work with C. Fox: adaptive error estimates using the multilevel Markov chains)

- Other references on related mutilevel MC methods for Bayesian inverse problems:
 - Hoang, Schwab & Stuart, Inverse Prob 29, 2013
 - Beskos, Jasra, Law & Zhou, Stoch Proc Appl, 2017

Numerical Example Fruit fly (2D lognormal diffusion) on $D = (0, 1)^2$ with linear FEs

• **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$.

i.e. $\mathbb{E}[Z(x)Z(x')] = \sigma^2 e^{-\frac{|x-x'|}{\lambda} - \frac{|y-y'|}{\lambda}}$

Numerical Example Fruit fly (2D lognormal diffusion) on $D = (0,1)^2$ with linear FEs

- Prior: Separable exponential covariance with σ² = 1, λ = 0.5.
 i.e. E[Z(x)Z(x')] = σ²e^{- |x-x'|/λ} |y-y'|/λ
- "Data" y: Pressure at 16 points $x_i^* \in D$ & error covariance $\Sigma = 10^{-4}$ /.

Numerical Example Fruit fly (2D lognormal diffusion) on $D = (0, 1)^2$ with linear FEs

- Prior: Separable exponential covariance with σ² = 1, λ = 0.5.
 i.e. E[Z(x)Z(x')] = σ²e^{- |x-x'|/λ} |y-y'|/λ
- "Data" y: Pressure at 16 points $x_i^* \in D$ & error covariance $\Sigma = 10^{-4}I$.
- pCN-proposals [Cotter, Dashti, Stuart, 2012]

Numerical Example Quantity of interest: $Q = \int_0^1 k \nabla p \, dx_2$; coarsest mesh size: $h_0 = \frac{1}{9}$

• 5-level method with #KL modes increasing from $s_0 = 50$ to $s_4 = 150$

Numerical Example Quantity of interest: $Q = \int_0^1 k \nabla p \, dx_2$; coarsest mesh size: $h_0 = \frac{1}{9}$

• 5-level method with #KL modes increasing from $s_0 = 50$ to $s_4 = 150$

• #independent samples = $\frac{N_{\ell}}{\tau_{\ell}}$ (τ_{ℓ} ... integrated autocorrelation time)

Level ℓ	0	1	2	3	4
i.a.c. time $ au_\ell$	136.23	3.66	2.93	1.46	1.23

Choice of Proposal Distribution Multilevel DILI (recent preprint with T Cui & G Detommaso)

• So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]

Choice of Proposal Distribution Multilevel DILI (recent preprint with T Cui & G Detommaso)

- So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]
- **Problem:** Dimension independent but very high IACT for $s \to \infty$! $\tau_0 \approx 136$ above, i.e. need 136 samples to obtain one independent sample!!

38 / 61

Choice of Proposal Distribution Multilevel DILI (recent preprint with T Cui & G Detommaso)

- So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]
- **Problem:** Dimension independent but very high IACT for $s \to \infty$! $\tau_0 \approx 136$ above, i.e. need 136 samples to obtain one independent sample!!
- However, can use any other proposal (e.g. MALA, stochastic Newton)

- So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]
- **Problem:** Dimension independent but very high IACT for $s \to \infty$! $\tau_0 \approx 136$ above, i.e. need 136 samples to obtain **one independent** sample!!
- However, can use any other proposal (e.g. MALA, stochastic Newton)
- DILI (dimension-independent likelihood-informed) MCMC [Cui, Law, Marzouk '16] samples from preconditioned Langevin equation using low-rank approximation of data-misfit Hessian at some points (incl. MAP point) Roland Herzog's talk

- So far: pCN random walk proposal (uses no gradient/Hessian info) [Cotter, Dashti, Stuart, '12]
- **Problem:** Dimension independent but very high IACT for $s \to \infty$! $\tau_0 \approx 136$ above, i.e. need 136 samples to obtain **one independent** sample!!
- However, can use any other proposal (e.g. MALA, stochastic Newton)
- DILI (dimension-independent likelihood-informed) MCMC [Cui, Law, Marzouk '16] samples from preconditioned Langevin equation using low-rank approximation of data-misfit Hessian at some points (incl. MAP point) Roland Herzog's talk
- New multilevel construction of DILI (with T Cui and G Detommaso) ...

Cui, Detommaso, **RS**, Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems, submitted, 2019 [arXiv:1910.12431]

R. Scheichl (Heidelberg)

Large-Scale Bayesian Inference: Sampling

Numerical Test on a Harder Example

Top/bottom: zero Neumann b.c.; left/right: Dirichlet b.c. zero/one, respectively. **Prior:** $z = \log a$ Gaussian w. exponential covariance $k(x, x') = \exp(-5|x - x'|)$ **Data:** 71 sensors; signal to noise ratio 50.

QoI: $Q^{(\text{flux})} = \text{average flux over the left boundary}$

R. Scheichl (Heidelberg)

Numerical Comparison: IACTs & CPU Times

Refined parameters

$Q_\ell(m{ heta}^n_{\ell,\ell})$ –	$Q_{\ell-1}(\theta_{\ell,\ell-1}^n)$	_1)
------------------------------------	--------------------------------------	-----

Level ℓ	0	1	2	3
iact(pCN)	4300	45	48	24
iact(DILI)	34	11	3.6	2.0

Level ℓ	0	1	2	3	
iact(pCN)	4100	4.9	2.8	1.9	
iact(DILI)	9.0	4.6	2.4	1.8	

Numerical Comparison: IACTs & CPU Times

Refined parameters

$Q_\ell(m{ heta}^n_{\ell,\ell})$	—	$Q_{\ell-1}$	$(oldsymbol{ heta}^n_{\ell,\ell}$ -	-1)
,				

Level ℓ	0	1	2	3
iact(pCN)	4300	45	48	24
iact(DILI)	34	11	3.6	2.0

Level ℓ	0 1		2	3
iact(pCN)	4100	4.9	2.8	1.9
iact(DILI)	9.0	4.6	2.4	1.8

Parallel Multilevel MCMC Software & HPC Experiments

MUQ - MIT Uncertainty Quantification Library

- Modular UQ Library, C++ and Python
- Model-agnostic interfaces
- Numerous UQ algorithms readily available
- www.mituq.bitbucket.io

Figure: Model graph example for simple Bayesian problem

- Well-structured, modular construction of advanced models.
- Can couple to external software.
- Easy to switch models / methods!
- For Multilevel (-index): Define set of models.

- Proposals: MH, pCN, MALA, DILI, ...
- Kernels: MH, MC, ML/MI, ...
- Chains: Sequential, parallel, ...

Figure: Modular MCMC architecture

Want a different method? Just switch out one component!

Heidelberg, Oct 7, 2021

Multilevel (-index) in Modular MCMC Framework

Figure: Sequential architecture for computing $\mathbb{E}_{\nu'}[Q_l] - \mathbb{E}_{\nu'^{-1}}[Q_{l-1}]$

R. Scheichl (Heidelberg)

What is the challenge in writing parallel MLMCMC code?

Monte Carlo

Trivially parallel

Markov Chain Monte Carlo

Natural data dependencies

What is the challenge in writing parallel MLMCMC code?

Monte Carlo

Trivially parallel

Markov Chain Monte Carlo

Natural data dependencies

Here **even worse**: Dependencies between levels!

MLMCMC Parallelization

MLMCMC Parallelization: Across Levels

MLMCMC Parallelization: Multiple Chains

MLMCMC Parallelization: Within Model

Parallel Multilevel (-index) MCMC Processor Layout

Figure: Parallel layout (each box is a processor / MPI rank)

Tested on 1000 parallel chains, probably more possible Too complicated? All this happens behind the scenes!

Scheduling Parallel MLMCMC

without scheduling

with scheduling

R. Scheichl (Heidelberg)

Large-Scale Bayesian Inference: Sampling

Heidelberg, Oct 7, 2021 51 / 61

Parallel Experiments

Poisson problem

Figure: 'True' field (left). MLMCMC estimator of expected value (right).

			runtime	subsamp.	i.a.c.t.	$\mathbb{V}[Q_0]$ or
level	h _l	DOFs	<i>t</i> _/ [ms]	$ ho_{I}$	$ au_{I}$	$\mathbb{V}[Q_l-Q_{l-1}]$
0	$\frac{1}{16}$	289	3.35	206	137.3	$1.501 imes10^{-1}$
1	$\frac{1}{64}$	4225	45.64	17	11.2	$1.121 imes 10^{-3}$
2	$\frac{1}{256}$	66049	931.81	0	1.05	$4.165 imes10^{-5}$

Figure: Scalability of the Poisson model problem for 10^4 , 10^3 and 10^2 samples and subsampling rates of 206, 17 and 0 on levels 0, 1 and 2. The model dimensionality remains constant as the number of processors is increased.

Figure: Weak scalability & parallel efficiency for Poisson problem. At 64 cores 10^4 , 10^3 and 10^2 samples are computed on levels 0, 1 and 2, resp. Number of samples increased linearly with number of processors.

Tsunami Application

- Modelling Tohoku event (2011) using Shallow Water Equation and real bathymetry
- Forward model using ExaHyPE PDE engine [Reinarz et al, CPC '20]
- Data: Buoy measurements. Parameter: Tsunami source

Model hierarchy

Across levels, we adapt

- mesh size
- bathymetry smoothness (specific to hyperbolic solvers!)

57 / 61

Results

level	<i>t</i> ₁ [s]	ρ_l	$\mathbb{V}[Q_l - Q_{l-1}]$		$\sum_{k=1}^{l} \mathbb{E}[Q_k - Q_{k-1}]$	
0	7.38	25	1984.09	1337.42	3.61	27.96
1	97.3	5	1592.17	1523.18	-12.29	23.39
2	438.1	0	340.56	938.53	-5.46	0.12

Run on 72 nodes, each with 48 cores (3456 in total)

R. Scheichl (Heidelberg)

Conclusions

- Introduced multilevel Monte Carlo & model hierarchies (in general) for UQ and Baysian inference. Highlighted the huge potential.
- A vibrant research area with many open questions
- A "no-brainer" (for me) in practice (if you have a hierarchy)
- I believe, we have only scratched the surface, especially in context of Bayesian inference & data assimilation

Conclusions

- Introduced multilevel Monte Carlo & model hierarchies (in general) for UQ and Baysian inference. Highlighted the huge potential.
- A vibrant research area with many open questions
- A "no-brainer" (for me) in practice (if you have a hierarchy)
- I believe, we have only scratched the surface, especially in context of Bayesian inference & data assimilation
- Despite data dependencies, Multilevel MCMC ready for HPC extra room for parallelism across levels
- Building on modular framework in MUQ pays off.
- Flexibility regarding model hierarchy.
- **Excellent parallel scalability** and embedding with existing HPC software from applications.

Outlook & Hardware-Awareness

• Application in other areas (especially multilevel MCMC):

(e.g. aerospace composites, geostatistics, imaging, quantum physics,...)

- Significant further improvements are possible with using adaptive, sample-dependent hierarchies
- Have to yet fully exploit **multi-index** capability.
- Parallel adaptive ML delayed acceptance (w. Dodwell & Lykkegaard)

Outlook & Hardware-Awareness

• Application in other areas (especially multilevel MCMC):

(e.g. aerospace composites, geostatistics, imaging, quantum physics,...)

- Significant further improvements are possible with using adaptive, sample-dependent hierarchies
- Have to yet fully exploit **multi-index** capability.
- Parallel adaptive ML delayed acceptance (w. Dodwell & Lykkegaard)
- Hierarchical task-based programming models to distribute work at run-time. Static load balancing difficult due to adaptivity, error control, ...
- Matrix-free solvers: sum factorisation (high order) & SIMD parallelisation across samples (low order)
- More sophisticated propsals have other parallelisation challenges, e.g. MAP point calculation = optimisation Roland Herzog

References & Resources

- J Christen & C Fox, MCMC using an approximation, J Comp Graph Stat 14, 2005
- KA Cliffe, MB Giles, RRS & AL Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients Comput Visual Sci 14, 2011
- VH Hoang, C Schwab & AM Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, *Inverse Prob.* 29, 2013
- TJ Dodwell, C Ketelsen, RS & AL Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J Uncertain Q 3, 2015 (also SIAM Review 61, 2019)
- MB Lykkegaard, G Mingas, RS, C Fox & TJ Dodwell, Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3, *NeurIPS 2020*
- T Cui, G Detommaso & RS, Multilevel dimension-independent likelihood-Informed MCMC for large-scale inverse problems, submitted [arXiv:1910.12431]
- L Seelinger, A Reinarz, L Rannabauer, M Bader, P Bastian, RS, High Performance UQ with Parallelized Multilevel MCMC, to appear in SC'21 [arXiv:2107.14552]

References & Resources

- J Christen & C Fox, MCMC using an approximation, J Comp Graph Stat 14, 2005
- KA Cliffe, MB Giles, RRS & AL Teckentrup, Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients Comput Visual Sci 14, 2011
- VH Hoang, C Schwab & AM Stuart, Complexity analysis of accelerated MCMC methods for Bayesian inversion, *Inverse Prob.* 29, 2013
- TJ Dodwell, C Ketelsen, RS & AL Teckentrup, A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow, SIAM/ASA J Uncertain Q 3, 2015 (also SIAM Review 61, 2019)
- MB Lykkegaard, G Mingas, RS, C Fox & TJ Dodwell, Multilevel Delayed Acceptance MCMC with an Adaptive Error Model in PyMC3, *NeurIPS 2020*
- T Cui, G Detommaso & RS, Multilevel dimension-independent likelihood-Informed MCMC for large-scale inverse problems, submitted [arXiv:1910.12431]
- L Seelinger, A Reinarz, L Rannabauer, M Bader, P Bastian, RS, High Performance UQ with Parallelized Multilevel MCMC, to appear in SC'21 [arXiv:2107.14552]

Resources

MUQ	DUNE	ExaHyPE	
www.mituq.bitbucket.io	www.dune-project.org	www.exahype.eu	
R. Scheichl (Heidelberg)	Large-Scale Bayesian Inference: Sampling	Heidelberg, Oct 7, 2021 61 / 6	