#	Last name	Last name	Presentation title	Authors	Abstract
<u>M01</u>	<u>Motamarri</u>	Phani Sudheer Frederic	Scalable finite-element based methods for quantum modeling of materials using density functional theory in the exascale era theory in the exascale era Adaptative spectral coarse spaces for domain decomposition methods	Phani Sudheer Motamani Frederic Nataf	The predictive capability offered by quantum modelling of materials, especially using density functional theory (DFT), has opened up a gateway for gaining crucial insights into materials' behaviour, leading to an accurate prediction of mechanical. transport, chemical, electronic, magnetic and optical properties of materials. However, the stringent accuracy requirements required to compute meaningful material properties and the asymptotic cubic-scaling computational accuracy requirements traquired to compute meaningful material properties and the asymptotic cubic-scaling computational accuracy requirements and the under score computational resources. Thus, these calculations are routinely limited to periodic simulation domains with material systems containing a few hundred atoms. Additionally, these DFT calculations occury a sizeable fraction of the work's computational resources today but meetly remain in the high throughput calculation mode as the widely used DFT implementations struggie to keep up with evolving heterogeneous architectures in today's exascale era. To this and, the task includuoes the exonal doxincoments in finite-element (FE) based methods for DFT calculations, et al. DFT FE code, the workhorse behind the ACM Gordon Bel Prize 2023. These methods provide a systematically convergent, computational again overcomes these limitations with no restrictions on the boundary conditions that can be applied. Subsequently, well discuss and and substantial reduction in developing a fast and scalable approach combing the efficiency of projecto-augmented ware (PAW) formalism involving smooth idectonic fields with the ability of systematically improvable higher-order FE basis facilitating substantial induction to large-ecale material systematically improvable higher-order ecole and thousands of conses. The robustness is due to its ley heavily on the efficiency of the coarse space used in the second level. The GenEO coarse [1,2] space has been shown to lead to a robust two-level Schwarz precondi
	Setter:		Admissibility preserving Lax- Wendroff Flux Reconstruction		Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperholic conservation laws. The single step nature of the method enables evolution to the next time level with only one interface communication, making the method anthmetically intense and MPI efficient. Since solutions to hyperholic conservation laws often contain shocks, in this work, we develop a subcoll based limiter by blending LWFR with a lower order scheme helps to control coslilations, it may not guarantee admissibility of discret solution, e.g., positive property of quantities like density and pressure. By exploiting the subcol structure and admissibility of tower order schemes, we device a startegy to ensure that the blended scheme is admissibility preserving for the mean values and then use a scaling limiter to obtain admissibility of the polynomial solution. For MUSCL-Hancock scheme on non-cell-centered subcells, we develop a slope limiter to obtain admissibility of the polynomial solution. For MUSCL-Hancock scheme on non-cell-centered subcells, we develop a slope limiter to obtain semi-semi estage target the cost of higher order fluxes, that ensures admissibility of lower order updates and hence that of the cell averages. By using the MUSCL-Hancock scheme on subcells and Gauss-Legendre points in flux reconstruction, we improve small-scale resolution compared to the subcell-based RKGB blending scheme with first order finite volume method and Gauss-Legendre-Lobatto points. We demonstrate the performance of our scheme on compressible Euler's equations, show-cassing its ability to handle
M03 M04	Goswami	Arpit Shubham Kum	A scalable asynchronous discontinuous Galerkin method for massively parallel flow simulations	Appi Babbar, Praveen Chandrashekar, Sudarshan K Shubham Kumar Goswami, Vidyesh Dapse, Konduri	shocks and preserve small-scale structures. Accurate simulations of turbulent flows are crucial for understanding complex phenomena in engineered systems and natural processes. These simulations of the require the use of supercomputers due to their high computational cost. However, scabality at extreme scales can be significantly affected by the communication orvehead. To address this challenge, an asynchronous computing approach for time-dependent partial differential equations (PDEs) that relaxes communication and synchronous at a mathematical level has been developed with hindie difference schemes that are ideal for structured meshes. This work proposes an asynchronous discontinuous Galerkin (ADD) method, which combines the benefits of the DE method with asynchronous computing and has the potential to provide high-order accurate solutions for various flow problems on both structured and unstructured meshes. The numerical properties of the proposed method, including local conservation, stability, and accuracy, are investigated, where the method is shown to be at most first-order accurate. To recover accurace, new asynchronycleannt (AT) hunces that utilize dat from mulpice time levels are developed. To validate these theoretical findings, several numerical experiments are conducted based on both intera and nonlinear problems. Finally, a parallel FDE solver based on the ADC method is developed within an open-source finite element library deall, using a communication- avoiding algorithm. The accuracy of the solver is validated, and scalability benchmarks demonstrate a speedup of up to 80% with the ADS method at an externe scale with 2216 cores.
M05	Aizinger	Vadym	p-adaptive discontinuous Galerkin method for the shallow water equations on hybrid CPU-GPU architectures	Vadym Alzinger, Sara Faghih-Naini, Richard Angersb	Exploiting integrated CPU-GPU architectures allows to achieve computational performance benefits by creating specialized kernels optimized to different hardware. We propose to combine hybrid execution mode with a p-adaptive quadrature-free discontinuous Galerkin (DG) method and employ this scheme to solve the shallow water equations. Our approach separates the computations of the non-adaptive (ower-order) and adaptive (higher-order) parts of the discretization from each other and executes them on separate hardware. We use automatic code generation to create optimized compute kernels and distribute them between the CPU and GPU. Several setups, including a prototype of a tsunari simulation in a tide-driven flow scenario, are investigated, and the results show that significant performance improvements can be achieved to suitable setups.
M06	Heinlein	Alexander	Domain decomposition for neural	Alevander Heinlein	Scientific machine learning (SoML) is a rapidly evolving field of research that combines techniques from scientific computing and machine learning. In this context, this takks focuses on the enhancement of machine learning using classical numerical methods, in particular, on improving neural networks using domain decomposition-inspired architectures. In the first part of this task, the domain decomposition paradigm is applied to the approximation of the solutions of partial differential equations (PDEs) using physics-informed neural networks (PINNs). It is observed that network architectures inspired by multi-level Schwarz domain decomposition methods can improve the performance for certain chalenging problems, such as multiscale problems. Moreover, a classical machine learning task is considered, that is, image segmentation using convolutional neuroin enteworks (CNNs). Domain decomposition techniques offer a way of scaling up common CNN architectures, such as the U-Net. In particular, local subdomain networks learn local features and are coupled via a coarse network which incorporates global features.
M07	Pleiter	Dirk	HPC-based Federated Digital	Dirk Pleiter	Different areas of computational science have seen tremendous progress in recent years, in parts due to the remarkable continuation of the growth of computational performance. Various relevant use cases show, however, that there is a need for considering the full workflows that extend far beyond a single HPC system. This can be addressed by integrating HPC systems in federated digital infrastructures. In this talk, I discuss the relevance of this in parts conceptional approach for different use cases, including those that involve the realisation of HPC-based digital twins. Based on an analysis of the current state and ongoing challenges, I will discuss how to improve design methodologies for such kind of infrastructures.
100	Arrest	11-4-1-	It is all in the GPUs - How the Hardware Architecture impacted Scientific Software in the US		The US Exascale Computing Project (ECP) just ended and succeeded with the goal to deliver a capable exascale computing ecosystem to provide breakthrough modelling and simulation to address the most critical challenges in scientific discovery, energy assurace, economic competitiveness, and national security. This venture came with the challenge to prepare a scientific computing software stack to a changing hardware landscape that increasingly treats CPUs as the workness of supercomputers. In this tak, we describe the path towards a GPU-centric scientific computing software stack, discuss the programming and numerical challenges coming with it, and outline which concepts enabled sustainability beyond the project
мо9	Pericas	Miquel	Challenges and Opportunities of Long Vector Architectures in HPC	Miquel Pericas	The European Union's drive to establish a domestic HPC industry has led to considerable R&D around RISC-V and its vector extension, embodied in projects such as EPI and EUPilot. By leveraging long vector registers, RISC-V offers the potential for significant performance and energy efficiency gains. However, achieving scalable execution with long vectors is challenging. In this tail, I will present our research on co-designing several CNN algorithms (direct, Winograd, mizcol) with long vector architectures, using ARM-SVE and RISC-V as ease studies. I will dive in to the intricase of exploiting long vector registers effectively and highlight the challenges in achieving scalable execution with non- compler intrinsics. In the second and rol this talk I will discuss our work on SYCL as an alternative for generating multithreaded and vectorized code. SYCL, an explicitly parallel programming model, can facilitate the generation of long vectors, potentially improving pelformance and programmability. We are currently developing a microbenchmark to evaluate the parallelization and vectorized code. SYCL, an explicitly parallel programming model, can facilitate the generation of long vectors, potentially improving pelformance and programmability. We are currently developing a microbenchmark to evaluate the parallelization and vectorized code. SYCL and performance and programmations, specifically when targeting multicore processors with vector units. I will present the status of this microbenchmark and discuss how the major two SYCL implementations. (DPC++ and AdaptiveCPP) perform over a range of ARM and x46 system.
			AdaptiveCpp: Portable		Increasing diversity in the HPC hardware landscape requires development tools that address the associated programmability challenge. This is particularly relevant when accelerators such as GPUs are involved, where every hardware vendor typically supports different programming models. AdaptiveCpp is a modern and highly competitive compiler and nuntime stack for heterogeneous computing in C++. AdaptiveCpp can target any LLVM-supported CPU, as well as GPUs from Intel, NVIDIA and AND through either the SYCL or C++ standard paralelism officialing programming models. It is used in production by large scale HPC applications such as the Gromacs molecular dynamics software. Unlike most other heterogeneous C++ compliers, AdaptiveCpp is entitely community-driven rather than vendor-driven, with the Engineening Mathematics and Computing Lab (EMCL) at Heidelberg University leading its development. We argue that community-driven complets are a key component to make scentific software immune to vendor lock-in. In this tak, we are overview of AdaptiveCpp and the programming models it supports, and discuss how AdaptiveCpp can help scientists develop high-performance, portable applications in C++. We also provide insight hits some of the unique features of AdaptiveCpp, such as to unique organizations in C++. We also provide insight hits some of the unique features of AdaptiveCpp. To completion in frastructure, the ability to conveniently energite a portable binary that runs on GPUs from all vendors, and the ability to adapt kernel code at runtime. This allows AdaptiveCpp compared to wendor the in the interview completion primer domination frastructure. This allows AdaptiveCpp compared to wendor the interview completion primerities of matter and the endormatic code in runtime. This allows AdaptiveCpp compared to wendor the interview completion primerities of the resulting in superior performance compared to wendor the interview completion primerities of thematic code at runtime. This allows AdaptiveCpp complete t
M10	Alpay	Aksel	Heterogeneous Computing in C++	Aksel Alpay, Vincent Heuveline	compilers. Temporal blocking allows to exploit the spatio-temporal locality of stencil codes in order to surpass the system bandwidth which
<u>M11</u>	Beutel	Moritz	Temporal blocking in practice	Moritz Beutel, Robert Strzodka	bounds the performance of naïve cache-blocking schemes. While the technique has been subject to extensive theoretical study, the complexity it entails has so far impeded its widespread application in iterative computations. In this tak, we will give an introduction to the concept of temporal blocking and discuss strategies for applying the technique in existing numerical codes. We will investigate what it takes to adapt a simple hydrodynamic solver to a temporal blocking scheme, concluding the tak with an evaluation of the speed-up attained. Addressing the challenges of processing massive graphs, which are prevalent in diverse fields such as social, biological, and technical networks, we introduce HeiStreamE and FreightE, two innovative (buffered) streaming algorithms degred for efficient edge partitioning of large-scale graphs. HeiStrameT utilizes an adapted Spilland-Connect graph model and a Fennel- based multilevel partitioning using exclusions a hypergraph representation of the input graph. Besides ensuring superior solution quality, these approaches also overcome the limitations of existing algorithms by maintaining linear dependency on the graph size in both time and memory complexity with no dependence on the number of blocks of partition. Our comprehensive experimental analysis demonstrates that HeiStreamE outperforms current streaming algorithm 276 in partitioning quality (reglication factor), and is more memory-efficient for early advord the velowed metworks where theraming algorithm 276 in partitioning quality (reglication factor), and is more memory-efficient for real-word networks where theraming algorithm 276 in partitioning quality (reglication factor), and is more memory-efficient for real-word networks where theraming algorithm 276 in partitioning quality (reglication factor), and is more memory-efficient for real-word networks where theraming algorithm 276 in partitioning quality (reglication factor), and is more memory-efficient for real-word networks where theraming algorithm
M12	Chhabra	Adil	Buffered Streaming Edge Partitioning	Christian Schulz, Marcelo Fonseca Farai, Daniel See	the number of edges is far greater than the number of vertices. Further, FreightE is shown to produce fast and efficient partitions, particularly for higher numbers of partition blocks.

					Abstract: In the era of BIG data, artificial intelligence, and machine learning, we need to process multiway (tensor-shaped) data. These data are mainly in the three or higher-order dimensions, whose orders of magnitude can reach billions. Huge volumes of multidimensional data are a big challenge for processing and analyzing; the mark representation of data analysis is
		D. (1)	Tensor factorizations with		not enough to represent all the information content of the multiway data in different fields. In this talk, we will discuss tensor factorization as a product of tensors. To address the factorization as we define a cosed multiplication operation between tensors with the concept of transpose, inverse, and identity of a tensor. We will conclude with a few colour image applications in a
101	Behera	Ratikanta	applications Balancing Inexactness in Matrix	Ratikanta Behera	Itensorshucture domain. On supercomputers that exist today, achieving even close to the peak performance is incredibly difficult if not impossible for many applications. Techniques designed to improve the performance of matrix computations - making computations less expensive by reogranhizing an algorithm, making interintional approximations, and using lower precision - all introduce what we can generally call "inexactness". The questions to ask are then: 1. With all these various sources of inexactness involved, does a given algorithm still get close enough to the right answer? 2. Given a user constraint on required accuracy, how can we best exploit and balance different types of inexactness to improve performance? Studying the combination of different sources of inexactness can thus reveal not only limitations, but also new opportunities for developing algorithms for matrix computations that are both fast and provably accurate. We present a few recent examples of this apprach, in which mixed precision
<u>T02</u>	Carson	Erin	Computations	Erin Carson	computation is combined with other sources of inexactness.
					High performance and two power consumption are two of the main goals of computer architecture design, both of which encounter several chalenges. To tackle these demands, emerging computing paradigms have been introduced, one of which is approximate computing. It has been shown that many applications are enor-tolerant with little to no boss in their levels of functional or required accuracy. Therefore, using approximate computing methods deliberately can reduce hardware complexities and lead to considerable improvements in speed, power consumption, and area. However, the major you have been application-specific. Moreover, using them required knowledge and expertise in hardware, which is out of the reach for many users. To tackk these challenges, we propose the Approximate and Exact MultiProcessor (AE) platform for general-purpose applications which would want to benefit from hardware-level approximation, controlled by software.
					The AxE platform is a multiprocessor system on thip where each processor can possess either an exact or an approximate hardware core. An approximate core refers to a processor with an approximate coelerator (so far multipleis), whereas an exact core refers to a processor with an exact multipleis. The processors with an approximate coelerator (so far multipleis), whereas an exact number of processors is easily adjustable. The processors with an exact dare an approximate any concessors is easily adjustable. The processors are connected through a Network on Chip (NoC), and the program is independent of the others and has its own exclusive memory space. The task of assigning programs to each core is amanaged by the controller processor, allowing each core to execute a program in parallel and independently of the other cores on the network.
T03	Hasani	Pouria	Software Controlled Hardware Approximation for General-Purpose Computing	Pouria Hasani, Nima Amirafshar, Ekrem Altuntop, St	The AxE platform is capable of executing general-purpose applications, both legacy and new approximate ones. Error-tolerant applications can benefit from the approximate hardware (multipliers) embedded in the approximate cores to save power and reduce execution time, while non-error-tolerant applications can be executed on the exact cores. The user can make the decision by appropriate modification of their legacy code. This architecture provides a robust platform for experimental research in approximate computation for general-purpose applications. It enables users to quickly evaluate whether and which portion of their software could be offloaded to an approximate hardware and what the gain and potential quality costs of such an approach may be. In this presentation, we will showcase AxE platform.
					Optimal control of partial differential equations (PDEs) is a sophisticated and dynamic field that lies at the intersection of mathematics, engineering, and applied sciences. This discipline focuses on determining control functions that optimize a certain performance criterion governed by PDEs. These equations are fundamental in describing various physical phenomena such as heat conduction, fluid dynamics, electromagnetism, and financial modeling.
					The primary objective in optimal control problems is to find a control strategy that minimizes or maximizes a cost functional while satisfying the constraintis imposed by PDEs. This involves the interplay between the theory of PDEs, calculus of variations, and numerical optimization techniques. Key aspects include the existence and uniqueness of solutions, the derivation of optimality conditions through methods like the Pontryagin Maximum Principle and the Lagrange multiplers, and the development of efficient computational algorithms for solving large-acale problems.
					Recent advancements have expanded the applicability of optimal control of PDEs to complex and high-dimensional systems, incorporating state-of-the-art methods such as machine learning for model reduction, and employing parallel computing to handle the computational intensity. This presentation will delve into the fundamental concepts, mathematical formulations, and practical applications of optimal control in PDEs, showcasing examples from engineering, economics, and environmental science. Additionally, we will explore contemporary challenges and future directions in this vibrant research area, emphasizing the integration of new computational techniques and interdisciplinary approaches.
т04	Pathak	Ritik Kumar	Optimal control of PDEs	Ritik Kumar Pathak	By understanding the theoretical underpinnings and computational strategies in optimal control of PDEs, researchers and practitioners can better tackle real-world problems, leading to innovations and improvements in various technological and scientific domains.
105	Seelinger	Linus	Enabling Bayesian Inference for Large-Scale Simulation: Methods and Software	i inus Seelinger. Max Koise (Karkonhe Institute of T	Bayesian inference of complex simulation models enables important scientific insight, but comes at great computational cost and technical complexity; We present UM-Bridge, a universal software framework that breaks down this complexity. It enables straightforward linking of any high-lavel algorithm with any simulation model, makes models portable, and enables scalability on supercomputers and cloud clusters. As a result, we can now rapidly develop and scale applications that combine state-of-the- at methods from Bayesian inference and numerical simulation. We further present recent developments around Multievel Delayed Acceptance, a state-of-the-att inference method capable of handling compute intensive simulation models. Finally, we demonstrate its effectioness in UM-Bridge nowmer anonizations in astronhysics and earthouske
T06	Engwer	Christian	Parallel-in-time Block-Krylov methods to improve node-level performance	University of Münster	Combining paralle-in-time and Block-Krylov methods we present a promissing approach to increase the node-level performance of PDE solvers for a wide range of instalionary problems on modern hardware. In many applications low order methods are still the most common approach to solve PDEs. While they are easy to implement, they are inherently memory bound due to a low antimatic intensity and thus don't benefit from the high level of concurrency of modern hardware architectures. To increase the antimatic intensity, it is necessary to increase the work per matrix entry. For applications which require solving different linear systems with the same operator, Block-Krylov methods offer a mathematical tool to increase the arithmetic intensity and in previous work we added corresponding support to our DURE linear algebra library. Conceptually, a system for multiple timge-ktuta stages can be reformulated to solve a single matrix equation instead of many linear systems which may be solved using Block-Krylov methods. We introduce the underpinning ideas, present first performance results and discuss implementational aspects.
107	Sundaresan	Vaanathi	Scientific machine learning techniques and their applications for procession medicine	Vaanathi Sundamsan	The tak will provide an overview of application of deep learning (DL) techniques for medical imaging applications, especially for identifying medical imaging biomakers for precision medicine. This includes development of DL models for accurate automated segmentation of pathological findings in medical imaging modalities and analysis of their clinical impact at the population-aveu. Another key discussion point of the tak will be to improve the robustness of the dee learning tools by tacking various practical challenges in the DL-based tool development such as limited availability of manually labeled data for training, domain shift in the data acquired from different contres and lack of variability in the low data regimes. Future avenues of the research include for the detection of anomalies (abnormalities) using multiple diverse imaging modalities, and their classification and anuantification.
100			Neural Networks vs Sparse Polynomials in Spectral Operator		Problems in uncertainty quantification and atochastic simulation typically require large number of evaluations of the operators associated with the system in question. In cases where these evaluations are computationally expensive, such as in systems governed by Partial Differential Equations, it is advantageous to construct a surrogate that is cheap to evaluate. Given that these problems are usually high- or infinie-dimensional, encoder and decoder functions are employed to map inputs and outputs into lower-dimensional coefficient representations. The operator surrogate is then constructed from an approximation to the corresponding mapping between these coefficient spaces. While neural networks have been applied successfully to such tasks, sparse multivariate polynomial expansions offer a promising alternative since they allow for deterministic convergence rates in many scenarios. In this work, we empirically evaluate the performance of both approaches across several test problems. In particular, we examine the cost-accuracy trade-off for both surrogate types and investigate how it is influenced by factors such as parametric smoothness and variance. Our results show that although neither method consistenity outperforms the other, specific conditions for one approach over the other. We discuss the underlying reasons for these observations and the other, specific conditions for one approach over the other. We discuss the underlying reasons for these observations and the other, specific conditions for these other approximations and the other, specific conditions for the one approach over the other.
100	Branca		Emulating the Interstellar Medium	posenine treatemanin, sandy zeur, monies o cear	Uses placed injunctions, Understanding the interstellar medium (ISM) chemistry is pivotal for the study of galaxy formation and evolution. Traditional computational models rely on costly ordinary differential equation (ODE) solvers to simulate complex photo-chemical processes. This study introduces a novel approach using DeepONet neural operators to emulate a non-equilibum chemical processes, significantly reducing computational costs while maintaining precision. Unlike conventional methods, our approach approximates the differential operator directly, enabling the model to generalize beyond the specific conditions encountered during training. This capability ensures the robustness and flexibility of the emulation across a broader parameter space, including varied densities, temperatures, species abundances, and radiation fields. Remarkably, our method maintains an accuracy within 15 while achieving speed-ups of up to 128 compared to raditional methods. This makes it a powerful tool for time-aceilae schowicia distributions and advance in our understanding of ISM dwares.
T10	Baumgarten	Niklas	A High-Performance Multi-level Stochastic Gradient Descent Method with Applications in Optimal Control under Uncertainty	Niklas Baumgarten	We present a high-performance mill-level stochastic gradient descent method to the virtuance, optimally control the state of systems guided by partial differential equations under uncertain input data. The gradient descent method used for the optimal control leverages a paralle budgeted multi-level Monte Carlo method as stochastic sub- gradient estimator. As a result, we get tipht control over the sub-gradient's bias, introduced by numerical discretizions, and the sub-gradient's variance with respect to the invested computational resources. We provide empirical avidence that the method outperforms the standard stochastic gradient descent method in terms of convergence speed and accuracy. The method is particularly well-suited for high-dimensional control problems by exploiting the parallelism and the distributed data structure of the budgeted multi-level Monte Carlo method. Functioners, we estabilish a connection to the batched gradient descent and the ADAM optimizer methods. Lastly, we study the method's performance at hand of a three-dimensional elliptic subsurface diffusion problem with log-normal coefficients and Matém covariance functions.
T11	Turek	Stefan	The Future of CFD Simulations (from a numerical & computational perspective) - Faster and more reliable predictions are needed to compete with Al	Stefan Turek	The main aim of this tak is to discuss how modern High Performance Computing (HPC) techniques regarding massively parallel hardware with millions of cores together with very fast, but lower precision accelerator hardware can be applied to numerical simulations of PDEs so that a much higher computational, numerical and hence energy efficiency can be obtained. Here, as protopical extreme-scale PDE-based applications, we concentrate on nonstationary (tow simulations with hundreds of millions even billions of spatial unknown in long-time computations with many housands up to millions of time stops. For the expected huge computational resources in the compared exascale era, such type of spatially discretized problems which bytically are treated aquentally in time, that means one time after the chare, are often too small to explice adequately the huge number of compute nodes, resp., cores so that further parallelism, for instance w.r.t. time, might get necessary, in this context, we licitus show "paralleli-space & global-in-time" Howorn-Kryto Multigrid approaches can be designed which allow a much higher degree of parallelism, Moreover, to exploit current accelerator hardware in lower precision (for instance, 20 Lis from NUI/DA bailt for Al applications), we discuss the or exondition numbers to to "preconditioning" of the corresponding it-conditioned systems of equations, for instance arising from Poisson-Re problems. Here, we assume a transformation into and equivalent linear system with minais sparsity but with much lower condition numbers to that we allow and equivalent linear system with minais sparsity but with much lower anditions of the discuss the challenges, naticularly for unomore splite the wordbers. Also in view of compations with Al prodictions.

T12	Chamakuri	Nagaiah	A Computational Framework for Optimal Control of Cardiac Defibriliation	Nagalah Chamakuri	This tak will showcase a computational framework designed for the optimal control of cartice definitiation, specifically using a detailed three dimensional andoi of the rabbit venticide with biateral control constnints. Our approach addresses the numerical challenges of multi-scale, multi-domain simulations of the bidomain equations, utilizing the primatul active set method to tackle large-scale PDE-constrained optimization problems. The bidomain model comprises a system of elliptic partial differential equations coupled with a nonlinear parabolic reaction-diffusion equation, alongside ordinary differential equations that capture ionic transport dynamics. Additionally, we address an extra Poisson problem to simulate scenarios where the heart is immersed in a conductive medium, such as a tassue bath or the sumunding torso. Given that the ODEs describe ionic currents in the tissue, the PDE component typically dominates the computational effort. This raises questions about whether traditional splitting methods can achieve the accuracy required for the bidomain and bidomain-bath models compared to a fully coupled approach. In the first part of the presentation, we will compare results from our coupled solver with those from commonity used splitting schemes for more compilex physiological models. In the second part, we will present our optimal control framework for effective carriac definition, focusing on minimizing a specifically designed cost functional that incorporates various types of cost metrics.
W01	Varbanescu	Ana Lucia	Towards zero-waste computing b	Ana Lucia Varbanescu	Computation' has become a massive part of our daily lives: In science, a lot of experiments and analysis rely or massive computation. In a live use vast escuracts to train and use massive models, and In engineering we use complex simulations and digital livins to increase efficiency and productivity. Under the assumption that computation is cheap, and time-to-result is the only relevant metric, we often use significant computational resources at low efficiency. In this talk, trague this approach is an unacceptable waste of computing resources, and demonstrate we can do bettert By means of a couple of case-studies, I will show how performance engineering can be used towards zero-waste computing. I will further propose a co-design methodology that leverages such performance engineering methods to enable the selection of algorithms_and_ their effective deployment on subable infrastructure. The approach relies on design-space exploration, drive up efficient search methods and compositional performance models. I will conclude by reflecting on the next steps and open questions that need answers to make this co-design approach relies on cable for more asolications and versems.
w02	Konduri	Aditya	Dimensionality reduction based on Cokurtosis-PCA: application to chemical kinetics	Aditya Konduri	Direct numerical simulations of turbulent reacting flows resolve the detailed chemical kinetics that provide insights into the turbulence-chemistry interactions. While the kinetics models should accurately represent the chemistry, their sizes need to be small enough for the computations to be tractable. Dimensionally reduction ains to reduce the feature space of high- dimensional data while retaining the information and dynamics of the original system effectively. Widely used principal component analysis (PCA) achieves this for combustion data by turnsforming the original therm-chemical state space into a low-dimensional manifold with eigenvectors of the covariance matrix of the input data. However, this may not effectively capture stiff chemical dynamics when the reaction zones are localized in space and time. Alternatively, a co-utrosis PCA (cok-PCA), wherein the principal components are obtained from the singular value decomposition (SVD) of the matriczed co-utrosis tensor, demonstate greater accuracy in capturing stiff dynamics. In this study, we demonstrate the reaction zones are challenge in accurately capturing stiff dynamics. In this study, we the vacian within the reaction zone are challenge in accurately capturing the ignition delay time as well as the profiles of the vacian within the reaction zone are challenge in accurately capturing the ignition delay time as well as the profiles of the PCS and ANN- treconstructed thermo-chemical scalars demonstrate the PCS and ANN- seconstructed thermo-chemical scalars demonstrate the PCS and ANN- treconstructed thermo-chemical scalars demonstrate the PCS and ANN- treconstructed thermo-chemical scalars from this study demonstrate the potential ODE solver provides more accurate results than the standard ODE solver. The results from this study demonstrate the potential ODE solver provides more accurate results than the standard ODE solver. The results from this study demonstrate the potential of CoK-PCA-baseed manifold is to be momential maskely pa
					Efficiently solving large sparse systems of linear equations arising from the discretization of PDEs is still a challenging problem. To solve large problems on attainable hardware, the new linear algebra library Lineal has been developed. Lineal uses the preconditioned CG method as its main solver, with an Algebraic Multigid solver (an optimized version of the AMG from DUNE ISTL) as its main preconditioner. However, Lineal uses a number of techniques to achieve very low memory requirements while providing low runtimes as well as generic and extensible interfaces. For stencil-based problems, Lineal can compute the matrix elements on the finest grid on the fly and only needs to store the coarse grid hierarchy explicity. In this case, only a single value (a single byte for some problems) per cell is needed on the finest grid, which drastically reduces memory consumption compared to explicit matrices. Additionally, matrix-vector products are computed using tiling to improve cache utilization. Altematively, Compressel Row Storage (RS) matrices can be used, which support indices consisting of an arbitrary number of bytes to reduce memory consumption.
W03	Ippisch	Olaf	Lineal: An new efficient, hybrid- paraliel Linear Algebra Library	Kurt Böhm, Olaf Ippisch, Institute of Mathematics, Cl	Elementary operations are represented as classes that perform element-wise computations, using inlining to combine operations efficiently. Almost all components are fully multithreaded and use explicit SIMD operations to improve performance. Additionally, recent work has added support for distributed memory parallelism using MPI, allowing for hybrid-parallel computations that utilize a compute cluster while minimizing communication costs. Lineal has been successfully used to simulate oxygen diffusion in X-ray scans of soil samples, solving instances with more than \$10+95 unknowns in 10 to 120 minutes on a single AMD EPVC system with 32 costs and 256-GB of RAM. Further tests using this problem show that Lineal performs well compared to existing libraries in terms of runtime and memory consumption. Tests demonstrating its scalability on larger compute clusters using hybrid parallelism will be shown as well.
					We present a GPU-accelerated implementation of vertex-patch smoothers for higher-order finite element methods in 2D and 3D. Optimizing multigrid operations with on-chip memory reduces global data transfers and achieves conflict-free access. Tests on Nidida A100 GPUs show our optimized kernel is twice as fast as the baseline for the Poisson problem, reaching up to 36% peak performance in single and double precision. Additionally, we introduce a matrix-free multigrid method for high-order discontinuous Calenkin finite element methods, achieving up to 39% peak performance with shared memory and mixed- precision approaches. MPI parallelization further enhances efficiency and robustness in 2D and 3D Poisson problems. We also accelerate tensor product operations using Nidia A100 GPU Tensor Cores. Inline PTX instructions with conflict-free or the second secon
W04	Cui	Cu	Efficient and High-Performance Finite Element Methods on GPUs	Cu Cui, Guido Kanschat	snare memory access yield a 2.3-too increase in bolue processon and a footnot enhancement in tail-processon or sowing the Poisson equation with FGMRES. These results highlight Tensor Crear's benefits hailanding computational speed and precision for finite element operators. We will present out work on a performance-portable implementation of the 2D shallow water equations. The discretization is
W05	Büttner	Markus	Performance portability across CPUs, GPUs and FPGAs for a SYCL: implementation of a discontinuous Galerkin shallow water solver	Christoph All, Friedrich Alexander University Erlangen-Nuremberg and Paderborn Center for Parallel Computing Toblas Kenter, Paderborn Center for Parallel Computing Vadym Akinger, University of Bayreuth	usade on the modul use on internet of the second se
W06	Schmalfuß	Jonathan	Block-structured grids: avoiding indirect memory access while retaining solution accuracy – a technology demostration	Sara Faghih-Naini, Daniel Zint, Julian Stahi, Roberto	Numerical simulations on domains with complex boundaries, such as coastal ocean areas, often rely on unstructured triangular grids. Computation on such grids typically involves some overhead due to irregular memory access patterns. On the other hand, a regular grid structure has performance optimization potential and only for CPU but bat ds CPUs and FPCAS. Block- structured grids (BSC) allow to exploit this potential using a topologically unstructured collection of blocks, each containing a structured grids. We present performance evaluations, methods for generation and validation for a range of different BSG techniques: (Standard BSC) a method for automatic generation and validation for a range of different BSG structured exploit. We present performance evaluations, methods for ocean domains with a variable number of blocks; (Masked BSG) an enhancement by permitting masking of elements and (Hybrid BSG) a generalization, combining both unstructured and structured blocks in one block-structured grid. The utilization of BSGs in our shallow water equations solver reveals varying degrees of complexity. First, addressing the problem block-wise as an unstructured grid, similar to cache blocking, avoids cache misses. Second, employing explicit offsets to bypass indirect memory accesses. This daybing algorithmic changes exposes optimization potential for the compiler, improving single-core performance. Concurrently, BSGs are designed for parallelism, due to the flexible block number and number of elements per block. The potential gains are accurate and faster ocean simulations, resulting in enhanced understanding and prediction of climate events.
W07	Subramani	Deepak	Physics-Informed Neural Models: Recent Results in Boundary Generalization, Turbulence Modeling, and Ocean State Forecasting	Deepak Subramani	We report three advances from our lab in developing physics-informed neural models: boundary condition generalization, turbulence modeling, and ocean state forecasting. First, we introduce a transformer-based neural operator to learn generalized solutions for various initial and boundary conditions of a PDE. Details of the new architecture and benchmarks are presented. Second, we developed a PINN model using the 2 equation Sk-besilonS model and the actuator disc method to simulate wind turbine wakes, reducing training time by not relying on high-fidelity data. Simulations of HOEEC WPS 30/3 and hibes 60 kW turbine wakes were compared with field data. Think, we developed a discretization-invariant Fourier neural operator (FNO) model to predict the surface fields of the Bay of Bengal in an autoregressive generative framework using the initial ocean state and boundary forcing data.
		6 - 1 ¹¹	FastVPINNs: Tensor-Driven Acceleration of VPINNs for		Variational Physics-Informed Neural Networks (VFINNs) utilize a variational loss function to solve partial differential equations, mirroring Finite Element Methods. Existing implementation of hp-VFINs, while generally more effective than PINNs, are computationally intensive and scale poorly with increasing element counts. Moreover, their applications thus far have been limited to simple geometries that can be decomposed by regular quadritatiral elements, which limits their applications on complex geometries with skewed quadritateral elements. This work introduces FastPVINNs, a tensorbased framework that significantly reduces training time and handles complex geometries. Using optimized tensor operations, FastPVINNs can achieve up to 100-foil reduction in the median training time per epoch compared to traditional hp-VPINNs. With the proper choice of tryperparameters, FastPVINNs can suppass conventional PINNs in both speed and accuracy, especially in problems but high-frequency solutions. Further, we have developed FastPVINNs for vector-valued problems, such as the 2D stationary Burgers' equation. We have also extended the implementation to the 2D incompressible Navie-Stokes equation and demonstrated is performance on too Net Rynolds number flow regimes in problems like Id-driven cavity and Kovasznay flow. Demonstrated effectiveness in solving inverse problems on complex domains undencores FastVPINNs potential for despressibiliticant of accuracy challenge challenges, penning mervements for practical implementations for scientific.