
E6 – Software Development / Numerical
Programming II

Olaf Ippisch
email: Olaf.Ippisch@ipvs.uni-stuttgart.de

30. Juli 2009

Inhaltsverzeichnis

1 Introduction 4
1.1 Subject of the Lecture . 4
1.2 Concrete Example . 4
1.3 Topics the Lecture and the Exercises . 7

2 Groundwater Flow 8

3 Partial Differential Equations 13
3.1 Examples for PDE types . 15
3.2 Sphere of Influence . 17

4 Spatial-Discretisation Methods 18
4.1 Recapitulation: The Finite-Difference Method 18
4.2 Recapitulation: The Finite-Element Method . 19
4.3 The Finite-Volume Method . 19
4.4 The Vertex-Centered Finite-Volume Method . 26

5 Solution of Linear Equation Systems 28
5.1 Direct Solution of Sparse Linear Equation Systems 28
5.2 Iterative Solution of Sparse Linear Equation Systems 29

5.2.1 Relaxation Methods . 29

6 Parallel Computing 51
6.1 Introduction . 51

6.1.1 Why Parallel Computing ? . 52
6.1.2 (Very Short) History of Supercomputers 52

6.2 Single Processor Architecture . 55
6.2.1 Von Neumann Architecture . 55
6.2.2 Pipelining . 56
6.2.3 Superscalar Architecture . 57
6.2.4 Caches . 58

1

6.3 Parallel Architectures . 61
6.3.1 Classifications . 61
6.3.2 Uniform Memory Access Architecture 61
6.3.3 Nonuniform Memory Access Architecture 64

6.4 Things to Remember . 66
6.4.1 Private Memory Architecture . 66
6.4.2 Things to Remember . 69

6.5 Process Model . 70
6.5.1 A Simple Notation for Parallel Programs 70
6.5.2 The Critical Section Problem . 71
6.5.3 Single Program Multiple Data . 72
6.5.4 Condition Synchronisation . 73
6.5.5 Things to Remember . 75

6.6 OpenMP . 75

7 Basics of Parallel Algorithms 79
7.1 Data Decomposition . 79
7.2 Agglomeration . 82
7.3 Mapping of Processes to Processors . 83
7.4 Load Balancing . 83
7.5 Data Decomposition of Vectors and Matrices 84
7.6 Matrix-Vector Multiplication . 86

8 Introduction Message Passing 88
8.1 Synchronous Communication . 90
8.2 Asynchronous Communication . 91

9 The Message Passing Interface 92
9.1 Simple Example . 93
9.2 Communicators and Topologies . 95
9.3 Blocking Communication . 96
9.4 Non-blocking communication . 98
9.5 Global Communication . 99
9.6 Avoiding Deadlocks: Coloring . 100

10 Things to Remember 102

11 Analysis of Parallel Algorithms 103
11.1 Examples . 105

11.1.1 Scalar Product . 105
11.1.2 Gaussian Elimination . 106

11.2 Scalability . 107
11.2.1 Fixed Size . 107
11.2.2 Scaled Size . 108

11.3 Things to Remember . 110

12 Parallel Iterative Solution of Sparse Linear Equation Systems 110
12.1 Parallelization . 111

2

12.2 MPI Functions for Cartesian Grids . 115
12.2.1 Examples . 117

13 Debugging of Parallel Programs 119

14 Time-dependent Problems 120
14.1 Parabolic Problems . 120

3

1 Introduction

1.1 Subject of the Lecture

Intention of the Lecture

• Other lectures cover theoretical aspects of modeling and simulation (equations, material
properties, mathematical aspects of partial differential equations, numerical methods)

• In this lecture we will apply this knowledge to develop a real working model for the
solution of a concrete example problem from scratch.

• To realise this we will need some on the iterative solution of linear equation systems,
discretisations and parallel programming

Aims

• Get an insight in the operation of a simulation programs

• Get a better understanding for the behaviour of existing solvers for partial differential
equations

• Learn modern programming techniques

• Introduction to parallel computing

Prerequisites

• Basic knowledge of object-oriented programming techniques (Commas C6 lecture)

• Basic knowledge of numerical mathematics

• Basic knowledge about partial differential equations (Commas C5 lecture)

• Readiness to do some programming in the exercises

1.2 Concrete Example

Groundwater contamination problem

4

The water in several wells is contaminated with a soluble substance.

We know that there was an accident in a factory where the same substance was released to
the groundwater.

-25

-20

-15

-10

-5

0

650 700 750 800 850

well_1

-15

-10

-5

0

5

650 700 750 800 850

well_2

• Does this explain all the contamination?

• Can we reproduce the measurements?

• Is there another source involved?

Why this problem?
The example has nothing to do with structural mechanics, but:

• While problems in structural mechanics usually lead to systems of (nonlinear) partial dif-
ferential equations, the groundwater flow equation is a linear partial differential equation
in one variable only

• Transport in porous media is important for engineers as well(e.g. water (vapour) flow in
walls)

5

• From the numerics and software development point of view the application is not im-
portant, only the type of the partial differential equation

• The groundwater flow equation is a typical elliptical, the solute transport equation a
typical hyperbolic partial differential equation

• Can be solved in the available time

• We can produce nice pictures ;-)

What do we have to do to solve this problem?

• Compute the flow field for groundwater

• Determine the amount of contamination from the factory

• Solve solute transport

• Compare measurements at wells with the result

How do we do this in this lecture?

• We develop a new groundwater flow model

• Parallelise the groundwater flow model

• Use an existing solute transport solver to solve the solute transport

• Compare measurements at wells with the result

6

1.3 Topics the Lecture and the Exercises

Topics covered by the Lecture

• Introduction to the problem

• Flow in porous media

• The Finite-Volume-Method

• Iterative linear solvers

– Basics
– Advanced methods
– Multigrid

• Grids and grid generation

• Parallel Computers

– Basics
– MPI
– Parallel iterative solvers

• Time dependend problems, Solute Transport

Exercises

• The exercises are a crucial part of the lecture

• You can only improve your programming skills by programming yourself

• Bit by bit we will implement the necessary routines for the (parallel) groundwater flow
solver

Transparencies and Exercises
Transparencies
http://www.ipvs.uni-stuttgart.de/abteilungen/

sgs/lehre/lehrveranstaltungen/vorlesungen/SS08/
commase6 termine/start/en

Exercises
http://www.ipvs.uni-stuttgart.de/abteilungen/

sgs/lehre/lehrveranstaltungen/uebungen/SS08/
commase6 uebung termine/start/en

7

http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/vorlesungen/SS08/commase6_termine/start/en
http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/vorlesungen/SS08/commase6_termine/start/en
http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/vorlesungen/SS08/commase6_termine/start/en
http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/uebungen/SS08/commase6_uebung_termine/start/en
http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/uebungen/SS08/commase6_uebung_termine/start/en
http://www.ipvs.uni-stuttgart.de/abteilungen/sgs/lehre/lehrveranstaltungen/uebungen/SS08/commase6_uebung_termine/start/en

2 Groundwater Flow

Heterogenity

8

9

from: K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut für Umweltphysik, Universität Heidelberg

http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture notes05/lecture notes05.html

Anisotropy

10

http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture_notes05/lecture_notes05.html

from: K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut für Umweltphysik, Universität Heidelberg

http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture notes05/lecture notes05.html

Continuum approach

from: K. Roth (2005), Soil Physics - Lecture Notes v1.0, Institut für Umweltphysik, Universität Heidelberg

http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture notes05/lecture notes05.html

Darcy Equation
H. Darcy (1856): Les Fontaines de la Ville de Dijon, Dalmont, Paris.

Jw = −Ks · ∆pw
∆x

for ∆x→ 0
Jw = −Ks · ∂pw

∂x

in three dimensions:

~Jw = −K̄s ·

∂pw

∂x
∂pw

∂y
∂pw

∂z

 = −K̄s · ∇pw

Mass Conservation

11

http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture_notes05/lecture_notes05.html
http://www.iup.uni-heidelberg.de/institut/forschung/groups/ts/students/lecture_notes05/lecture_notes05.html

Water Outflow Rate

Jw(x, y, z + ∆z, t)∆x∆y

Water Inflow Rate

Jw(x, y, z, t)∆x∆y

∆x

∆y

∆z

Soil Water Storage

θ(x, y, z̄, t)∆x∆y∆z

Flow Area A = ∆x∆y
Plant

root

Water Extraction Rate

rw(x, y, z, t)∆x∆y∆z

according to W. A. Jury, R. Horton (2004): Soil Physics, 6th ed, Wiley & Sons, New Jersey

Transport Equation

∂θ(~x)
∂t

+∇ · ~Jw(~x) + rw(~x) = 0

∂θ(~x)
∂t

+∇ · [−K̄s(~x) · ∇pw
]

+ rw(~x) = 0

∂θ(~x)
∂t

−∇ · [K̄s(~x) · ∇pw
]

+ rw(~x) = 0

with gravity:
∂θ(~x)
∂t

−∇ · [K̄s(~x) · (∇pw − ρwg~ez)
]

+ rw(~x) = 0

steady state:
−∇ · [K̄s(~x) · (∇pw − ρwg~ez)

]
+ rw(~x) = 0

• can be described by Darcy’s Law Jw = −Ks∇pw and the continuity equation ∂θ(~x)
∂t +∇ ·

~Jw(~x) + rw(~x) = 0.

• gravity is included by ∂θ(~x)
∂t −∇ ·

[
K̄s(~x) · (∇pw − ρwg~ez)

]
+ rw(~x) = 0

12

• heterogeneity is considered by different values of Ks at different positions of ~x

• anisotropy is considered by using a tensor K̄s instead of a scalar

• in steady state the flux equation is given by: −∇ · [K̄s(~x) · (∇pw − ρwg~ez)
]

+ rw(~x) = 0

The groundwater flow equation can be used to determine the

• velocity of the groundwater at a certain point

• area of influence of a well

• distribution of a substance released at a certain point

• current density in a complex conductor

• temperature distribution e.g. on a computer chip

3 Partial Differential Equations

Identical Flux Laws

• Ohms’ law, charge conservation:

Recapitulation: Partial Differential Equations
A partial differential equation

• determines a function u(x) in n ≥ 2 variables x = (x1, . . . , xn)T.

• is a functional relation between partial derivatives of u at one point.

In general:

F

(
∂mu

∂xm1
(x),

∂m−1u

∂xm−1
1

(x), . . . ,
∂mu

∂xmn
(x),

∂m−1u

∂xm−1
n

(x), . . . , u(x)
)

= 0 ∀x ∈ Ω (1)

Important:

• PDE’s are posed in a domain Ω. Domains may be finite or infinite. Ω does not include
its boundary

• The boundary of a domain is denoted by ∂Ω

• The highest derivative m determines the order of a PDE

• u : Ω→ R is called a solution of a PDE if it satisfies the PDE identically for every point
x ∈ Ω

• Solutions of PDE’s are usually not unique unless additional conditions are posed. Typi-
cally these are conditions for the function values (and/or derivatives) at the boundary

• A PDE is well posed if the specified boundary conditions are unique and the solution
depends continuously on the data

13

Linear partial PDE’s of second order are a case of specific interest. For 2 dimensions and
order m = 2 the general equation is:

a(x, y)
∂2u

∂x2
(x, y) + 2b(x, y)

∂2u

∂x∂y
(x, y) + c(x, y)

∂2u

∂y2
(x, y)

+d(x, y)
∂u

∂x
(x, y) + e(x, y)

∂u

∂y
(x, y) + f(x, y)u(x, y)

+g(x, y) = 0

At a point (x, y) a PDE can be classified according to the first three terms (main part) into

elliptic if a(x, y)c(x, y)− b2(x, y) > 0

hyperbolic if a(x, y)c(x, y)− b2(x, y) < 0

parabolic if a(x, y)c(x, y)− b2(x, y) = 0 and rank of
[
a b d
b c e

]
= 2 in (x, y)

The general linear PDE of 2nd order in n space dimensions is:

n∑
i,j=1

aij(x)∂xi∂xju︸ ︷︷ ︸
main part

+
n∑
i=1

ai(x)∂xiu+ a0(x) = 0 in Ω.

without loss of generality one can set aij = aji. With (A(x))ij = aij(x) the PDE is at a
point x

elliptic if all eigenvalues of A(x) have identical sign and no eigenvalue is zero.

hyperbolic if (n− 1) eigenvalues have identical sign, one eigenvalue the opposite sign and no
eigenvalue is zero.

parabolic if one eigenvalue is zero, all other eigenvalues have identical sign and the rank[A(x), a(x)] =
n.

�

• Why this classification? Different solution techniques are necessary for the different types
of PDE’s.

• The described classification is complete for linear PDE’s with n = m = 2. In higher space
dimensions the classification is no longer complete.

• The type is invariant under coordinate transformation ξ = ξ(x, y), η = η(x, y) and
u(x, y) = ũ(ξ(x, y), η(x, y)), which yields a new PDE for ũ(ξ, η) with the coefficients ã, b̃,
etc.. If the equation for u in (x, y) has the type t than ũ in (ξ(x, y), η(x, y)) has the same
type.

• The type can vary at different points (but not in our applications).

14

• The type is only determined by the main part of the PDE (except for parabolic equations).

• Pathological cases like ∂2u
∂x2 + ∂u

∂x = 0;u(x, y) = 0 are avoided.

Definition 3.1. A linear PDE of 2nd order is called elliptic (hyperbolic, parabolic) in Ω if it
is elliptic (hyperbolic, parabolic) for all points (x, y) ∈ Ω . �

Definition 3.2 (Classification for first-order PDE’s). An equation of the form

d(x, y)
∂u

∂x
(x, y) + e(x, y)

∂u

∂y
(x, y) + f(x, y)u(x, y) + g(x, y) = 0

is called hyperbolic if |d(x, y)| + |e(x, y)| > 0 ∀(x, y) ∈ Ω (else it is an ordinary differential
equation). For n ≥ 2 the equation v(x) · ∇u(x) + f(x)u(x) + g(x) = 0 is called hyperbolic. �

In this lecture we only cover scalar PDE’s. Systems of PDE’s contain several unknown
functions u1, . . . , un : Ω→ R and n PDE’s. There is also a classification system for systems of
PDE’s.

3.1 Examples for PDE types

Poisson-Equation

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y) ∀(x, y) ∈ Ω (2)

is called Poisson-Equation.
This is the prototype of an elliptic PDE. The solution of equation (2) is not unique. If u(x, y)

is a solution, then u(x, y) + c1 + c2x + c3y are also solutions for arbitrary values of c1, c2, c3.
To get a unique solution u values at the boundary have to be specified (we therefore call this
a “boundary value problem”).

Two types of boundary values are common:

1. u(x, y) = g(x, y) for (x, y) ∈ ΓD ⊆ ∂Ω (Dirichlet1),

2. ∂u
∂ν (x, y) = h(x, y) for (x, y) ∈ ΓN ⊂ ∂Ω (Neumann2, flux),

and ΓD ∪ ΓN = ∂Ω. It is also important that ΓN 6= ∂Ω, as else the solution is only defined up
to a constant.

Complete Poisson-Equationy

x

Ω

(0, 0)

(0, 1)

(1, 0)

ΓN

ΓN ΓD

ΓD
∂2u

∂x2
+
∂2u

∂y2
= f in Ω

u = g on ΓD ⊆ ∂Ω
∂u

∂ν
= h on ΓN = ∂Ω \ ΓD 6= ∂Ω

1Peter Gustav Lejeune Dirichlet, 1805-1859, German Mathematician.
2John von Neumann, 1903-1957, Austro-Hungarian Mathematician

15

Generalisation to n space dimensions:

n∑
i=1

∂2u

∂x2
i

=: ∆u = f in Ω

u = g on ΓD ⊆ ∂Ω
∇u · ν = h on ΓN = ∂Ω \ ΓD

This equation is also called elliptic. If f ≡ 0 it is called Laplace-Equation. �

General Diffusion Equation
K : Rn → Rn×n is a projection, which relates to each point x ∈ Ω a n× n matrix K(x).
We demand also (for all x ∈ Ω) that K(x)

1. K(x) = KT(x) and ξTK(x)ξ > 0 ∀ξ ∈ Rn, ξ 6= 0 (symmetric positive definite),

2. C(x) := min
{
ξTK(x)ξ

∣∣∣ ‖ξ‖ = 1
}
≥ C0 > 0 (uniform ellipticity).

−∇ ·
{
K(x)∇u(x)

}
= f in Ω

u = g on ΓD ⊆ ∂Ω

−
(
K(x)∇u(x)

)
· ν(x) = h on ΓN = ∂Ω \ ΓD 6= ∂Ω

(3)

is then called General Diffusion Equation (e.g. groundwater flow equation).

For strongly varying K equation (3) can be very difficult to solve. �

Wave-Equation
The prototype of a hyperbolic equation of second order is the Wave-Equation:

∂2u

∂x2
(x, y)− ∂2u

∂y2
(x, y) = 0 in Ω . (4)

Possible boundary values for a domain Ω = (0, 1)2 are e.g.:
x ∈ [0, 1]:

a) u(x, 0) = u0(x)

b)
∂u

∂y
(x, 0) = u1(x)

y ∈ [0, 1]:

c) u(0, y) = g0(y)

d) u(1, y) = g1(y)

y

x

Ω

(0, 0)

(0, 1)

(1, 0)

nothing!

u
c)

u
d)

u and ∂u
∂y

a) + b)

Compatibility
of the
boundary
values for u,
∂u
∂y

! Two boundary values

as ∂2u
∂y2 !

The direction y (usually the time) is special. a) + b) are called initial values and c) + d)
boundary values. It is not possible to prescribe values at the whole boundary! �

16

Heat-Equation

The prototype of a parabolic equation is the heat equation:

∂2u

∂x2
(x, y)− ∂u

∂y
(x, y) = 0 in Ω.

y

x

Ω

nothing

u
b)

u
c)

u a)
only one boundary value
as PDE is first order in y

For a domain Ω = (0, 1)2 typical boundary values are (with x ∈ [0, 1], y ∈ [0, 1]):

u(x, 0) = u0(x)
u(0, y) = g0(y) u(1, y) = g1(y)

�

Transport-Equation
If Ω ⊂ Rn, v : Ω→ Rn is a given vector field, the equation

∇ · {v(x)u(x)} = f(x) in Ω

is called stationary transport equation and
is a hyperbolic PDE of first order.
Possible boundary values are

u(x) = g(x)

”
Outflow boundary“

→ no boundary

value

”
Inflow boundary“

v(x)

v(x)

Ω

for x ∈ ∂Ω with v(x) · ν(x) < 0 (Boundary value depends on the flux field)
∂u
∂t +∇ · {v(x, t)u(x, t)} = f(x, t) is also a hyperbolic PDE of first order. �

3.2 Sphere of Influence

The type of a partial differential equation can also be illustrated with the following question:

Given x ∈ Ω. Which initial/boundary values influence the solution u at the point
x?

Elliptic uxx + uyy = 0
y

x

x
all boundary values influence u(x), i.e. Change in u(y), y ∈
∂Ω⇒ Change in u(x).

17

Parabolic uxx − uy = 0 Note: The − is crucial, + is parabolic according to the definition
but it is not well posed (stable)

y

x

(x, y) for (x, y) all (x′, y′) with y′ ≤ y influence the value at x.

”infinite velocity of propagation“

Hyperbolic (2nd order) uxx − uyy = 0
y

x

(x, y)
slope ±c

Solution at (x, y) is influenced by all boundary values below
the cone

{(x′, y′) | y′ ≤ (x′ − x) · c+ y

∧ y′ ≤ (x− x′) · c+ y} ∩ ∂Ω

”finite velocity of propagation“

Hyperbolic (1st order) ux + uy = 0
y

x

x

v(x)
Only one boundary point influences the value.

• The steady-state groundwater flow equation −∇ · [K̄s(~x) · (∇pw − ρwg~ez)
]

+ rw(~x) = 0
is an elliptic partial differential equation of second order.

• To get a well posed problem either Dirichlet boundary conditions (the pressure value is
given) or Neumann boundary conditions (the flux is given) must be specified at each
boundary point.

• At one point of the boundary a Dirichlet boundary condition should be specified (else
the equation is only defined up to a constant).

• Each point in the domain is influenced by all boundary conditions.

4 Spatial-Discretisation Methods

4.1 Recapitulation: The Finite-Difference Method

• Partial derivatives are replaced with difference quotients (Taylor series expansion)

• Dirichlet boundary conditions can easily be integrated by rearranging the equation sys-
tems and bringing them to the right side of the equation.

18

• Neumann boundary conditions are integrated by either replacing them with a forward
difference formula or by introduction of ghost nodes

• Only on a equidistant grid the Finite-Difference Method is second-order accurate

• Advantages:

– easy to formulate and implement
– well suited for structured grids

• Problems:

– Non-equidistant grids
– What’s the value between two points?
– Complex domains
– In general not locally mass-conservative.

4.2 Recapitulation: The Finite-Element Method

• A trial function is inserted in the partial differential equation, resulting in a residual.

• The free coefficients of the trial functions are chosen such that the integral over the
product of the residual and chosen weight functions vanishes (weak formulation).

• Finite element methods differ in the the choice of the trial and weight functions.

• Dirichlet boundary conditions can be directly incorporated into the trial functions.

• Neumann boundary conditions are handled in the integrals.

• Convergence order depends on the choice of weight and trial functions.

• Advantages:

– can be used for domains with complicated shape
– well suited for unstructured grids
– local adaptivity possible

• Problems:

– grid generation can be complicated (must often fullfill certain conditions)
– more computationally expensive for simple problems
– not allways locally mass-conservative

4.3 The Finite-Volume Method

• Only the integral of the partial differential equation over each a grid cell must fullfill the
equation.

• Implementation of Dirichlet Boundary and Neumann Boundary conditions straight for-
ward

• Structured and unstructured grids possible

19

• Dirichlet boundary conditions can easily be integrated by rearranging the equation sys-
tems and bringing them to the right side of the equation.

• Neumann boundary conditions can easily be integrated in the flux integrals

• Convergence order can differ dependent on the concrete method.

Divide Domain into Grid Cells

x0,0 x4,0

x4,0.5

N=5

x1,0 x2,0 x3,0

x0,1

x0,2

x0,3

x0,4

x3.5,1 x4.5,1

x4,1.5

Divide grid into rectangular grid cells gij

Other Possible Grids with Finite Volume Methods

(a)

20

(b)

J

I

B

M

A

γ

x

a
I

M
J

K

A

B

γ

x

Transformation of Volume Integral into Boundary Integral

∫
gij

∇ · ~Jw dx dy =
∫
gij

r(~x) dx dy

⇔︸︷︷︸
Satz of Gauss

∫
∂gij

~Jw · ~n ds =
∫
gij

r(~x) dx dy

Inner Grid Cell

21

(−10)

(01)

(10)

(0−1)

(i,j−1)

(i,j)(i−1,j) (i+1,j)(i−0.5,j) (i+0.5,j)

(i,j+0.5)

(i,j−0.5)

i+0.5,jF

(i,j+1)

Finite Volume Discretisation: Split into Sum over Faces

∫
∂gij

~Jw · ~n ds =
∑

k=i±0.5

∫
Fkj

~Jw · ~n ds+
∑

l=j±0.5

∫
Fil

~Jw · ~n ds

≈︸︷︷︸
Midpointrule

∑
k=i±0.5

~Jw(~xk,j) · ~n · h︸︷︷︸
Face Area

+
∑

l=j±0.5

~Jw(~xi,l) · ~n · h︸︷︷︸
Face Area

with

~Jw(~x) = −
(
Kxx(~x) 0
0 Kyy(~x)

)
·
(

∂p
∂x(~x)
∂p
∂y (~x)

)

Finite Volume Discretisation: Insert Flux law

22

∑
k=i±0.5

~Jw(~xk,j) · ~n · h+
∑

l=j±0.5

~Jw(~xi,l) · ~n · h =

−Kxx(~xi−0.5,j) · ∂p
∂x

(~xi−0.5,j) · (−1)︸︷︷︸
from nx

·h

−Kxx(~xi+0.5,j) · ∂p
∂x

(~xi+0.5,j) · (1)︸︷︷︸
from nx

·h

−Kyy(~xi,j−0.5) · ∂p
∂x

(~xi,j−0.5) · (−1)︸︷︷︸
from ny

·h

−Kyy(~xi,j+0.5) · ∂p
∂x

(~xi,j+0.5) · (1)︸︷︷︸
from ny

·h

Finite Volume Discretisation: Approximate Derivatives

≈︸︷︷︸
approx.Derivative

+Kxx(~xi−0.5,j) · p(~xi,j)− p(~xi−1,j)
h

· h

−Kxx(~xi+0.5,j) · p(~xi+1,j)− p(~xi,j)
h

· h

+Kyy(~xi,j−0.5) · p(~xi,j)− p(~xi,j−1)
h

· h

−Kyy(~xi,j+0.5) · p(~xi,j+1)− p(~xi,j)
h

· h

Midpoint rule for source/sink term:∫
gij

r(~x)dx dy ≈ h2r(~xi,j)

Matrix Contribution of each Grid Cell

−Kxx(~xi−0.5,j) · pi−1,j −Kxx(~xi+0.5,j) · pi+1,j

−Kyy(~xi,j−0.5) · pi,j−1 −Kyy(~xi,j+0.5) · pi,j+1

+ [Kxx(~xi−0.5,j) +Kxx(~xi+0.5,j) +Kyy(~xi,j−0.5) +Kyy(~xi,j+0.5)] · pi,j = h2r(~xi,j)

Dirichlet Boundary
e.g. x = 0:

23

h/2
x
0,j

h

Compute derivative between inner point and boundary point:

∂p

∂x
(~x−0.5,j) ≈ p(~x0,j)− pd(0, yj)

h/2

Matrix Contribution at Dirichlet Boundary x = 0

−Kxx(~xi+0.5,j) · pi+1,j

−Kyy(~xi,j−0.5) · pi,j−1 −Kyy(~xi,j+0.5) · pi,j+1

+ [2Kxx(~xi−0.5,j) +Kxx(~xi+0.5,j)

+Kyy(~xi,j−0.5) +Kyy(~xi,j+0.5)] · pi,j = h2r(~xi,j) + 2Kxx(~xi−0.5,j) · pd(0, yj)

Neumann Boundary
For each volume we have to calculate∫

∂gij

~Jw · ~n ds =
∑

k=i±0.5

∫
Fkj

~Jw · ~n ds+
∑

l=j±0.5

∫
Fil

~Jw · ~n ds

At a Neumann boundary ~Jw · ~n is given by the boundary condition φn(~x), we can therefore
use ∫

Fkl

~Jw · ~n ds ≈︸︷︷︸
Midpointrule

h · φN (~x)

at each Neumann boundary.

Matrix Contribution at Neumann Boundary x = 0

−Kxx(~xi+0.5,j) · pi+1,j

−Kyy(~xi,j−0.5) · pi,j−1 −Kyy(~xi,j+0.5) · pi,j+1

+ [Kxx(~xi+0.5,j) +Kyy(~xi,j−0.5) +Kyy(~xi,j+0.5)] · pi,j = h2r(~xi,j)− h · φN (~x−0.5,j)

24

Example: 3× 3 Grid

0 1 2

3 5

6 7 8

4noflux noflux

dirichlet north

dirichlet south

K(~x) =
(
K 0
0 K

)
0BBBBBBBBBBB@

4K −K 0 −K 0 0 0 0 0
−K 5K −K 0 −K 0 0 0 0

0 −K 4K 0 0 −K 0 0 0
−K 0 0 3K −K 0 −K 0 0

0 −K 0 −K 4K −K 0 −K 0
0 0 −K 0 −K 3K 0 0 −K
0 0 0 −K 0 0 4K −K 0
0 0 0 0 −K 0 −K 5K −K
0 0 0 0 0 −K 0 −K 4K

1CCCCCCCCCCCA

0BBBBBBBBBBB@

p0

p1

p2

p3

p4

p5

p6

p7

p8

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

2Kpdsouth
2Kpdsouth
2Kpdsouth

0
0
0

2Kpdnorth
2Kpdnorth
2Kpdnorth

1CCCCCCCCCCCA

Permeability
We assume that the permeability is a diagonal Tensor, which is depending on the position,

but constant on each grid cell gij .
We need to evaluate K at the cell boundaries xi±0.5,j±0.5.
What is the correct value?

1D-Example

dJw
dx

= 0 in Ω = (0, `︸︷︷︸
length

)

Jw = −K(x)
dp

dx

p
0

K(x)

p
l

with

p(0) = p0

p(`) = p`

25

because of dJw
dx = 0 in Ω⇔ Jw(x) = J0 ∈ R this means

J0 = −K(x)
dp

dx
⇔ dp

dx
= − J0

K(x)

dp

dx
= − J0

K(x)

⇔
`∫

0

dp

dx
dx = [p(x)]`0 = p` − p0 = −J0

`∫
0

1
K(x)

dx

⇔ J0 = − `∫̀
0

1
K(x)dx︸ ︷︷ ︸

eff.permeability

· p` − p0

`︸ ︷︷ ︸
approx.gradient

1D-Example, cell-wise constant Permeability

if K(x) =
{
Kl x ≤ `

2

Kr x > `
2

Kr

0 l

lK

Keff =
`∫̀

0

1
K(x)dx

=
`

`
2

1
Kl

+ `
2

1
Kr

=
2

1
Kl

+ 1
Kr

We therefore choose for cell-wise constant permeabilities

K(~xi±0.5,j) =
2

1
K(~xi,j) + 1

K(~xi±1,j)

4.4 The Vertex-Centered Finite-Volume Method

vi

vj

bi

bj

• The unknowns are located at the edges of the elements (vertices)

26

• Base functions are used on each element, which are parameterised with the values at the
vertices

• A secondary mesh is constructed connecting the face centers and the barycenter of the
element

• The flux balance is not calculated over the original grid, but over the secondary mesh, the
elements of the secondary mesh are called control-volumes, the parts of a control volume
belonging to a specific element of the primary mesh are called subcontrol-volumes.

vjvi

bi
k

xi
kfγi

kf

ni
kf

xij
k

nij
k

γij
k

element ek
vi vj

bi
k

bj
k

element ek

xij
k

nij
k

γij
k

γj
kf

xj
kf

nj
kf

• Material properties are assumed to be constant for each element

• The volume integrals are calculated as a sum over the subcontrol-volumes using the
midpoint rule and the material properties valid for the specific control-volume.

∑
i
bki · rki

• The face integrals are calculated as a sum over all subcontrol-volume faces with the
midpoint rule

∑
ij
γkij

~Jkij~n
k
ij

• The gradient at the face centers is given by the base functions.

Properties of the Vertex-Centered Finite-Volume Method

• Advantages:

– can be used for domains with complicated shape
– well suited for unstructured grids
– local adaptivity possible
– locally mass conservative

• Problems:

– grid generation can be complicated (must often fullfill certain conditions)
– more computationally expensive for simple problems

27

5 Solution of Linear Equation Systems

5.1 Direct Solution of Sparse Linear Equation Systems

Direct Solution of Sparse Linear Equation Systems
We do a Gaussian eliminitation for A · ~x = ~b with A ∈ RN×N regular, ~x,~b ∈ RN and A is a

matrix assembled by the Finite-Volume method.

m

n

m

n

• As A is symmetric, positive definite the elimination can be done without pivoting

• New non-zero elements are created during the eliminitation (“fill in”)

• The “fill in” is created within the outer diagonal

Complexity of the Elimination
Due to the “fill in” ’O(N) = O(n ·m) matrix entries become O(n ·m ·m) = O(n ·m2) matrix

entries after the elimination.
The complexity of the elimination is:

Complexity ≤
N∑
i=1

m︸︷︷︸
elements
to eliminate
till diagonal

in line i

· m︸︷︷︸
lower limit

for
elimination

of one
element

= N ·m2 = n ·m3

If n = m the complexity of the elimination is O(N2), with optimal numbering of the nodes
O(N3/2), compared to O(N3) with a fully occupied matrix.

In three dimensions: The elimination has a complexity of O(N7/3)
In one dimension: The elimination has an optimal complexity of O(N)

28

5.2 Iterative Solution of Sparse Linear Equation Systems

Starting from an initial value ~x(0) ∈ RN , iterative solution methods create a sequence

~x(0), ~x(1), . . . , ~x(k), . . .

with the characteristic
lim
k→∞

~x(k) = ~x.

5.2.1 Relaxation Methods

The ith equation in A~x = ~b is:
N∑
j=1

aijxj = bi

solve for xi:

xi =
1
aii

bi −∑
j 6=i

aijxj

Precondition: aii 6= 0 ∀i = 1 . . . N . This is not true for all matrices

Gauß-Seidel Iteration: Algorithm
Update all columns one after the other:

given ~x(k)

for (i = 1; i ≤ N ; i = i+ 1)

x
(k+1)
i =

1
aii

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

yields ~x(k+1)

This scheme is called Gauß-Seidel Iteration.

Complexity for calculation of ~x(k+1) from ~x(k) proportional to number of non-zero elements
of the matrix, therefore O(N) for sparse matrices.

Open Questions

• Under which conditions is the sequence converging with lim
k→∞

~x(k) = ~x.

• How many iterations are necessary to reach ||~x(k) − ~x|| ≤ ε for a given precision ε?

• How can one determine efficiently if ||~x(k)− ~x|| ≤ ε is reached? (we don’t know the exact
solution ~x)

29

Other Relaxation Methods
Jacobi Iteration:

x
(k+1)
i =

1
aii

bi −∑
j 6=i

aijx
(k)
j

Damped Jacobi Iteration:

x
(k+1)
i = (1− ω)x(k)

i +
ω

aii

bi −∑
j 6=i

aijx
(k)
j

special case: ω = 1⇒ Jacobi Iteration

SOR (successive overrelaxation) Iteration:

x
(k+1)
i = (1− ω)x(k)

i +
ω

aii

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

0 < ω < 1: underrelaxation 1 < ω < 2: overrelaxation special case: ω = 1⇒ Gauß-Seidel Iteration

Damped Richardson Iteration:

x
(k+1)
i = (1− aiiω)x(k)

i + ω

bi −∑
j 6=i

aijx
(k)
j

Matrix Notation of Relaxation Methods
For an analysis of the convergence behavior it is more convenient to write the iteration

schemes as matrix operations:

As ~x = ~x(k) + ~e(k) and A~e(k) = ~b−A~x(k) we could calculate ~x from

~x = ~x(k) +A−1
(
~b−A~x(k)

)
However inverting A is at least as expensive as calculating the solution of A~x = ~b with a

direct method. We therefore approximate the matrix A−1 with a matrix M−1, where M is an
approximation of A, which is easy to invert, and get the new formula

~x(k+1) = ~x(k) +M−1
(
~b−A~x(k)

)
~x(k+1) is no longer the exact solution but (hopefully) an improvement to ~x(k)

Matrix Notation of Common Relaxation Methods
Split A = L+D + U into a strictly lower tridiagonal matrix L, a strictly upper tridiagonal

matrix U and a diagonal Matrix D.
Now we can get the iteration methods described above by

M = ω−1I damped Richardson iteration
M = D Jacobi iteration
M = ω−1D damped Jacobi iteration
M = L+D Gauß-Seidel iteration
M = L+ ω−1D SOR iteration

30

Iteration Matrix
For the general iteration scheme we get:

~x(k+1) = ~x(k) +M−1
(
~b−A~x(k)

)
⇔ ~x− ~x(k+1)︸ ︷︷ ︸

~e(k+1)

= ~x− ~x(k)︸ ︷︷ ︸
~e(k)

−M−1
(
~b−A~x(k)

)
~e(k+1) = ~e(k) −M−1

(
A~x−A~x(k)

)
= ~e(k) −M−1A

(
~x− ~x(k)

)
=

(
I −M−1A

)︸ ︷︷ ︸
=:S

~e(k)

We call S = I −M−1A the iteration matrix.

Error Propagation
The error propagation is therefore:

~e(k+1) = S · ~e(k)

with the iteration matrix S = I −M−1A.

Recursive insertion yields:

~e(k) = S · ~e(k−1) = S2 · ~e(k−2) = · · · = Sk · ~e(0)

If lim
k→∞

Sk = 0 (zero matrix) the scheme converges independently of ~e(0).

This is guaranteed if ρ(S) < 1, where ρ(S) = max{|λ| ∣∣ λ is eigenvalue of S} is called spec-
tral radius of S.

Eigenvalues and Eigenvectors

• If A is symmetric and positive definite (and often if it is not) ⇒ there exists a set of N
linearly independent eigenvectors ~z1, ~z2, . . . , ~zN .

• If ~zi is eigenvector of A, α~zi with α ∈ R is also eigenvector of A.

• The product of A and zi is equal to zi times the scalar eigenvalue λi:

A~zi = λi~zi

• As the N eigenvectors are linearly independent, they form a basis of RN , i.e. every vector
~x can be expressed as a linear combination of the eigenvectors.

~x =
N∑
i=1

ξi~zi

31

• As matrix-vector multiplication is distributive:

A~x =
N∑
i=1

ξiA~zi =
N∑
i=1

ξiλi~zi

Matrix multiplication with eigenvector if eigenvalue < 1

Matrix multiplication with eigenvector if eigenvalue > 1

Matrix multiplication with vector which is sum of two eigenvectors

figures from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Convergence Analysis for the Damped Richardson Iteration
If we assume that A is symmetric and positive definite ⇒ all eigenvalues of A are real and

positive. A convergence analysis can then easily be made for the damped Richardson iteration
(M = ω−1I) with the iteration formula:

~x(k+1) = ~x(k) + ω
(
~b−A~x(k)

)
The iteration matrix S is S = I −M−1A = I − ωA and has the eigenvalues µi = 1 − ωλi

where λi is an eigenvalue of A.
If we use ω = 1

λmax(A) , we get:

0 = 1− λmax(A)
λmax(A)

≤ µi ≤ 1− λmin(A)
λmax(A)

= 1− 1
κ2(A)

32

We call κ2(A) = λmax(A)
λmin(A) the spectral condition of A.

The spectral Radius of S is:

ρ(S) ≤ 1− 1
κ(A)2

, with κ(A) ≥ 1

Convergence for Matrices from PDE-Discretizations
For the solution of the Laplace equation

∆p = ∇ · (∇p) = 0

in Ω ⊂ Rd with the Finite-Difference discretisation (i.e. A ∈ RN×N) we get κ2(A) = O(N2/d).

⇒ the defect reduction is decreasing with increasing matrix size.

Similar results can be obtained for other relaxation methods like Jacobi or Gauss-Seidel
iteration.

Further Convergence Results

• If A and 2 ·D −A are both positive definite the Jacobi iteration converges.

• If A is strictly diagonally dominant (aii >
∑

j 6=i |aij |∀i) the Jacobi and Gauß-Seidel
iterations converge.

• SOR can only converge if 0 < ω < 2.

• If A is positive definite, both SOR and Gauß-Seidel converge.

• For many problems occurring in engineering no convergence proofs exist.

Terminating Condition
We call ~e(k) := ~x− ~x(k) the error of the kth iterate. As we do not know the exact solution ~x

the error is hard to determine.
With

A~e(k) = A
(
~x− ~x(k)

)
= A~x−A~x(k) = b−A~x(k) =: ~d(k)

we derive the defect vector ~d(k) := ~b−A~x(k), which can be computed easily.
Because of A~e(k) = ~d(k) ⇔ ~e(k) = A−1~d(k) and therefore ||~e(k)|| ≤ ||A−1|| · ||~d(k)||
we can use the norm of the defect ||d(k)|| as terminating condition.
As ||A−1|| can be very large, we use a relative termination criterium: ||d(k)|| < ε||d(0)|| with

a suitable ε.

33

Defect Calculation
The new defect is not calculated from ~d(k+1) = ~b− A~x(k+1) as with this formulation cance-

lation errors are increasing if the defect gets smaller.
The defect in step k + 1 is:

~d(k+1) = ~b−A~x(k+1) = ~b−A
(
~x(k) + ~v(k)

)
= ~b−A~x(k) −A~v(k) = ~d(k) −A~v(k)

~d(k+1) = ~d(k) −A~v(k) is therefore an equivalent reformulation which reduces the cancelation
errors.

Defect Formulation
The iteration scheme can also be reformulated in terms of the defect and the correction:

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

bi −

X
j<i

aijx
(k+1)
j −

X
j>i

aijx
(k)
j

!

x
(k+1)
i − x(k)

i =
ω

aii

0@bi −X
j<i

aijx
(k+1)
j −

X
j≥i

aijx
(k)
j

1A
v

(k)
i =

ω

aii

0@bi −X
j<i

aij

“
x

(k)
j + v

(k)
j

”
−
X
j≥i

aijx
(k)
j

1A
v

(k)
i =

ω

aii

bi −

X
j

aijx
(k)
j −

X
j<i

aijv
(k)
j

!

v
(k)
i =

ω

aii

d

(k)
i −

X
j<i

aijv
(k)
j

!

Relaxation Methods in Defect Formulation
Damped Richardson Iteration:

v
(k)
i = ωd

(k)
i

Damped Jacobi Iteration:
v
(k)
i =

ω

aii
d
(k)
i

special case: ω = 1⇒ Jacobi Iteration

SOR (successive overrelaxation) Iteration:

v
(k)
i =

ω

aii

d(k)
i −

∑
j<i

aijv
(k)
j

0 < ω < 1: underrelaxation 1 < ω < 2: overrelaxation special case: ω = 1⇒ Gauß-Seidel Iteration

34

Example Algorithm
The initial guess ~x, the matrix A and the right side ~b are given.

~d = ~b−A~x;
d0 = ||~d||;
dk = d0;
while (dk ≥ ε · d0)
{

Solve M · ~v = ~d

~x = ~x+ ~v;
~d = ~d−A~v;
dk = ||~d||;

}

Data Structures for Sparse Matrices
To save memory A should not be stored as ordinary two-dimensional array.
One of the alternatives is called “compressed row storage” (CRS).
If A ∈ RN×N and s with N < s < N2 is the total number of non-zero elements of A.

• All non-zero elements are stored line by line in a one-dimensional floating-point array a
of size s.

• The corresponding column indices are stored line by line in a one-dimensional integer
array j of size s.

• The start indices of each line are stored in an one-dimensional integer array r of size
N + 1, where the total number of non-zero elements s is stored as last element of r
(r[N]=s).

Example Matrix

A =

2.1 0 3.4 0 0
0 1.3 0 2 6.4

1.1 0 5.3 0 0
0 7.8 0 3.9 2.3

5.8 0 0 3.1 6

a = {2.1, 3.4, 1.3, 2, 6.4, 1.1, 5.3, 7.8, 3.9, 2.3, 5.8, 3.1, 6}
j = {0, 2, 1, 3, 4, 0, 2, 1, 3, 4, 0, 3, 4}
r = {0, 2, 5, 7, 10, 13}

Memory consumption: if double arrays are used for the floating point variables and int for
the integer arrays: 200 bytes for storing the full matrix, 180 bytes for the CRS matrix (The
gain is much larger if the size of the matrix increases).

35

Access an Element in a CRS-Matrix

double &GetA(int row , int column)
2 {

for(k=r[row];k<r[row +1];++k)
4 {

if (j[k]== column)
6 return(a[k]);

}
8 return (0.);
}

Computing y = A× x for a CRS-Matrix

1 for (i=0;i<N;++i)
{

3 y[i]=0.;
for(k=r[i];k<r[i+1];++k)

5 y[i] = y[i] + a[k] * x[j[k]];
}

Improved CRS

• Assume that diagonal element does always exist

• Store diagonal element at position r[row]

• Do not store diagonal index

• Store number of elements in the row at j[r[row]]

Advantages:

• The position of the diagonal element is always clear (necessary for relaxation methods)

• The structure of the matrix (sparsity pattern) can vary a bit

Smoothing Property of Linear Iterative Methods
We assume again that A is symmetric and positive definite. If ~zk is an eigenvector of A:

A~zk = λk~zk

with 0 < λmin ≤ λk ≤ λmax.

For Richardson’s iteration with ω = 1/λmax and ~e(i) = ~zk we obtain

~e(i+1) =
(
I − 1

λmax
A

)
~zk =

(
1− λk

λmax

)
~e(i).

36

This means:
λk close to λmax ⇒

(
1− λk

λmax

)
≈ 0

λk close to λmin ⇒
(

1− λk
λmax

)
≈ 1

• Error components corresponding to large eigenvalues are damped efficiently.

• Error components corresponding to small eigenvalues are damped slowly.

For second order problems we have λmin/λmax = O(h2), i.e. the asymptotic convergence
factor is

ρ = 1−O(h2).

The (damped) Jacobi and Gauß–Seidel iteration have an asymptotically similar behavior in
contrast to an optimally damped SOR. However, the optimal damping coefficient for SOR is
hard to determine.

Error Smoothing Example
We discretize −∆p = r with the cell-centered Finite-Volume method on a structured mesh.

The initial error consists of low and high frequency parts.

The graphs show the initial error and the error after 1 and 5 iterations.

0.8
0.6

0.4
y0.2

-2

0.2

z

x

0

0.4

2

0.6 0.8

0.8
0.6

0.4
0.2

-1

0.2

0

0.4

1

0.6 0.8

0.8
0.6

0.4
y0.2

-0.5

z

0.2

0

x

0.5

0.4

1

0.6 0.8

figures P. Bastian (personal communication)

Multigrid Idea
Construct an iteration that is complementary to the smoother reducing low frequency errors.

Idea: Low frequency errors can be represented on a coarser grid:

0.8
0.6

0.4
y0.2

-0.5

z

0.2

0

x

0.5

0.4

1

0.6 0.8

0.8
0.6

0.4
y0.2

-0.5

z

0.2

0

x

0.5

0.4

1

0.6 0.8

0.8
0.6

0.4
y0.2

-0.5

z

0.2

0

x

0.5

0.4

1

0.6 0.8

This requires a hierarchy of grids Ω0,Ω1,Ω2, . . .

37

Correspondingly there will be a hierarchy of linear systems

Al~xl = ~bl

1D case
level 2

level 1

level 0

2D case

level 0 level 1 level 2

level 0 level 1 level 2
figures P. Bastian (personal communication)

Multigrid Algorithm

• (pre)smoothing of the fine grid solution ~x(k)
l (usually with some steps of a damped Jacobi

or Gauß-Seidel iteration)

• compute defect ~d(k)
l

• restrict defect ~d(k)
l to coarse grid ~d

(k)
l−1 (either by just using the values at the grid points

of the coarse grid or by averaging of fine grid values)

38

• compute solution ~v
(k)
l−1 of Al−1~v

(k)
l−1 = ~d

(k)
l−1 (with direct solution, relaxation methods or

another coarse grid correction ⇒ multigrid method)

• prolongate ~v(k)
l−1 to the fine grid Ωl (interpolate ~v(k)

l at the fine grid points)

• update fine grid solution ~x(k+1)
l = ~x

(k)
l + ~v

(k)
l

• sometimes (post)smoothing of the fine grid solution ~x(k+1)
l (usually with some steps of a

damped Jacobi or Gauß-Seidel iteration)

Multigrid Methods
Multigrid methods

• have a overall work, which is still dominated by the finest grid. If C operations are
necessary on the fine grid only C/4 operations in 2D and C/8 operations in 3D are
necessary on the next coarser grid . . .

• have a optimal complexity of O(N) to solve Ax = b for appropriate matrices (compared
to O(N2) to O(N7/3) with Gaussian elimination for banded matrices)

• there are also “Algebraic Multigrid” (AMG) solvers, which do not really construct a
coarse grid, but use empirical schemes to generate coarser matrices from the fine-scale
matrix. They have a complexity of O(N · ln(N)).

Gradient based iterative methods
If A is symmetric and positive definite then ~xTA~x > 0 ∀~x 6= 0. Then A~x = ~b is equivalent

to finding the minimum of the quadratic form

f(x) :=
1
2
~xTA~x−~bT~x+ c

where c ∈ R is an arbitrary scalar. As A is positive definite, the hypersurface defined by

f(~x) forms a paraboloid in RN+1. The minimum ~x is unique and global.

Different gradient based methods depend on the strategy to find this minimum.

39

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Proof of Correspondence
The gradient of f(~x) is

f ′(~x) :=
1
2
AT~x+

1
2
A~x−~b

for symmetric matrices this reduces to

f ′(~x) := A~x−~b

At the minimum the gradient vanishes

f ′(~x) := A~x−~b = 0

Therefore ~x at the minimum solves A~x−~b

Shape of the quadratic form f(~x)

40

Quadratic form f(~x) for

• (a) a positive-definite matrix

• (b) a negative-definite matrix

• (c) a singular (and positive-definite) matrix

• (d) an indefinite matrix

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Method of Steepest Descent
Steepest Descend uses the direction of the negative gradient −f ′(x(k)).
The improved solution is calculated from x(k+1) = x(k) − αf ′(x(k)).
The optimal step width α is chosen such that the minimum along the search direction is

obtained. This results in the next descend being orthogonal to the search direction.

41

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Optimal step size α

f ′(~x(k)) = A~x(k) −~b = −
(
~b−A~x(k)

)
= −~d(k)

~x(k+1) = ~x(k) + α~d(k)

We want to find a minimum along the search direction:

d

dα
f(~x(k+1)) = 0

f ′(~x(k+1))T
d

dα
~x(k+1) = f ′(~x(k+1))T ~d(k) = 0

with f ′(~x(k+1)) = −~d(k+1) :

~d(k+1)T ~d(k) = 0

42

~d(k+1)T ~d(k) = 0(
b−A~x(k+1)

)T
~d(k) = 0(

b−A
(
~x(k) + α~d(k)

))T
~d(k) = 0(

b−A~x(k)
)T

~d(k) − α
(
A~d(k)

)T
~d(k) = 0

α
(
A~d(k)

)T
~d(k) =

(
b−A~x(k)

)T
~d(k)

α~d(k)T

AT ~d(k) = ~d(k)T ~d(k)

α =
~d(k)T ~d(k)

~d(k)T
A~d(k)

Steepest Descent Algorithm

~d = ~b−A~x
d0 = ~dT ~d

dk = d0;
while (dk ≥ ε2 · d0)
{
α =

(
~dT ~d
)
/
(
~dTA~d

)
~x = ~x+ α~d
~d = ~d− αA~d
dk = ~dT ~d

}

Optimized Steepest Descent Algorithm

~d = ~b−A~x
d0 = ~dT ~d

dk = d0;
while (dk ≥ ε2 · d0)
{
~t = A~d

α = dk/
(
~dT~t
)

~x = ~x+ α~d
~d = ~d− α~t
dk = ~dT ~d

}

43

Convergence of Steepest Descent
Convergence of steepest descend depends strongly on the matrix condition κ(A) and on the

initial value. Convergence is reduced by the fact that achievements of previous steps can be
lost again in later steps.

44

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Convergence Rate

||~e(k)||A ≤
(
κ− 1
κ+ 1

)k
||~e(0)||A

with the “energy norm”

||~e||A =
√
~eTA~e

Conjugate Gradients (CG)
The Conjugate Gradient method uses a sequence of search directions, where each new

search direction is A-orthogonal to all previous search directions, i.e. ~vT(i)Av(j) = 0 if i 6= j.

45

In exact arithmetic the minimum is found after at most N iterations (semi-iterative method).
However round-off errors make CG to a iterative method.

from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

CG Algorithm

46

~v = ~d = ~b−A~x
d0 = ~dT ~d

dk = d0;
while (dk ≥ ε2 · d0)
{
α =

(
~dT ~d
)
/
(
~vTA~v

)
~x = ~x+ α~v
~dnew = ~d− αA~v
β =

(
~dTnew

~dnew

)
/
(
~dT ~d
)

~v = ~dnew + β~v
~d = ~dnew

dk = ~dT ~d

}

Optimized CG Algorithm

~v = ~d = ~b−A~x
d0 = ~dT ~d;
dk = d0

while (dk ≥ ε2 · d0)
{
~t = A~v

α = dk/
(
~vT~t
)

~x = ~x+ α~v
~d = ~d− α~t
dkold

= dk;

dk = ~dT ~d

β = dk/dkold

v = ~d+ β~v

}

Convergence of Conjugate Gradients versus Steepest Descent

47

figures from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Convergence of Conjugate Gradients
Convergence depends on the condition κ(A) of the matrix, but less than in steepest descend.

It also depends on the distribution of eigenvalues.

48

Steepest Descent

Conjugate Gradients

Complexity for discretizations of second-order elliptic PDE’s

49

two-dimensional three-dimensional
Steepest Descent O(N2) O(N3/2)
Conjugate Gradients O(N5/3) O(N4/3)

figures from J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

Convergence Rate
Steepest Descent

||~e(k)||A ≤
(
κ− 1
κ+ 1

)k
||~e(0)||A

Conjugate Gradients

||~e(k)||A ≤ 2
(√

κ− 1√
κ+ 1

)k
||~e(0)||A

with the “energy norm”

||~e||A =
√
~eTA~e

Preconditioning

• While CG-methods usually have a better convergence than simple relaxation methods,
the convergence still depends on the grid size for matrices generated by discretizations
of partial differential equations.

• CG-methods therefore are often improved by using so-called preconditioning.

• Instead of Ax = b we solve a system M−1Ax = M−1b, where the preconditioner M
improves the distribution of eigenvalues or the condition of the matrix and thus provides
an improved convergence behavior.

Preconditioners

• A−1 would be the optimal preconditioner as the eigenvalues of the resulting identity
matrix I would all be identical and thus the system could be solved in one step, but it is
of course too expensive to calculate.

• A simple possible choice is M = D (so-called Jacobi preconditioning).

• The best choice is often a multigrid scheme for the coarse grid corrections.

• As the CG-method requires symmetric matrices, the SOR scheme can not be used. Ho-
wever, there is a variant called SSOR (symmetric SOR) which consists of a SOR step
followed by a backward SOR step where we start with the last unknown and then decre-
ment the indices. MT−1

M−1Ax = MT−1
M−1b

50

Preconditioned CG Algorithm

~d = ~b−A~x
solve M~v = ~d

ρk = ρ0 = ~dT~s

while (ρk ≥ ε2 · ρ0)

{
~t = A~v

α = ρk/
“
~vT~t
”

~x = ~x+ α~v

~d = ~d− α~t
solve M~s = ~d

ρkold = ρk

ρk = ~dT~s

β = ρk/ρkold

~v = ~s+ β~v

}

SSOR-Preconditioner
For the SSOR-preconditioner the step solve M~v = ~d is:

for (i = 0; i < n; ++i)

vi = ω

di −

X
j<i

aijvi

!
/aii

~d = ~d−A~v
for (i = n− 1; i >= 0;−−i)

vvi = ω

di −

X
j>i

aijvvi

!
/aii

~v+ = ~vv

More information on gradient based methods can be found in

J. R. Shewchuk (1994): “An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain”

http://www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.pdf

6 Parallel Computing

6.1 Introduction

The next four lectures give a basic introduction to the subject.
At the end you should have acquired:

• A basic understanding of different parallel computer architectures.

51

 http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

• Know how to write programs using OpenMP.

• Know how to write programs using message passing.

• Knowledge of some parallel algorithms for the iterative solution of linear systems.

• Know how to evaluate the quality of a parallel algorithm and its implementation.

6.1.1 Why Parallel Computing ?

Parallel Computing is Ubiquitous

• Multi-Tasking

– Several independent computations (“threads of control”) can be run quasi-simultaneously
on a single processor (time slicing).

– Developed since 1960s to increase throughput.
– Interactive applications require “to do many things in parallel”.
– “Hyperthreading” does the simulation in hardware.
– All relevant coordination problems are already present.

• Distributed Computing

– Computation is inherently distributed because the information is distributed.
– Example: Running a world-wide company or a bank.
– Issues are: Communication across platforms, portability and security.

• High-Performance Computing

– HPC is the driving force behind the development of computers.
– All techniques implemented in today’s desktop machines have been developed in

supercomputers many years ago.
– Applications run on supercomputers are mostly numerical simulations.
– Grand Challenges: Cosmology, protein folding, prediction of earth-quakes, climate

and ocean flows, . . .
– but also: nuclear weapon simulation
– ASCI (Advanced Simulation and Computing) Program funding: $ 300 million in

2004.
– Earth simulator (largest computer in the world from 2002 to 2004) cost about $ 500

million.

6.1.2 (Very Short) History of Supercomputers

What is a Supercomputer?

• A computer that costs more than $ 10 million

52

Computer Year $ MHz MBytes MFLOP/s
CDC 6600 1964 7M $ 10 0.5 3.3
Cray 1A 1976 8M $ 80 8 20
Cray X-MP/48 1986 15M $ 118 64 220
C90 1996 250 2048 5000
ASCI Red 1997 220 1.2·106 2.4·106

Pentium 4 2002 1500 2400 1000 4800
Core 2 Duo 2007 299 2660 8000 12500

• Speed is measured in floating point operations per second (FLOP/s).

• Current supercomputers are large collections of microprocessors

• Today’s desktop PC is yesterdays supercomputer.

• www.top500.org compiles list of supercomputers every six months.

Development of Microprocessors
Microprocessors outperform conventional supercomputers in the mid 90s (from Culler et

al.).

Development of Multiprocessors
Massively parallel machines outperform vector parallel machines in the early 90s (from Culler

et al.).

53

TOP 500 November 2007

54

2. BlueGene/P “JUGENE” at FZ Jülich: 65536 processors, 167.3 TFLOP/s
30. Earth Simulator: 5120 processors, 35.9 TFLOP/s

202. SX8/576M72 at HWW/Stuttgart: 576 processors, 8.9 TFLOP/s

Terascale Simulation Facility

BlueGene/L prototype at Lawrence Livermore National Laboratory outperforms Earth Simu-
lator in late 2004: 65536 processors, 136 TFLOP/s,

Final version at LLNL today: 212992 processors, 478 TFLOP/s

Efficient Algorithms are Important!

• Computation time for solving (certain) systems of linear equations on a computer with
1 GFLOP/s.

N Gauß (2
3N

3) Multigrid (100N)
1.000 0.66 s 10−4 s

10.000 660 s 10−3 s
100.000 7.6 d 10−2 s

1 · 106 21 y 0.1 s
1 · 107 21.000 y 1 s

• Parallelisation does not help an inefficient algorithm.

• We must parallelise algorithms with good sequential complexity.

6.2 Single Processor Architecture

6.2.1 Von Neumann Architecture

Von Neumann Computer

55

instructions

Memory

CPU

controls
IU

PC

Registers

ALU

data

IU: Instruction unit

PC: Program counter

ALU: Arithmetic logic unit

CPU: Central processing unit

Single cycle architecture

6.2.2 Pipelining

Pipelining: General Principle

....

....

....

....τ 2τ 3τ 4τ

x1

x1

x1

x1

x2

x2

x2

x2

x3

x3

x3

x3 x4

x4

x4

T1

T2

T3

T4

time

• Task T can be subdivided into m subtasks T1, . . . , Tm.

• Every subtask can be processed in the same time τ .

• All subtasks are independent.

56

• Time for processing N tasks:

TS(N) = Nmτ TP (N) = (m+N − 1)τ .

• Speedup

S(N) = TS(N)
TP (N) = m N

m+N−1 .

Arithmetic Pipelining

• Apply pipelining principle to floating point operations.

• Especially suited for “vector operations” like s = x·y or x = y+z because of independence
property.

• Hence the name “vector processor”.

• Allows at most m = 10 . . . 20.

• Vector processors typically have a very high memory bandwith.

• This is achieved with interleaved memory, which is pipelining applied to the memory
subsystem.

Instruction Pipelining

• Apply pipelining principle to the processing of machine instructions.

• Typical subtasks are (m=5):

– Instruction fetch.
– Instruction decode.
– Instruction execute.
– Memory access.
– Write back results to register file.

• Reduced instruction set computer (RISC): Use simple and homogeneous set of instructi-
ons to enable pipelining (e. g. load/store architecture).

• Conditional jumps pose problems and require some effort such as branch prediction units.

• Optimising compilers are also essential (instruction reordering, loop unrolling, etc.).

6.2.3 Superscalar Architecture

Superscalar Architecture
• Consider the statements

(1) a = b+c;
(2) d = e*f;
(3) g = a-d;
(4) h = i*j;

57

• Statements 1, 2 and 4 can be executed in parallel because they are independent.

• This requires

– Ability to issue several instructions in one cycle.
– Multiple functional units.
– Out of order execution.
– Speculative execution.

• A processor executing more than one instruction per cycle is called superscalar.

• Multiple issue is possible through:

– A wide memory access reading two instructions.
– Very long instruction words.

• Multiple functional units with out of order execution were implemented in the CDC 6600
in 1964.

• A degree of parallelism of 3. . . 5 can be achieved.

6.2.4 Caches

Caches I
While the processing power increases with parallisation, the memory bandwidth usually does

not

• Reading a 64-bit word from DRAM memory can cost up to 50 cycles.

• Building fast memory is possible but too expensive per bit for large memories.

• Hierarchical cache: Check if data is in the level l cache, if not ask the next higher level.

• Repeat until main memory is asked.

• Data is transferred in cache lines of 32 . . . 128 bytes (4 to 16 words).

58

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

greater

slower

Processor

Registers

Level 1 cache

Level 2 cache

Main memory

Caches II

• Caches rely on spatial and temporal locality.

• There are four issues to be discussed in cache design:

– Placement : Where does a block from main memory go in the cache? Direct mapped
cache, associative cache.

– Identification: How to find out if a block is already in cache?
– Replacement : Which block is removed from a full cache?
– Write strategy : How is write access handled? Write-through and write-back caches.

• Caches require to make code cache-aware. This is usually non-trivial and not done auto-
matically.

• Caches can lead to a slow-down if data is accessed randomly and not reused.

Matrix Multiplication Example I

• Compute product of two matrices C = AB, i.e. Cij =
∑N

k=1AikBkj

• Assume cache lines containing four numbers. C layout:

59

A B

A0,0

A15,0

A0,15

Matrix Multiplication Example II

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 100 1000 10000

M
F

LO
P

S

N

Matrix times Matrix

naive, P IV 2.4 icc
tiled M=20, P IV 2.4 icc

tiled M=20, P IV 2.4 gcc

60

6.3 Parallel Architectures

6.3.1 Classifications

Flynn’s Classification (1972)

Single data stream Multiple data streams
(One ALU) (Several ALUs)

Single instruction SISD SIMD
stream, (One IU)

Multiple instruction — MIMD
streams (Several IUs)

• SIMD machines allow the synchronous execution of one instruction on multiple ALUs.
Important machines: ILLIAC IV, CM-2, MasPar.

• MIMD is the leading concept since the early 90s. All current supercomputers are of this
type.

Classification by Memory Access

• Flynn’s classification does not state how the individual components exchange data.

• There are only two basic concepts.

• Communication via shared memory. This means that all processors share a global
address space. These machines are also called multiprocessors.

• Communication via message exchange. In this model every processor has its own
local address space. These machines are also called multicomputers.

6.3.2 Uniform Memory Access Architecture

Uniform Memory Access Architecture

61

PPP

CCC

Connection network

Memory

• UMA: Access to every memory location from every processor takes the same amount of
time.

• This is achieved through a dynamic network.

• Caches serve two reasons: Provide fast memory access (migration) and remove traffic
from network (replication).

• Cache coherence problem: Suppose one memory block is in two or more caches and is
written by a processor. What to do now?

Dynamic Connection Networks

62

P0

C0

M0

P1

C1

M1

P2

C2

M2

(a)

P0

P1

P2

M0 M1 M2

(b)

Bus

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111
perfect
shuffle

(c)

(a) Bus: Cheap, cache-coherence problem can be solved easily, not scalable.

(b) Crossbar : Expensive because of O(P 2) resources, used in SUN servers, Earth Simulator,
etc.

(c) Ω-Network : Compromise requiring O(P logP) resources, not used anymore.

Bus Snooping, MESI-Protocol

63

remote
read
miss

hit
read

read hit
remote read miss

I

M S

E

read
miss

invalidate
write hit

read miss

invalidate

write hit

hit
read/write

write
miss

invalidate
(write back)

remote read miss (write back)

• All caches listen on the bus whether one of their blocks is affected.

• MESI-Protocol : Every block in a cache is in one of four states: Modified, exclusive, shared,
invalid.

• Write-invalidate, write-back protocol.

• State transition diagram is given on the left.

• Used e.g. in the Pentium.

6.3.3 Nonuniform Memory Access Architecture

Nonuniform Memory Access Architecture

64

PP CC

Connection network

MemoryMemory

• Memories are associated with processors but address space is global.

• Access to local memory is fast.

• Access to remote memories is via the network and slow.

• Including caches there are at least three different access times.

• Solving the cache-coherence problem requires expensive hardware (ccNUMA).

• Machines up to 1024 processors have been built.

Directory Based Cache Coherence

Data Sharers State: U, S, E

Memory Directory

P C

VN

state

• Main memory is extended by the directory.

• For every block (128 bytes in the SGI-Origin) a state and the sharers are stored.

• For every block in a cache a state is stored (as usual).

• Invalidation is done by sending messages to sharers.

• False sharing: Data processed independently by two procs is in the same block.

• Capacity miss: Proc works on data in a remote memory that does not fit into cache.

65

6.4 Things to Remember

What you should remember

• Modern microprocessors combine all the features of yesterdays supercomputers.

• Today parallel machines have arrived on the desktop.

• MIMD is the dominant design.

• There are UMA, NUMA and MP architectures.

• Only machines with local memory are scalable.

• Algorithms have to be designed carefully with respect to the memory hierarchy.

Literatur

[1] Grand Challenges applications. http://www.nhse.org/grand challenge.html

[2] ASCI program website. http://www.llnl.gov/asci/

[3] Achievements of Seymour Cray. http://research.microsoft.com/users/gbell/craytalk/

[4] TOP 500 Supercomputer Sites. http://www.top500.org/

[5] D. E. Culler, J. P. Singh and A. Gupta (1999). Parallel Computer Architecture. Morgan
Kaufmann.

6.4.1 Private Memory Architecture

PP CC

Connection network

MemoryMemory

• Processors can only access their local memory.

• Processors, caches and main memory are standard components: Cheap, Moore’s law can
be fully utilised.

• Network can be anything from fast ethernet to specialised networks.

• Most scalable architecture. Current supercomputers already have more than 105 proces-
sors.

66

http://www.nhse.org/grand_challenge.html
http://www.llnl.gov/asci/
http://research.microsoft.com/users/gbell/craytalk/
http://www.top500.org/

Network Topologies I

e) binary tree

d) Hypercube, 3D-array
c) 2D-array, 2D-torus

b) 1D-array, ring

a) fully connected

• There are many different types of topologies used for packet-switched networks.

• 1-,2-,3-D arrays and tori.

• Fully connected graph.

• Binary tree.

• Hypercube: HC of dimension d ≥ 0 has 2d nodes. Nodes x, y are connected if their bit-wise
representations differs in one bit.

• k-dimensional arrays can be embedded in hypercubes.

• Topologies are useful in algorithms as well.

Hypercube

67

0

00

1

1

1

00 01

10 11

• Hypercubes can be constructed recursively.

• A hypercube of dimension d = 0 consists of one node.

• To get a hypercube of dimension d+ 1:

– Take two hypercubes of dimension d.
– Connect corresponding nodes in both hypercubes.
– Precede each nodes number in the first subcube by 0 and in the second by 1.

• This is shown for d = 1 on the left.

• Useful for proving properties of algorithms based on hypercubes.

Network Topologies II

Topology k D l B Sym
Fully con. P − 1 1 P (P−1)

2

(
P
2

)2
y

Hypercube d d dP2
P
2 y

2D-Torus 4 2
⌊
r
2

⌋
2P 2r y

2D-Array 4 2(r − 1) 2P − 2r r n
Ring 2

⌊
P
2

⌋
P 2 y

Bin. tree 3 2(h− 1) P − 1 1 n
d = log2 P, P = r × r, h = dlog2 P e

• Degree k: Max # links per node.

• Diameter D: Max distance from one node to any other.

68

• Links l: Total # of links.

• Bisection width B: Min # of links one must cut to split machine into two equal-sized
halves.

• Symmetry : Network looks the same from each node.

Comparison of Architectures by Example

• Given vectors x, y ∈ RN , compute scalar product s =
∑N−1

i=0 xiyi:

(1) Subdivide index set into P pieces.

(2) Compute sp =
∑(p+1)N/P−1

i=pN/P xiyi in parallel.

(3) Compute s =
∑P−1

i=0 si. This is treated later.

• Uniform memory access architecture: Store vectors as in sequential program:

x y M

• Nonuniform memory access architecture: Distribute data to the local memories:

x1 y1 M1 x2 y2 M2 xP yP MP

• Message passing architecture: Same as for NUMA!

• Distributing data structures is hard and not automatic in general.

• Parallelisation effort for NUMA and MP is almost the same.

6.4.2 Things to Remember

What you should remember

• Modern microprocessors combine all the features of yesterdays supercomputers.

• Today parallel machines have arrived on the desktop.

• MIMD is the dominant design.

• There are UMA, NUMA and MP architectures.

• Only machines with local memory are scalable.

• Algorithms have to be designed carefully with respect to the memory hierarchy.

69

Literatur

[1] Grand Challenges applications. http://www.nhse.org/grand challenge.html

[2] ASCI program website. http://www.llnl.gov/asci/

[3] Achievements of Seymour Cray. http://research.microsoft.com/users/gbell/craytalk/

[4] TOP 500 Supercomputer Sites. http://www.top500.org/

[5] D. E. Culler, J. P. Singh and A. Gupta (1999). Parallel Computer Architecture. Morgan
Kaufmann.

6.5 Process Model

6.5.1 A Simple Notation for Parallel Programs

Communicating Sequential Processes

Sequential Program
Sequence of statements. Statements are processed one after another.

(Sequential) Process
A sequential program in execution. The state of a process consists of the values of all variables
and the next statement to be executed.

Parallel Computation
A set of interacting sequential processes. Processes can be executed on a single processor (time
slicing) or on a separate processor each.

Parallel Program
Specifies a parallel computation.

A Simple Parallel Language

parallel <program name> {
const int P = 8; // define a global constant
int flag[P] = {1[P]}; // global array with initialization

// The next line defines a process
process <process name 1> [<copy arguments>]
{

// put (pseudo-) code here
}
...
process <process name n> [<copy arguments>]
{ . . . }

}
• First all global variables are initialized, then processes are started.

• Computation ends when all processes terminated.

• Processes share global address space (also called threads).

70

http://www.nhse.org/grand_challenge.html
http://www.llnl.gov/asci/
http://research.microsoft.com/users/gbell/craytalk/
http://www.top500.org/

Example: Scalar Product with Two Processes

• We neglect input/output of the vectors.

• Local variables are private to each process.

• Decomposition of the computation is on the for-loop.

parallel two-process-scalar-product {
const int N=8; // problem size
double x[N], y[N], s=0; // vectors, result
process Π1

{
int i; double ss=0;
for (i = 0; i < N/2; i++) ss += x[i]*y[i];
s=s+ss; // danger!

}
process Π2

{
int i; double ss=0;
for (i = N/2; i < N ; i++) ss += x[i]*y[i];
s=s+ss; // danger!

}
}

6.5.2 The Critical Section Problem

Critical Section

• Statement s=s+ss is not atomic:

process Π1 process Π2

1 load s in R1 3 load s in R1
load ss in R2 load ss in R2
add R1, R2, store in R3 add R1, R2, store in R3

2 store R3 in s 4 store R3 in s

• The order of execution of statements of different processes relative to each other is not
specified

• This results in an exponentially growing number of possible orders of execution.

Possible Execution Orders

71

�
�
��

@
@
@@

1

3

�
��

@
@@

�
��

@
@@

2

3

1

4

�
��

@
@@

3

2

4

2

4

1

4

4

2

4

2

2

Result of computation

s = ssΠ1 + ssΠ2

s = ssΠ2

s = ssΠ1

s = ssΠ2

s = ssΠ1

s = ssΠ1 + ssΠ2

Only some orders yield the correct result!

Mutual Exclusion

• Additional synchronisation is needed to exclude possible execution orders that do not
give the correct result.

• Critical sections have to be processed under mutual exclusion.

• Mutual exclusion is one form of synchronisation, the other, condition synchronisation, is
treated later.

• Mutual exclusion requires:

– At most one process enters a critical section.
– No deadlocks.
– No process waits for a free critical section.
– If a process wants to enter, it will finally succeed.

• By [s = s+ ss] we denote that all statements between “[” and “]” are executed only by
one process at a time. If two processes attempt to execute “[” at the same time, one of
them is delayed.

• We will show later how this is implemented.

6.5.3 Single Program Multiple Data

Parametrisation of Processes

• We want to write programs for a variable number of processes:

parallel many-process-scalar-product {
const int N ; // problem size
const int P ; // number of processors
double x[N], y[N]; // vectors
double s = 0; // result
process Π [int p ∈ {0, ..., P − 1}]

72

{
int i; double ss = 0;
for (i = N ∗ p/P ; i < N ∗ (p+ 1)/P ; i++)

ss += x[i]*y[i];
[s = s+ ss]; // sequential execution

}
}

• Single Program Multiple Data: Every process has the same code but works on different
data depending on p.

6.5.4 Condition Synchronisation

Parallelisation of the Sum

• Computation of the global sum of the local scalar products with [s = s + ss] is not
parallel.

• It can be done in parallel as follows (P = 8):

s = s0 + s1︸ ︷︷ ︸
s01

+ s2 + s3︸ ︷︷ ︸
s23︸ ︷︷ ︸

s0123

+ s4 + s5︸ ︷︷ ︸
s45

+ s6 + s7︸ ︷︷ ︸
s67︸ ︷︷ ︸

s4567︸ ︷︷ ︸
s

• This reduces the execution time from O(P) to O(log2 P).

Tree Combine
Using a binary representation of process numbers, the communication structure forms a

binary tree:

s0

000
�
��

s1

001
@
@I

s2

010
�
��

s3

011
@
@I

s4

100
�
��

s5

101
@
@I

s6

110
�
��

s7

111
@
@I

s0 + s1

000
��

��*

s2 + s3

010
HH

HHY

s4 + s5

100
��

��*

s6 + s7

110
HH

HHY
s0 + s1 + s2 + s3

000
���

���
�:

s4 + s5 + s6 + s7

100
XXX

XXX
Xy

∑
si

000

Implementation of Tree Combine

parallel parallel-sum-scalar-product {
const int N = 100; // problem size
const int d = 4, P = 2d; // number of processes
double x[N], y[N]; // vectors

73

double s[P] = {0[P]}; // results are global now
int flag [P] = {0[P]}; // flags, must be initialized!
process Π [int p ∈ {0, ..., P − 1}] {

int i, m, k;
for (i = 0; i < d; i++) {

m = 2i; // bit i is 1
if (p&m) {flag [m]=1; break ;} // I am ready
while (!flag [p|m]); // condition synchronisation
s[p] = s[p] + s[p|m];

}
}

}

Condition Synchronisation

• A process waits for a condition (boolean expression) to become true. The condition is
made true by another process.

• Here some processes wait for the flags to become true.

• Correct initialization of the flag variables is important.

• We implemented this synchronisation using busy wait.

• This might not be a good idea in multiprocessing.

• The flags are also called condition variables.

• When condition variables are used repeatedly (e.g. when computing several sums in a
row) the following rules should be obeyed:

– A process that waits on a condition variable also resets it.
– A condition variable may only be set to true again if it is sure that it has been reset

before.

Scalar Product on NUMA Architecture

• Every process stores part of the vector as local variables.

• Indices are renumbered from 0 in each process.

parallel local-data-scalar-product {
const int P,N ;
double s = 0;

process Π [int p ∈ {0, . . . , P − 1}]
{

double x[N/P + 1], y[N/P + 1];
// local part of the vectors

int i; double ss=0;

74

for (i = 0,i < (p+ 1) ∗N/P − p ∗N/P ;i++) ss = ss+ x[i] ∗ y[i];
[s = s+ ss;]

}
}

6.5.5 Things to Remember

What you should remember

• A parallel computation consists of a set of interacting sequential processes.

• There are two basic synchronisation mechanisms: Mutual exclusion and condition syn-
chronisation.

• Efficient implementation of mutual exclusion requires hardware support (locks).

6.6 OpenMP

• OpenMP is a special implementation of multithreading

• current version 3.0 released in May 2008

• available for Fortran and C/C++

• works for different operating systems (e.g. Linux, Windows, Solaris)

• integrated in various compilers (e.g. Intel icc > 8.0, gcc > 4.2, Visual Studio >= 2005,
Sun Studio, . . .)

Thread Model of OpenMP

figure from Wikipedia: “OpenMP”

75

OpenMP Constructs

figure from Wikipedia: “OpenMP”

Scalar Product with OpenMP

#ifdef _OPENMP
2 #include <omp.h>
#endif

4

double ScalarProduct(std::vector <double > a,
6 std::vector <double > b)
{

8 const int N=a.size ();
int i;

10 double sum = 0.0;
#pragma omp parallel for shared(a,b,sum)

12 for (i=0;i<N;++i)
sum += a[i] * b[i];

14 return(sum);
}

Thread Initialisation

parallel for the iterations are distributed among the threads.

sections inside a sections block there are several independent section blocks which can be
executed independently.

single the part inside the single block is only executed by one thread. The other threads are
waiting at the end of the block.

master the part inside the master block is only executed by the master thread. It is skipped
by all other threads.

76

if if an if is introduced in the thread initialisation command, the block is only executed in
parallel if the condition after if is true.

Synchronisation

critical mutual exclusion: the block is only executed by one thread at a time.

atomic same as critical but tries to use hardware instructions

ordered is executed like a for loop

barrier each thread waits till all threads have reached the barrier

nowait usually threads wait at the end of a block. If nowait is used they continue immediately

Accessibility of Variables

shared All threads are accessing the same (shared) data.

private Each thread has its own copy of the data.

default is used to specify what’s the default behaviour for variables. Can be shared, private
or none.

reduction If reduction(operator,variable) is specified, each thread uses a local copy of
variable but all local copies are combined with the operator operator at the end.
Possible operators are + * - / & ^ |

Better Scalar Product with OpenMP

#ifdef _OPENMP
2 #include <omp.h>
#endif

4

double ScalarProduct(std::vector <double > a,
6 std::vector <double > b)
{

8 const int N=a.size ();
int i;

10 double sum = 0.0, temp;
#pragma omp parallel for shared(a,b,sum) private(temp)

12 for (i=0;i<N;++i)
{

14 temp = a[i] * b[i];
#pragma omp atomic

16 sum += temp;
}

18 return(sum);
}

77

Improved Scalar Product with OpenMP

1 #ifdef _OPENMP
#include <omp.h>

3 #endif

5 double ScalarProduct(std::vector <double > a,
std::vector <double > b)

7 {
const int N=a.size ();

9 int i;
double sum = 0.0;

11 #pragma omp parallel for shared(a,b) reduction (+:sum)
for (i=0;i<N;++i)

13 sum += a[i] * b[i];
return(sum);

15 }

Parallel Execution of different Functions

1 #pragma omp parallel sections
{

3 #pragma omp section
{

5 A();
B();

7 }
#pragma omp section

9 {
C();

11 D();
}

13 #pragma omp section
{

15 E();
F();

17 }
}

Special OpenMP Functions
There is a number of special functions which are defined in omp.h, e.g.

• int omp_get_num_procs(); returns number of available processors

• int omp_get_num_threads(); returns number of started threads

• int omp_get_thread_num(); returns number of this thread

• void omp_set_num_threads(int i); set the number of threads to be used

78

Compiling and Environment Variables
OpenMP is activated with special compiler options. If they are not used, the #pragma state-

ments are ignored and a sequential program is created. For icc the option is -openmp, for gcc
it is -fopenmp

The environment variable OMP_NUM_THREADS specifies the maximal number of threads. The
call of the function omp_set_num_threads in the program has precedence over the environment
variable.

Literatur

[1] OpenMP Specification http://www.openmp.org/drupal/node/view/8

[2] Easy OpenMP Tutorial http://www.kallipolis.com/openmp

[3] Very complete OpenMP Tutorial/Reference https://computing.llnl.gov/tutorials/openMP

[4] Intel Compiler (free for non-commercial use) http://www.intel.com/cd/software/products/asmo-
na/eng/340679.htm

7 Basics of Parallel Algorithms

Basic Approach to Parallelisation
We want to have a look at three steps of the design of a parallel algorithm:

Decomposition of the problem into independent subtasks to identify maximal possible paral-
lelism.

Control of Granularity to balance the expense for computation and communication.

Mapping of Processes to Processors to get an optimal adjustment of logical communication
structure and hardware.

7.1 Data Decomposition

Algorithms are often tied to a special data structure. Certain operations have to be done for
each data object.

Example: Matrix addition C = A + B, Triangulation

79

http://www.openmp.org/drupal/node/view/8
http://www.kallipolis.com/openmp
https://computing.llnl.gov/tutorials/openMP
http://www.intel.com/cd/software/products/asmo-na/eng/340679.htm
http://www.intel.com/cd/software/products/asmo-na/eng/340679.htm

aij

j

i

Matrix

tj

Triangulation

Data Interdependence
Often the operations for all data objects can’t be done simultaneously.

Example: Gauß-Seidel/SOR-Iteration with lexicographic numbering.
Calculations are done on a grid, where the calculation at grid point (i, j) depends on the gridpoints

(i − 1, j) and (i, j − 1). Grid point (0, 0) can be calculated without prerequisites. Only grid points on
the diagonal i+ j = const can be calculated simultaneously.

Data interdependence complicates the data decomposition considerably.

�
�
�
�

�
�
�
�

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

����

����

����

����
0 1 2 3 4 i

0

1

2

3

4

j

Increasing possible Parallelism
Sometimes the algorithm can be modified to allow for a higher data Independence.
With a different numbering of the unknowns the possible degree of parallelism for the Gauß-

Seidel/SOR-iteration scheme can be increased:
Every point in the domain gets a colour such that two neighbours never have the same colour.

For structured grids two colours are enough (usually red and black are used). The unknowns
of the same colour are numbered first, then the next colour

80

Red-Black-Ordering
The equations for all unknowns with the same colour are then independent of each other.

For structured grids we get a matrix of the form

A =
(
DR F
E DB

)
However, while this matrix transformation does not affect the convergence of solvers like

Steepest-Descent or CG (as the only depend on the matrix condition) it can affect the conver-
gence rate of relaxation methods.

Functional Decomposition
Functional decomposition can be done, if different operations have to be done on the same

data set.

Example: Compiler

81

A compiler consists of lexical analysis, parser, code generation, optimisation and assembling.
Each of these steps can be assigned to a separate process. The data can run through this steps
in portions. This is also called “Macro pipelining”.

Irregular Problems
For some problems the decomposition cannot be determined a priory.

Example: Adaptive Quadrature of a function f(x)

The choice of the intervals depends on the function f and results from an evaluation of error
predictors during the calculation.

f(x)

7.2 Agglomeration

Agglomeration and Granularity
The decomposition yields the maximal degree of parallelism, but it does not always make

sense to really use this (e.g. one data object for each process) as the communication overhead
can get too large.

Several subtasks are therefore assigned to each process and the communication necessary for
each subtask is combined in as few messages as possible. This is called “agglomeration”. This
reduces the number of messages.

The granularity of a parallel algorithm is given by the ratio

granularity =
number of messages

computation time

Agglomeration reduces the granularity.

Example: Gridbased Calculations
Each process is assigned a number of grid points. In iterative calculations usually the value at each

node and it’s neighbours is needed. If there is no interdependence all calculations can be done in

82

parallel. A process with N grid points has to do O(N) operations. With the partition it only needs
to communicate 4

√
N boundary nodes. The ratio of communication to computation costs is therefore

O(N−1/2) and can be made arbitrarily small by increasing N . This is called surface-to-volume-effect.

Process Π

7.3 Mapping of Processes to Processors

Optimal Mapping of Processes to Processors
The set of all process Π forms a undirected graph GΠ = (Π,K). Two processes are connected

if they communicate.

The set of processors P together with the communication network (e.g. hypercube, field,
. . .) also forms a graph GP = (P,N).

If we assume |Π| = |P |, we have to choose which process is executed on which processor.
In general we want to find a mapping, such that processes which communicate are mapped to
proximate processors. This optimisation problem is a variant of the graph partitioning problem
and is unfortunately NP-complete.

As the transmission time in cut-through networks of state-of-the-art parallel computers is
nearly independent of the distance, the problem of optimal process to processor mapping has
lost a bit of it’s importance. If many processes have to communicate simultaneously (which is
often the case!), a good positioning of processes is still relevant.

7.4 Load Balancing

Load Balancing: Static Distribution

Bin Packing At beginning all processors are empty. Nodes are successively packed to the
processor with the least work. This also works dynamically.

Recursive Bisection We make the additional assumption, that the nodes have a position in
space. The domain is split into parts with an equal amount of work. This is repeated
recursively on the subspaces.

83

same
amount

of work

7.5 Data Decomposition of Vectors and Matrices

Decomposition of Vectors
A vector x ∈ RN is a ordered list of numbers where each index i ∈ I = {0, . . . , N − 1} is associated

with a real number xi.
Data decomposition is equivalent with a segmentation of the index set i in

I =
⋃
p∈P

Ip, with p 6= q ⇒ Ip ∩ Iq = ∅,

where P denotes the set of processes. For a good load balancing the subsets Ip, p ∈ P should contain
equal amounts of elements.

To get a coherent index set Ĩp = {0, . . . , |Ip| − 1} we define the mappings

p : I → P and
µ : I → N

which reversibly associate each index i ∈ I with a process p(i) ∈ P and a local index µ(i) ∈ Ĩp(i):
I 3 i 7→ (p(i), µ(i)).

The inverse mapping µ−1(p, i) provides a global index to each local index i ∈ Ĩp and process p ∈ P
i.e. p(µ−1(p, i)) = p and µ(µ−1(p, i)) = i.

Common Decompositions: Cyclic

p(i) = i%P

µ(i) = i÷P
÷ denotes an integer division and % the modulo function.

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 1 2 3 0 1 2 3 0 1 2 3 0
µ(i) : 0 0 0 0 1 1 1 1 2 2 2 2 3

e.g. I1 = {1, 5, 9},
Ĩ1 = {0, 1, 2}.

84

Common Decompositions: Blockwise

p(i) =
{
i÷(B + 1) if i < R(B + 1)
R+ (i−R(B + 1))÷B else

µ(i) =
{
i%(B + 1) if i < R(B + 1)
(i−R(B + 1)) %B else

with B = N ÷P and R = N %P

I : 0 1 2 3 4 5 6 7 8 9 10 11 12
p(i) : 0 0 0 0 1 1 1 2 2 2 3 3 3
µ(i) : 0 1 2 3 0 1 2 0 1 2 0 1 2

e.g. I1 = {4, 5, 6},
Ĩ1 = {0, 1, 2}.

Decomposition of Matrices I
With a matrix A ∈ RN×M a real number aij is associated with each tupel (i, j) ∈ I × J ,

with I = {0, . . . , N − 1} and J = {0, . . . ,M − 1}.
To be able to represent the decomposed data on each processor again as a matrix, we limit

the decomposition to the one-dimensional index sets I and J .

We assume processes are organised as a two-dimensional field:

(p, q) ∈ {0, . . . , P − 1} × {0, . . . , Q− 1}.

The index sets I, J are decomposed to

I =
P−1⋃
p=0

Ip and J =
Q−1⋃
q=0

Jq

Decomposition of Matrices II
Each process (p, q) is responsible for the indices Ip × Jq and stores it’s elements locally as

R(Ĩp × J̃q)-matrix.

Formally the decompositions of I and J are described as mappings p and µ plus q and ν:

Ip = {i ∈ I | p(i) = p}, Ĩp = {n ∈ N | ∃i ∈ I : p(i) = p ∧ µ(i) = n}
Jq = {j ∈ J | q(j) = q}, J̃q = {m ∈ N | ∃j ∈ J : q(j) = q ∧ ν(j) = m}

85

Decomposition of a 6× 9 Matrix to 4 Processors

P = 1, Q = 4 (columns), J : cyclic:

0 1 2 3 4 5 6 7 8 J
0 1 2 3 0 1 2 3 0 q
0 0 0 0 1 1 1 1 2 ν

. .

. .

. .

. .

. .

. .

P = 4,Q = 1 (rows), I: blockwise:

0 0 0 .
1 0 1 .
2 1 0 .
3 1 1 .
4 2 0 .
5 3 0 .
I p µ

P = 2, Q = 2 (field), I: cyclic, J : blockwise:

0 1 2 3 4 5 6 7 8 J
0 0 0 0 0 1 1 1 1 q
0 1 2 3 4 0 1 2 3 ν

0 0 0 .
1 1 0 .
2 0 1 .
3 1 1 .
4 0 2 .
5 1 2 .
I p µ

Optimal Decomposition

There is no overall best solution for the decomposition of matrices and vectors!

• In general a good load balancing is achieved if the subsets of the matrix are more or less
quadratic.

• A good coordination with the algorithm used is usually more important. For example
cyclic decomposition is a good solution for LU -decomposition, but not for the solution
of the resulting triangular systems.

• Furthermore linear algebra is rarely a goal in it’s own, but used in a more general context,
like the solution of partial differential equations. The decomposition is then often given
by the discretisation and the algorithm has to be flexible enough to deal with it.

7.6 Matrix-Vector Multiplication

Matrix-Vector Multiplication (fully-occupied matrix)
Aim: Calculate the product y = Ax of a matrix A ∈ RN×M and a vector x ∈ RM .

86

x0

y0 A0,0

x1

y0 A0,1

x2

y0 A0,2

x3

y0 A0,3

x0

y1 A1,0

x1

y1 A1,1

x2

y1 A1,2

x3

y1 A1,3

x0

y2 A2,0

x1

y2 A2,1

x2

y2 A2,2

x3

y2 A2,3

x0

y3 A3,0

x1

y3 A3,1

x2

y3 A3,2

x3

y3 A3,3

Example: Matrix A distributed blockwise in a field, input vector x also blockwise as well as
the result vector y.

The vector segment xq is needed in each processor column.
Then each processor can calculate the local product yp,q = Ap,qxq.
Finally the complete result yp =

∑
q yp,q is collected in the diagonal processor (p, p) with an

all-to-one communication.

Matrix-Vector Multiplication: Parallel Runtime
Parallel runtime for a N ×N -matrix and

√
P ×√P processors with a cut-through commu-

87

nication network:

TP (N,P) =
(
ts + th + tw

vector︷︸︸︷
N√
P

)
ld
√
P︸ ︷︷ ︸

Distribution of
x to column

+
(
N√
P

)2

2tf︸ ︷︷ ︸
local matrix-
vector-mult.

+
(
ts + th + tw

N√
P

)
ld
√
P︸ ︷︷ ︸

reduction
(tf � tw)

=

= ld
√
P (ts + th)2 +

N√
P

ld
√
P2tw +

N2

P
2tf

The contribution of the communication gets arbitrarily small if P and N →∞.

8 Introduction Message Passing

Message Passing

• Developed in the 60s

• Aim: Better structuring of parallel programs (networks didn’t exist yet)

• Idea: Data which is needed by other processors is send as messages over the network

• Various powerful solutions available. Differences in elegance.

Examples:

– PVM (Parallel Virtual Machine) developed since 1989
– MPI (Message Parsing Interface) developed since 1994

Message Passing I

• Users view: Copy (contiguous) memory block from one address space to the other.

• Message is subdivided into individual packets.

• Network is packet-switched.

• A packet consists of an envelope and the data:

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

trailer payload header

direction →

88

• Header: Destination, size and kind of data.

• Payload: Size ranges from some bytes to kilobytes.

• Trailer: E.g. checksum for error detection.

Message Passing II

• Communication protocol: Flow-control, error detection and correction.

• Time to send n bytes can be modelled as

tmess(n) = ts + n ∗ tb,

ts: latency, tb: time per byte, t−1
b : bandwidth.

• Latency is mostly software overhead, not hardware, and depends on the communication
protocol.

• TCP/IP is an expensive wide-area network protocol with ts ≈ 100µs (in Linux).

• Specialised networks with low-overhead protocols have ts ≈ 3 . . . 5µs.

Cut-through Routing

1 03 2

123

23

3

1

2

0

0

3

1

2

3

0

01

1

1

2 0

023

Src Dest

Routing

Routing

Routing

Time

• Pipelining on word level.

• Time to send n bytes: tCT (n,N, d) = ts + thd+ tbn.

• Time is essentially independent of distance since th � ts.

89

8.1 Synchronous Communication

Send/Receive
The instructions for synchronous point-to-point communication are:

• send(dest − process,expr1,. . . ,exprn) Sends a message to the process dest − process con-
taining the expressions expr1 to exprn.

• recv(src − process, var1,. . . , varn) Receives a message from the process src − process
and stores the results of the expressions in the variables var1 to varn. The variables have
to be of maching type.

Blocking
Both send and recv are blocking, i.e. they are only finished, after the end of the communi-

cation. This synchronises the involved processes. Both sending and receiving process have to
execute a matching pair of send and recv to avoid a deadlock.

idle

Πs Πr

(a)

send

recv
t

Time

Π1:

Π2:

Π3:

(b)

recv(Π3,i)
send(Π2,i)

recv(Π1,i)
send(Π3,i)

recv(Π2,i)
send(Π1,i)

Abbildung 1: (a) Synchronisation of two processes by a send/recv pair. (b) Example of a
deadlock.

Guards
Blocking communication is not sufficient for all possible tasks.
Sometimes a process does not know which of several partner processes is ready for data

exchange.
Possible Solution: Non-blocking functions for detection if a partner process is ready for data

reception or sending:

• int sprobe(dest − process)

• int rprobe(src − process).

sprobe returns 1 (true), if the specified process is ready for a recv-operation, i.e. a send-
command would not block the sender.

rprobe tests, if a recv-command would lead to a blockade. To avoid blocking of processes
a communication instruction would be written as

90

• if (sprobe(Πd)) send(Πd,. . .);

The instructions sprobe and rprobe are also called ”guards“.

Implementation of rprobe and sprobe
Implementation of rprobe is easy. A send-instruction sends a message (or a part of it)

to the receiver, where it is stored. The receiving process only needs to look up locally if a
corresponding message (or part of it) has arrived.

Implementation of sprobe is more complicated, as usually the receiving process does not re-
turn any information to the sender. As one of the two instructions sprobe/rprobe is sufficient
(at least in principle) only rprobe is used in practise.

Receive Any

• recv any(who,var1,. . . ,varn)

similar effect as rprobe

allows reception of a message from any process

sender is stored in the variable who

8.2 Asynchronous Communication

Asynchronous Communication

• asend(dest − process,expr1,. . . ,exprn)

• arecv(src − process,var1,. . . ,varn)

have the same semantic as send/recv, but are non-blocking.
In principle a process can execute any amount of asend instructions without delay.
The involved processes are not synchronised implicitly.
Beginning and end of the communication channel can be visualised as a waiting line, buffering

all messages until they are accepted by the receiving process.

91

Check for Success
In practise buffer storage is limited. If the buffer is full, no further asend instruction can

be executed. Therefore it is necessary to test if a former communication instruction has been
completed.

asend/arecv are returning a unique identifier

• msgid asend(. . .)

• msgid arecv(. . .)

With this identifier the function

• int success(msgid m)

returns the state of the communication.

Mixing of Synchronous and Asynchronous Communication
We are going to allow mixing of the functions for asynchronous and synchronous communi-

cation. For example the combination of asynchronous sending and synchronous receiving can
make sense.

9 The Message Passing Interface

The Message Passing Interface (MPI)

• Portable Library with functions for message exchange between processes

• Developed 1993-94 by a international board

• Available on nearly all computer platforms

• Free Implementations also for LINUX Clusters:MPICH3 and OpenMPI4 (former LAM)

• Properties of MPI:

– library with C-, C++ and Fortran bindings (no language extension)
– large variety of point-to-point communication functions
– global communication
– data conversion for heterogeneous systems
– subset formation and topologies possible

MPI-1 consits of more than 125 functions, defined in the standard on 200 pages. We therefore
only treat a small selection of it’s functionality.

3
http://www-unix.mcs.anl.gov/mpi/mpich

4
http://www.open-mpi.org/

92

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org/

9.1 Simple Example

Simple Example in C

#include <stdio.h>

2 #include <string.h>

#include <mpi.h> // prov ides MPI macros and func t i ons
4

6 int main (int argc , char *argv [])

{

8 int my_rank;

int P;

10 int dest;

int source;

12 int tag =50;

char message [100];

14 MPI_Status status;

16 MPI_Init (&argc ,&argv); // beg in o f every MPI program

18 MPI_Comm_size(MPI_COMM_WORLD ,&P); // number o f
// invo l v ed proces se s

20 MPI_Comm_rank(MPI_COMM_WORLD ,& my_rank);

// number o f current process always between 0 and P−1

22 sprintf(message ,"I am process %d of %d\n",my_rank ,P);

if (my_rank !=0)

24 {

dest = 0;

26 MPI_Send(message ,strlen(message)+1,MPI_CHAR , // Send data
dest ,tag ,MPI_COMM_WORLD); // (b l o c k i n g)

28 }

else

30 {

puts(message);

32 for (source =1; source <P; source ++)

{

34 MPI_Recv(message ,100, MPI_CHAR ,source ,tag , // Receive data
MPI_COMM_WORLD ,& status); // (b l o c k i n g)

36 puts(message);

}

38 }

40 MPI_Finalize (); // end of every MPI program

42 return 0;

}

Simple Example in C++

1 #include <iostream >

#include <sstream >

3 #include <mpi.h> // prov ides MPI macros and func t i ons

5

int main (int argc , char *argv [])

7 {

MPI::Init(argc ,argv); // beg in o f every MPI program
9

int P = MPI:: COMM_WORLD.Get_size (); // number o f
11 // invo l v ed proces se s

93

int myRank = MPI:: COMM_WORLD.Get_rank ();

13 int tag =50;

15 // number o f current process always between 0 and P−1
if (myRank != 0)

17 {

std:: ostringstream message;

19 message << "I am process " << myRank << " of " << P << std::endl;

int dest = 0;

21 MPI:: COMM_WORLD.Send(message.str(). c_str(), // Send data
message.str(). size ()+1,MPI::CHAR ,dest ,tag); // (b l o c k i n g)

23 }

24 else

{

26 std::cout << "I am process 0 of " << P << std::endl << std::endl;

for (int source =1; source <P; ++ source)

28 {

char message [100];

30 MPI:: COMM_WORLD.Recv(message ,100, MPI_CHAR , // Receive data
source ,tag); // (b l o c k i n g)

32 std::cout << message << std::endl;

}

34 }

36 MPI:: Finalize (); // end of every MPI program

38 return 0;

}

Compilation of Program

• Sample program is written in SPMD-Stile. This is not prescribed by the MPI Standard,
but makes starting of program easier.

• Compiling, linking and execution is different for every implementation.

• Many implementations contain shell-scripts, which hide the location of the libraries. For
MPICH the commands to compile the program and start 8 processes are

mpicc -o hello hello.c
mpirun -machinefile machines -np 8 hello

In this case the names of the computers used are taken from the file machines.

For C++ programs the command for compilation is

mpicxx -o hello hello.c

Output of the Example Programs (with P=8)

1 I am process 0 of 8

3 I am process 1 of 8

5 I am process 2 of 8

7 I am process 3 of 8

94

9 I am process 4 of 8

11 I am process 5 of 8

13 I am process 6 of 8

15 I am process 7 of 8

Structure of MPI-Messages
MPI-Messages consist of the actual data and an envelope comprising:

1. number of the sender

2. number of the receiver

3. tag: an integer value to mark different messages between identical communication part-
ners

4. communicator: subset of processes + communication context. Messages belonging to
different contexts don’t influence each other. Sender and receiver have to use the same
communicator. The communicator MPI COMM WORLD is predefined by MPI and contains
all started processes.

In C++ communicators are objects over which the messages are sent. The communicator
object MPI::COMM_WORLD is already predefined.

Initialising and Finishing

int MPI_Init(int *argc , char *** argv)

2

void Init(int& argc , char **& argv)

4 void Init()

Before the first MPI functions are used, MPI_Init / MPI::Init has to be called.

int MPI_Finalize(void)

2

void Finalize ()

After the last MPI function call MPI_Finalize / MPI::Finalize must be executed to get a
defined shutdown of all processes.

9.2 Communicators and Topologies

Communicator
All MPI communication functions contain an argument of type MPI Comm (in C) or are

methods of a communicator object. Such a communicator contains the following abstractions:

• Process group: builds a subset of processes which take part in a global communication. The predefined
communicator MPI COMM WORLD contains all started processes.

• Context: Each communicator defines it’s own communication context. Messages can only be received
within the same context in which they are send. It’s e.g. possible for a numerical library to define it’s
own communicator. The messages of the library are then completely separated from the messages of the
main program.

95

• Virtual Topologies: A communicator represents a set of processes {0, . . . , P − 1}. This set can optionally
be provided with an additional structure, e.g. a multi-dimensional field or a general graph.

• Additional Attributes: An application (e.g. a library) can associate any static data with a communicator.
The communicator is then only a means to preserve this data until the next call of the library.

Communicators in C++
In C++ communicators are objects of classes derived from a base class Comm. The available

derived classes are

Intracomm for the communication inside a group of processes. MPI::COMM_WORLD is an object
of class Intracomm as all processes are included in MPI::COMM_WORLD. There exist two
derived classes for the formation of topologies of processes

Cartcomm can represent processes which are arranged on a Cartesian topology
Graphcomm can represent processes which are arranged along arbitrary graphs

Intercomm for the communication between groups of processes

Determining Rank and Size

int MPI_Comm_size(MPI_Comm comm , int *size)

2

int Comm:: Get_size () const

The number of processes in a communicator is determined by the function MPI_Comm_size /
Comm::Get_size(). If the communicator is MPI_COMM_WORLD this is equal to the total number
of started processes.

int MPI_Comm_rank(MPI_Comm comm , int *rank)

2

int Comm:: Get_rank () const

Each process has a unique number inside a group represented by a communicator. This number
can be determined by MPI_Comm_rank / Comm::Get_rank().

9.3 Blocking Communication

int MPI_Send(void *message , int count , MPI_Datatype dt ,

2 int dest , int tag , MPI_Comm comm);

int MPI_Recv(void *message , int count , MPI_Datatype dt ,

4 int src , int tag , MPI_Comm comm ,

MPI_Status *status);

6

void Comm::Send(const void* buf , int count ,

8 const Datatype& datatype , int dest , int tag) const

void Comm::Recv(void* buf , int count , const Datatype& datatype ,

10 int source , int tag , Status& status) const

void Comm::Recv(void* buf , int count , const Datatype& datatype ,

12 int source , int tag) const

The first three arguments message, count, and dt, specify the actual data. message points
to a contiguous memory block containing count elements of type dt. The specification of the
data type makes data conversion by MPI possible. The arguments dest, tag and comm form

96

the envelope of the message (the number of the sender/receiver is given implicitly by the
invocation).

Data Conversion
MPI implementations for heterogeneous systems are able to do a automatic conversion of

the data representation. The conversion method is left to the particular implementation (e.g.
by XDR).

MPI provides the architecture independent data types:
MPI CHAR, MPI UNSIGNED CHAR, MPI BYTE MPI SHORT, MPI INT, MPI LONG,

MPI LONG LONG INT, MPI UNSIGNED, MPI UNSIGNED SHORT, MPI UNSIGNED LONG,
MPI FLOAT, MPI DOUBLE and MPI LONG DOUBLE.

IN C++ the datatypes are:
MPI::CHAR, MPI::UNSIGNED CHAR, MPI::BYTE MPI::SHORT, MPI::INT, MPI::LONG,

MPI::LONG LONG INT, MPI::UNSIGNED, MPI::UNSIGNED SHORT, MPI::UNSIGNED LONG,
MPI::FLOAT, MPI::DOUBLE and MPI::LONG DOUBLE.

The MPI data type MPI BYTE / MPI::BYTE is never converted.

Status

typedef struct {

2 int count;

int MPI_SOURCE;

4 int MPI_TAG;

int MPI_ERROR;

6 } MPI_Status;

In C MPI_Status is a struct containing information about the number of received objects,
source rank, tag and an error status.

int Status :: Get_source () const

2 void Status :: Set_source(int source)

int Status :: Get_tag () const

4 void Status :: Set_tag(int tag)

int Status :: Get_error () const

6 void Status :: Set_error(int error)

In C++ an object of class Status provides methods to access the same information.

Varieties of Send

• buffered send (MPI Bsend / Comm::Bsend): If the receiver has not yet executed a cor-
responding recv-function, the message is buffered by the sender. If enough memory is
available, a “buffered send” is always terminated immediately. In contrast to asynchro-
nous communication the sending buffer message can be immediately reused.

• synchronous send (MPI Ssend / Comm::Ssend): The termination of a synchronous send
indicates, that the receiver has executed the recv-function and has started to read the
data.

• ready send (MPI Rsend / Comm::Rsend): A ready send can only be started if the receiver
has already executed the corresponding recv. The call leads to an error else .

97

MPI Send and MPI Receive II
The MPI Send-command either has the semantic of MPI Bsend or MPI Ssend, depending on

the implementation. Therefore MPI Send can, but don’t have to block. The sending buffer can
be reused immediately in any case.

The function MPI Recv is in any case blocking, e.g. it is only terminated if message contains
data. The argument status contains source, tag and error status of the received message.

MPI ANY SOURCE / MPI::ANY SOURCE and MPI ANY TAG / MPI::ANY TAG can be used for the
arguments src and tag respectively. Thus MPI Recv contains the functionality of recv any.

Guard Function

int MPI_Iprobe(int source , int tag , MPI_Comm comm ,

2 int *flag , MPI_Status *status);

bool Comm:: Iprobe(int source , int tag , Status& status) const

4 bool Comm:: Iprobe(int source , int tag) const

is a non-blocking guard function for the receiving of messages. flag is set to true true (6= 0)
if a message with matching source and tag can be received. The arguments MPI ANY SOURCE /
MPI::ANY SOURCE and MPI ANY TAG / MPI::ANY TAG are also possible.

9.4 Non-blocking communication

MPI provides the functions

int MPI_ISend(void *buf , int count , MPI_Datatype dt ,

2 int dest , int tag , MPI_Comm comm ,

MPI_Request *req);

4 int MPI_IRecv(void *buf , int count , MPI_Datatype dt ,

int src , int tag , MPI_Comm comm ,

6 MPI_Request *req);

8 Request Comm:: Isend(const void* buf , int count ,

const Datatype& datatype , int dest , int tag) const

10 Request Comm:: Irecv(void* buf , int count , const Datatype& datatype ,

int source , int tag) const

for non-blocking communication. They imitate the respective communication operations.
With the MPI Request / MPI::Request-objects the state of the communication job can be
checked (corresponding to our msgid).

98

MPI Request-Objects
The state of the communication can be checked with MPI Request-objects returned by the

communication functions using the function (among others)

int MPI_Test(MPI_Request *req ,int *flag , MPI_Status *status);

flag is set to true (6= 0) if the communication job designated by req has terminated. In
this case status contains information about sender, receiver and error state.

1 bool Request ::Test(Status& status)

bool Request ::Test()

In C++ the Test method of the Request object returned by the communicator method
returns true if the job initiated by the method call has terminated.

It is important to mind that the MPI Request-object becomes invalid as soon as MPI Test /
Request::Test returns flag==true / true. It must not be used thereafter, as the MPI Request-
objects are managed by the MPI-implementation (so-called opaque objects).

9.5 Global Communication

MPI also offers functions for global communication where all processes of a communicator
participate.

int MPI_Barrier(MPI_Comm comm);

2

void Intracomm :: Barrier () const

blocks every process until all processes have arrived (e.g. until they have executed this
function).

1 int MPI_Bcast(void *buf , int count , MPI_Datatype dt ,

int root , MPI_Comm comm);

3

void Intracomm ::Bcast(void* buffer , int count ,

5 const Datatype& datatype , int root) const

distributes the message of process root to all other processes of the communicator.

Collection of Data
MPI offers various functions for the collection of data. For example:

1 int MPI_Reduce(void *sbuf , void *rbuf , int count ,

MPI_Datatype dt , MPI_Op op, int root , MPI_Comm comm);

3

void Intracomm :: Reduce(const void* sendbuf , void* recvbuf , int count ,

5 const Datatype& datatype , const Op& op , int root) const

combines the data in the send buffer sbuf of all processes with the associative operation
op. The result is available in the receive buffer rbuf of process root. As operations op e.g.
MPI SUM, MPI MAX and MPI MIN can be used to calculate the sum, maximum or minimum over
all processes.

Remark
Global communications have to be called with maching arguments (e.g. root in MPI Reduce)
by all processes of a communicator.

99

9.6 Avoiding Deadlocks: Coloring

Shifting along Ring: Creation of Deadlocks
Problem: Each process p ∈ {0, . . . , P − 1} has to transfer data to (p+ 1)%P .

M1

M0

M2

M1

M3

M2

M0

M3

0 1 2 3

vorher:

nachher:

With blocking communication functions a deadlock is created using

. . .
send(Π(p+1)%P ,msg);
recv(Π(p+P−1)%P ,msg);
. . .

Deadlock Prevention
A solution with optimal degree of parallelism can be reached by colouring.
Let G = (V,E) be a graph with

V = {0, . . . , P − 1}
E = {e = (p, q)|process p has to communicate with process q}

Each edge then has to be given a colour so that the colours of all edges meeting at each node
are unique. The colour assignment is given by the mapping c : E → {0, . . . , C − 1}, where C
is the number of colours necessary. The communication can then be done in C steps, whereas
only messages along edges of colour i are exchanged in step 0 ≤ i < C.

Number of Colours
Two colours are needed for shifting along a ring if P is even, but three colours are needed if

P is odd.

Exchange with all Neighbours
The algorithm can easily be modified to shift messages in both directions. Each Process

exchanges then messages with both neighbours in the graph.
The number of colours is the same as in the case of simple shifting. Two messages are send

along each edge. Deadlocks are prevented if the process with the smaller number sends first.

100

0

3

1

2

4

5 0

1

2 3

4

0

before:

after:

31 2

M01

M03

M30

M10

M12

M01

M21

M23

M12

M32

M30

M23

M03

M10 M21 M32

101

General Graphs
For general, undirected graphs the determination is not so simple and it can also be necessa-

ry to determine the colouring at runtime. Distributed algorithms are available to solve this
problem.

0

6

7

21

4

5

0

0

0 0

1

1

1

2

2

2

3

4

5

5

4

3

2

1

0

Colors:

3

Alternative: Timestamps

Creating Communicators based on Colours
A new communicator can be created with the function

1 int MPI_Comm_split(MPI_Comm comm , int colour ,

int key , MPI_Comm *newcomm);

3

Intracomm Intracomm :: Split(int colour , int key) const

MPI Comm split is a collective operation, executed by all processes of the communicator
comm. All processes with the same value of the argument colour form a new communicator.
The ordering (rank) within the new communicator is controlled by the argument key.

10 Things to Remember

What you should remember

• Message passing is a general concept for data exchange. There are different realisations
of this concept.

• Two different types of communication exist: Blocking (or synchronous) and Non-blocking
(or asynchronous).

• MPI is a standardised message passing system. Different implementations exist imple-
menting the MPI standard (e.g. MPICH, OpenMPI).

• C and C++ versions of the MPI functions exist

102

• Deadlocks in communication can occur with blocking communication functions and need
to be averted by techniques like colouring or timestamps.

Literatur

[1] MPI: The different version of the Message-Passing Interface Standard http://www.mpi-
forum.org/docs/

[2] MPICH-A Portable Implementation of MPI http://www-unix.mcs.anl.gov/mpi/mpich

[3] Open MPI: Open Source High Performance Computing http://www.open-mpi.org/

[4] Overview of available MPI Tutorials http://www-unix.mcs.anl.gov/mpi/tutorial/

11 Analysis of Parallel Algorithms

Introduction

• We want to solve a problem Π on a parallel computer.

• Example: “Solve system of linear equations Ax = b with A ∈ RN×N and x, b ∈ RN”.

• Problem description does not include how it is solved.

• Π has a problem size parameter N ∈ N.

• Π is solved on a parallel machine with P identical processors and a given communication
network.

• Π is solved

– on 1 processor with a sequential algorithm and
– on P processors with a parallel algorithm.

How “good” is the parallel algorithm ?

Time Measurements
Depending on problem size N and processor number P we can define the following run-times:

• Sequential run-time TS(N): Time needed by a specified algorithm to solve Π for problem
size N on one processor of the parallel machine.

• Best sequential run-time Tbest(N): Run-time of a hypothetical sequential algorithm that
solves Π for any problem size N in the shortest possible time.

• Parallel run-time TP (N,P): Run-time of a given parallel algorithm to solve Π for problem
size N on a parallel machine with P processors.

103

http://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/
http://www-unix.mcs.anl.gov/mpi/mpich
http://www.open-mpi.org/
http://www-unix.mcs.anl.gov/mpi/tutorial/

Speedup

Definition 11.1 (Speedup). Given the time measurements we can define the speedup

S(N,P) =
Tbest(N)
TP (N,P)

.

Remark.
The speedup is defined with respect to the best sequential algorithm! If it were defined via
some TS(N), any speedup could be achieved by comparing against a slow sequential algorithm.

Speedup Bound

Theorem 11.2 (Speedup bound). The speedup S(N,P) fullfills the inequality

S(N,P) ≤ P.

Beweis. Suppose we have S(N,P) > P , then simulating the parallel algorithm on one processor
would need time PTP (N,P) and

PTP (N,P) = P
Tbest(N)
S(N,P)

< Tbest(N)

which is a contradiction to the definition of Tbest.

Superlinear Speedup

Remark.
The proof above assumes that simulation takes no additional time. There are inherently parallel
algorithms where the sequential algorithm must simulate a parallel algorithm: Given a program
for computing f(n), find n ∈ {1, . . . , P} where its run-time is minimal.

Superlinear Speedup.
Some people measure speedups greater than P . This is most often because Tbest must be
replaced by some TS in practise. The most common situation is that for increasing P and fixed
N the local problems fit into cache and the sequential code is not cache-aware.

Efficiency

Definition 11.3 (Efficiency). The efficiency of a parallel algorithm is defined as

E(N,P) =
S(N,P)

P
=

Tbest(N)
PTP (N,P)

.

Theorem 11.4 (Efficiency bound). The speedup bound immediately gives

E(N,P) ≤ 1.

Remark.
Interpretation: E ·P processors are effectively working on the solution of the problem, (1−E)·P
are overhead.

104

Other Measures

Definition 11.5 (Cost). The cost of a parallel algorithm is defined as

C(N,P) = PTP (N,P).

In contrast to the previous numbers it is not dimensionless.

Definition 11.6 (Cost optimality). An algorithm is called cost optimal if its cost is propor-
tional to Tbest. Then its efficiency E(N,P) = Tbest/C(N,P) is constant.

Definition 11.7 (Degree of parallelism). Γ(N) is the maximum number of machine instruc-
tions that can be executed in parallel. Obviously Γ(N) = O(TP (N, 1)).

11.1 Examples

11.1.1 Scalar Product

Run-time of best sequential algorithm is given by

TS(N) = N2ta,

ta: time for a floating point operation.
Run-time of parallel algorithm using tree combine:

TP (N,P) =
⌈
N

P

⌉
2ta + dlog2 P e(tm + ta),

tm: time to send a number.
Speedup is

S(N,P) =
N2ta⌈

N
P

⌉
2ta + dlog2 P e(tm + ta)

=
P⌈

N
P

⌉
P
N︸ ︷︷ ︸

load imbalance

+ P dlog2 P e
N

tm+ta
2ta︸ ︷︷ ︸

communication

.

Speedup Graph Scalar Product

105

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Processors

Speedup Scalar Product N = 10000

t_m/t_a=1
t_m/t_a=10

t_m/t_a=100
t_m/t_a=1000

Reasons For Non-optimal Speedup
We can identify the following reasons for non-optimal speedup:

• Load imbalance: Not every processor has the same amount of work to do.

• Sequential part : Not all operations of the sequential algorithm can be processes in parallel.

• Additional operations: The optimal sequential algorithm cannot be parallelised directly
and must be replaced by a slower but parallelisable algorithm.

• Communication overhead : Depends relative cost of computation and communication.

11.1.2 Gaussian Elimination

Run-time of best sequential algorithm is given by

TS(N) = N3 2
3
ta,

ta: time for a floating point operation.
Run-time of parallel algorithm (row-wise cyclic, asynchronous):

TP (N,P) = (P − 1)(ts +Ntm) +
1∑

m=N−1

(⌈m
P

⌉
m2ta + tas

)
≈ 2

3
N3

P
ta +Ntas + Pts +NPtm,

ts: message latency, tas: asynchronous latency.

106

Speedup is

S(N,P) =
P

1 + 3
2
P
N2

(
P tw
ta

+ tas
ta

+ P
N
ts
ta

)

Speedup Graph Gaussian Elimination

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 50 100 150 200 250 300 350 400 450 500

S
pe

ed
up

Processors

Speedup Gaussian Elimination N = 5000

t_w/t_a=1, t_as/t_a=1 t_s/t_a=1
Myri t_w/t_a=33, t_as/t_a=300 t_s/t_a=1E4

Giga t_w/t_a=100, t_as/t_a=300 t_s/t_a=1E5
Fast t_w/t_a=1000, t_as/t_a=300 t_s/t_a=1E5

11.2 Scalability

11.2.1 Fixed Size

• Scalability is the ability of a parallel algorithm to use an increasing number of processors:
How does S(N,P) behave with P?

• S(N,P) has two arguments. What about N?

• We consider several different choices.

Fixed Size Scaling and Amdahl’s Law

Fixed size scaling
Very simple: Choose N to be fixed. Equivalently, we can fix the sequential execution time
Tbest = Tfix.

Amdahl’s Law (1967)

107

Assume a fixed sequential execution time. The part qTfix with 0 ≤ q ≤ 1 is assumed not to be
parallelisable. The remaining part (1 − q)Tfix is assumed to be fully parallelisable. Then the
speedup is given by

SA(P) =
Tfix

qTfix + (1− q)Tfix/P =
1

q + 1−q
P

.

Remark
SA(P) ≤ 1/q.

Speedup Graph Amdahl’s Law

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Processors

Amdahl Speedup

q=0.1
q=0.01

q=0.01 optimal
q=0.001

11.2.2 Scaled Size

Other Scalings
The sequential part q is a function of N and usually decreases with increasing N . Therefore

choose N = N(P).

Gustafson Scaling
Choose N = N(P) such that TP (N(P), P) = Tfix. Motivation: Weather prediction.

Memory Scaling
ChooseN = N(P) such that memory requirements scale with the available memory:M(N(P)) =
M0P . Useful for memory-bound applications, e.g. finite element methods.

Isoefficient Scaling
Choose N = N(P) such that E(N(P), P) = E0. This is not always possible! If such N(P)
exists the algorithm is called scalable.

108

Scalar Product: Fixed Sequential Execution Time
Remember the scalar product example:

TS(N) = N2ta,
TP (N,P) = (N/P)2ta + log2 P (tm + ta).

Fixed size scaling TS(N,P) = Tfix:

N2ta = Tfix =⇒ NA =
Tfix
2ta

.

This results in the speedup

SA(P) =
Tfix

Tfix/P + log2 P (tm + ta)
=

P

1 + P log2 P
tm+ta
Tfix

.

Scalar Product: Gustafson Scaling
Gustafson scaling TP (N(P), P) = Tfix:

N

P
2ta + log2 P (tm + ta) = Tfix =⇒ NG(P) = P

(
Tfix − log2 P (tm + ta)

2ta

)
.

There is an upper limit to P !
Assuming Tfix � log2 P (tm + ta) we get NG(P) ≈ PTfix/(2ta).
This results in the speedup

SG(P) =
NG(P)2ta

NG(P)2ta/P + log2 P (tm + ta)
=

P

1 + logP tm+ta
Tfix

.

Communication overhead is O(logP) instead of O(P logP).

Scalar Product: Memory Scaling
Gustafson scaling M(N(P)) = M0P :

M(N(P)) = wN = M0P =⇒ NM (P) = P (M0/w).

There is no upper limit to P !

This results in the speedup

SM (P) =
NM (P)2ta

NM (P)2ta/P + log2 P (tm + ta)
=

P

1 + logP (tm+ta)w
M02ta

.

Same as Gustafson scaling as long as Tfix � log2 P (tm + ta).

109

Scalar Product: Isoefficient Scaling
Isoefficient scaling

E(N(P), P) = S(N(P), P)/P = E0 ⇒ S(N(P), P) = E0P.

Inserting the speedup gives

S =
P

1 + P log2 P
N

(tm+ta)
2ta

!= E0P =⇒ NI(P) = P log2 P
E0

1− E0

tm + ta
2ta

.

The resulting speedup is S(NI(P), P) = PE0.

11.3 Things to Remember

What you should remember

• Basic performance measures are speedup and efficiency.

• They are defined relative to the best sequential algorithm.

• Most parallel algorithms scale well if the problem size is increased with the number of
processors.

Literatur

[1] Chapter 4 in V. Kumar, A. Grama, A. Gupta and G. Karypis (1994). Introduction to
Parallel Computing . Benjamin/Cummings.

12 Parallel Iterative Solution of Sparse Linear Equation Systems

CG Algorithm

~v = ~d = ~b−A~x
d0 = ~dT ~d;
dk = d0

while (dk ≥ ε2 · d0)
{
~t = A~v

α = dk/
(
~vT~t
)

~x = ~x+ α~v
~d = ~d− α~t
dkold

= dk;

dk = ~dT ~d

β = dk/dkold

v = ~d+ β~v

}

110

12.1 Parallelization

Grid Partitioning

Data Decomposition

• The essential operations to be parallelized are:

1. Matrix vector multiplication ~t = A~v.
2. Inner products dk = ~dT ~d and ~vT~t
3. Vector updates ~b−A~x, ~x = ~x+ α~v, ~d = ~d− α~t and ~d+ β~v.

• Let the index set I = {1, . . . , N} be partitioned:

I =
P⋃
i=1

Ii, Ii ∩ Ij = ∅ for i 6= j.

• Extension of Ii to overlapping decomposition Îi:

Îi = {δ ∈ I | ∃γ ∈ Ii : (A)γ,δ 6= 0}.

• Introduce vector spaces RI , RIi , RÎi and RÎi×Îi .

111

Decomposition for Regular Matrix Graph

Process i RÎi

RIi

Matrix Vector Product

• Vectors ~xi, ~vi,~ti, ~di ∈ RÎi are with respect to overlapping decomposition.

• Introduce global and local restriction operators:

R̂i : RI → RÎi , ∀γ ∈ Îi : (R̂i~x)γ = (~x)γ

Ri : RÎi → RIi , ∀γ ∈ Ii : (Ri~xi)γ = (~x)γ

• and the prolongations

R̂Ti : RÎi → RI , (~x)γ =

{
if γ ∈ RÎi

0 else

RTi : RI → RÎi , (~x)γ =
{

if γ ∈ RIi

0 else

• Introduce the local matrices Ai ∈ RÎi×Îi :

(Ai)γ,δ =

(A)γ,δ if γ ∈ RIi

1 if γ = δ ∧ γ ∈ RÎi \ RIi

0 else

• If ~xi = R̂i~x the matrix vector product can be computed locally on Ii:

RTi RiAi~xi = RTi RiR̂iA~x.

112

Update and Communication

• For ~x(k)
i we require ~x(k)

i = R̂i~x
(k), i.e. the global value must be known on the overlapping

decomposition.

• The local update would be ~x(k+1)
i = ~x

(k)
i + α~vi

• However, ~vi is computed on the nonoverlapping decomposition.

• A communication is required to get ~vi in the overlap region:

∀1 ≤ i ≤ P,∀γ ∈ Îi \ Ii : (vi)γ = (vj)γ where γ ∈ Ij .

• Minimization of the communication requires solution of a graph partitioning problem.

• For finite element matrices and reasonable data decompositions the communication in-
volves only local communication with a few neighbors.

Communication for Regular Matrix Graph

Process i Process j

Inner Product

• Vectors are stored in overlapping fashion.

• Assuming that for two vectors ~x, ~y we have Ri~xi = RiR̂i~x and Ri~yi = RiR̂i~y we can
compute the inner product via

~xT~y =
P∑
i=1

(Ri~xi)T (Ri~yi).

or

~xT~y =
P∑
i=1

(RTi Ri~xi)
T (RTi Ri~yi).

113

• Obviously, this involves a global communication.

Parallel CG Algorithm
Finally, we arrive at the parallel algorithm for process i:

~xi = R̂i~x;~bi = R̂ib
~di = RTi (Ri~bi −RiA~xi)
∀γ ∈ Îi \ Ii : (~di)γ = (~dj)γwhere γ ∈ Ij
~vi = ~di

d0 =
P∑
j=1

(Rj ~dj)T (Rj ~dj)

dk = d0

while (dk ≥ ε2 · d0)
{
~ti = RTi RiAi~vi

∀γ ∈ Îi \ Ii : (~ti)γ = (~tj)γwhere γ ∈ Ij

α = dk/

 P∑
j=1

(Rj~vj)T (Rj~tj)

~xi = ~xi + α~vi
~di = ~di − ~ti
dkold

= dk

dk =
P∑
j=1

(Rj ~dj)T (Rj ~dj)

β = dk/dkold

v = ~d+ β~v

}

~x =
P∑
i=1

R̂Ti ~xi

Speedup of one Iteration

• Assuming a regular matrix graph with N nodes (total) we get the sequential execution
time

TS(N) = Nttop

.

114

• The parallel execution time is

TP (N,P) =
N

P
top︸ ︷︷ ︸

computation

+

(
ts + tw

(
N

P

) d−1
d

)
2d︸ ︷︷ ︸

local comm.

+ 2(ts + tw) log2 P︸ ︷︷ ︸
global comm.

.

• Which results in the speedup

S(N,P) =
P

1 +
(
P
N

) 1
d 2dtw

top
+ P

N
2dts
top

+ 2P log2 P
N

ts+tw
top

.

• Surface to volume effect, good scalability for fixed N/P .

12.2 MPI Functions for Cartesian Grids

Collecting the Result to all Processes

int MPI_Allreduce(void* sendbuf , void* recvbuf ,

2 int count , MPI_Datatype datatype ,

MPI_Op op, MPI_Comm comm)

4

void Intracomm :: Allreduce(const void* sendbuf , void* recvbuf ,

6 int count , const Datatype& datatype ,

const Op& op) const

The Allreduce function performs a Reduce operation and redistributes the result to all
involved processors.

Calculate Distribution of Processes

1 int MPI_Dims_create(int nnodes , int ndims , int *dims)

3 void Compute_dims(int nnodes , int ndims , int dims [])

The Dims create function calculates a suitable ndims-dimensional distribution of nnodes. If
an element of dims is nonzero, than the number of nodes in this direction is fixed to this value.
The result is returned in dims.

Create Cartesian Communicator

1 int MPI_Cart_create(MPI_Comm comm_old , int ndims ,

int *dims , int *periods ,

3 int reorder , MPI_Comm *comm_cart)

5 Cartcomm Intracomm :: Create_cart(int ndims ,

const int dims[], const bool periods[],

7 bool reorder) const

Cart create creates a new communicator where the nodes are positioned on a ndims-dimensional
grid where dims gives the number of nodes in each direction. The elements of periods de-
termine if the grid is periodic in this dimension. If reorder is true, the ranks in the new
communicator may be renumbered.

115

Getting n-d Position of Process

1 int MPI_Cart_coords(MPI_Comm comm , int rank ,

int maxdims , int *coords)

3

void Cartcomm :: Get_coords(int rank , int maxdims ,

5 int coords []) const

The function Cart coords returns the coordinates of the process with rank rank in a maxdims-
dimensional Cartesian communicator in the array coords.

Getting Rank of the Neighbour

1 int MPI_Cart_shift(MPI_Comm comm , int direction ,

int disp , int *rank_source , int *rank_dest)

3

void Cartcomm ::Shift(int direction , int disp ,

5 int& rank_source , int& rank_dest) const

Cart shift returns the rank of the current process in this communicator rank source and
the rank of the process, which is disp positions shifted along direction direction.

Creating Packet Data Formats

1 int MPI_Type_vector(int count , int blocklength ,

int stride , MPI_Datatype oldtype ,

3 MPI_Datatype *newtype)

int MPI_Type_commit(MPI_Datatype *datatype)

5

Datatype Datatype :: Create_vector(int count ,

7 int blocklength , int stride) const

Datatype :: Commit ()

Often a number of variables has to be transported, which is not necessarily a direct sequence
in a vector. MPI allows the definition of new data types, which pack this variables in a new
vector. The vector contains count-times blocklength elements where each of this blocks is
separated by stride. Before the datatype can be used the Commit function is called.

Simultaneous Send and Receive

int MPI_Sendrecv(void *sendbuf , int sendcount ,

2 MPI_Datatype sendtype , int dest , int sendtag ,

void *recvbuf , int recvcount , MPI_Datatype recvtype ,

4 int source , int recvtag , MPI_Comm comm ,

MPI_Status *status)

6

void Comm:: Sendrecv(const void *sendbuf , int sendcount ,

8 const Datatype& sendtype , int dest , int sendtag ,

void *recvbuf , int recvcount , const Datatype& recvtype ,

10 int source , int recvtag , Status& status) const

void Comm:: Sendrecv(const void *sendbuf , int sendcount ,

12 const Datatype& sendtype , int dest , int sendtag ,

void *recvbuf , int recvcount , const Datatype& recvtype ,

14 int source , int recvtag) const

For the communication in the grid, nearly all processes need to send as well as receive. To
prevent the possibilities for deadlocks, MPI offers a function which defines a simultaneous send

116

and receive process, which is free of any deadlocks. The number of sent and received objects
does not necessarily have to match.

12.2.1 Examples

Subdividing the Grid

int numProcs=MPI:: COMM_WORLD.Get_size ();

2 int dims[DIM];

for (unsigned int i=0;i<DIM ;++i)

4 dims[i]=0;

MPI:: Compute_dims(numProcs ,DIM ,dims);

6 bool periods[DIM];

for (unsigned int i=0;i<DIM ;++i)

8 periods[i]= false;

MPI:: Cartcomm comm=MPI:: COMMWORLD.Create_cart(DIM ,dims ,periods ,true);

10

globalNx = globalNx - nx % dims [0];

12 globalNy = globalNy - ny % dims [1];

size_t nx=globalNx/dims [0];

14 size_t ny=globalNy/dims [1];

size_t NX=nx+2;

16 size_t NY=ny+2;

Creation of Datatypes
MPI:: Datatype columnType=MPI:: DOUBLE.Create_vector (1,ny,ny);

2 columnType.Commit ();

MPI:: Datatype rowType=MPI:: DOUBLE.Create_vector(nx ,1,ny+2);

4 rowType.Commit ();

6 comm.Get_coords(comm.Get_rank(), DIM , &cartcoords [0]);

size_t offsetX=cartcoords [0]*nx;

8 size_t offsetY=cartcoords [1]*ny;

size_t start = 1 + NY;

10

typedef struct direction_t

12 {

int sendRank; // ID of the sending process
14 int sendOffset; // Index o f f i r s t v a r i a b l e to send

int recvRank; // ID of the r e c e i v i n g process
16 int recvOffset; // Index o f f i r s t v a r i a b l e to r e c e i v e

MPI:: Datatype type;

18 } direction_t;

direction_t direction [2* DIM];

Determining the Positions of the Values to Communicate
1 comm.Shift(0, +1, direction[WEST].sendRank , direction[WEST]. recvRank);

direction[WEST].type = columnType;

3 direction[WEST]. sendOffset = start;

direction[WEST]. recvOffset = start+NY*nx;

5

comm.Shift(0, -1, direction[EAST].sendRank , direction[EAST]. recvRank);

7 direction[EAST].type = columnType;

direction[EAST]. sendOffset = start+NY*(nx -1);

9 direction[EAST]. recvOffset = 1;

11 comm.Shift(1, +1, direction[NORTH].sendRank , direction[NORTH]. recvRank);

direction[NORTH].type = rowType;

13 direction[NORTH]. sendOffset = start;

117

direction[NORTH]. recvOffset = start+ny;

15

comm.Shift(1, -1, direction[SOUTH].sendRank , direction[SOUTH]. recvRank);

17 direction[SOUTH].type = rowType;

direction[SOUTH]. sendOffset = start+ny -1;

19 direction[SOUTH]. recvOffset = start -1;

Communicating the Neighbour Values

1 for (size_t i = 0; i < numNeighbors; ++i)

{

3 comm.Sendrecv (&x[direction[i]. sendOffset], 1, direction[i].type ,

direction[i].sendRank , TAGNEIGHBORS ,

5 &x[direction[i]. recvOffset], 1, direction[i].type ,

direction[i].recvRank , TAGNEIGHBORS);

7 }

Sending the Result to the Root Process

1 // rec tangu la r s e c t i on o f the world
MPI:: Datatype sectionType=MPI:: DOUBLE.Create_vector(nx,ny,ny+2);

3 sectionType.Commit ();

5 // Send r e s u l t s to root process
comm.Isend(&x[NY+1], 1, sectionType , 0, TAGDISTGATHER);

Collecting the Result in the Root Process

MPI:: Datatype subMatrixType=MPI:: DOUBLE.Create_vector(nx ,ny,globalNy);

2 subMatrixType.Commit ();

4 if (comm.Get_rank () == 0)

{

6 int xy[2], rank;

for (xy[1] = 0; xy[1] < globalNy/ny; ++xy[1])

8 {

for (xy[0] = 0; xy[0] < globalNx/nx; ++xy[0])

10 {

rank=comm.Get_cart_rank(xy);

12 comm.Recv(&world[xy[0] * globalNy * nx + xy[1] * ny],

1, subMatrixType , rank , TAGDISTGATHER);

14 }

}

16 }

Renumbering of Vector Indices
RowIndex is just the ordinary index, but for the locally stored data (ny = globalNy/dimY).

ColIndex is the index including the copied boundary elements (ny = globalNy/dimY + 2).
RowToColumnIndex is a usefull function to convert from one to the other. For example a
check for the diagonal element can be performed by if (j==RowToColumnIndex(i)).
size_t RowIndex(int i, int j) const

2 {

return i*ny+j;

4 }

6 size_t ColumnIndex(int i, int j) const

{

8 return (i+1)*NY+j+1;

118

}

10

size_t RowToColumnIndex(size_t i) const

12 {

return (i/ny+1)*NY+(i%ny)+1;

14 }

16 index[RowIndex(i,j)]= ColumnIndex(i,j);

13 Debugging of Parallel Programs

Debugging parallel programs is a complicate task. Possible tools are:

• Using printf or std::cout

• Writting to log files

• Using gdb

• Using specialised debuggers for parallel programs

Using printf or std::cout

std::cout << MPI_COMM_WORLD.get_rank () << ": a = " << a << std::endl;

• Output should be prefixed with the rank of the processor

• Output of different processes is mixed and written by the root process.

• The order of output from different processes must not be chronological

• If job terminates some output may never be written

Writing to log-files

1 template <class T>

void DebugOut(const std:: string message , T i) const

3 {

std:: ostringstream buffer;

5 buffer << "debugout" << myRank_;

std:: ofstream outfile(buffer.str (). c_str(),std::ios::app);

7 outfile << message << " " << i<< std::endl;

}

• Output from each processor goes to a separate file

• Output is complete for each processor (as file is always immediately closed afterwards)

• File is allways appended not erased ⇒ output of several runs can be mixed

119

Using gdb
Several instances of gdb can be started each attaching to one of the parallel processes using

gdb <program name > <PID >

To make sure that all processes are still at the beginning you can add an infinite loop

1 bool debugStop=true;

while (debugStop);

After gdb has attached the loop can be exited by using the gdb-command

set debugStop=true;

You may have to compile with

1 mpicxx -o <program name > -g -O0 <program source >

as the compiler may optimise the variable away if the option -O0 is absent.

Parallel Debuggers

• Parallel debuggers are providing a graphical user interface for the process describe before

• Commercial parallel debuggers are e.g. Totalview and DDT

• There is also a eclipse plugin available: PTP

14 Time-dependent Problems

14.1 Parabolic Problems

Transport Equation

∂θ(~x)
∂t

+∇ · ~Jw(~x) + rw(~x) = 0

∂θ(~x)
∂t

+∇ · [−K̄s(~x) · ∇pw
]

+ rw(~x) = 0

∂θ(~x)
∂t

−∇ · [K̄s(~x) · ∇pw
]

+ rw(~x) = 0

with gravity:
∂θ(~x)
∂t

−∇ · [K̄s(~x) · (∇pw − ρwg~ez)
]

+ rw(~x) = 0

steady state:
−∇ · [K̄s(~x) · (∇pw − ρwg~ez)

]
+ rw(~x) = 0

120

Method of Lines
First discretise equations in space:

∂ (C(~x) · T (~x))
∂t

= ∇ · [λ(~x) · ∇T]− rh(~x)

∂ (C(~xi,j) · T (~xi,j , t))
∂t

= λxx(~xi−0.5,j , t) · (T (~xi,j , t)− T (~xi−1,j , t))

−λxx(~xi+0.5,j , t) · (T (~xi+1,j , t)− T (~xi,j , t))
+λyy(~xi,j−0.5, t) · (T (~xi,j , t)− T (~xi,j−1, t))
−λyy(~xi,j+0.5, t) · (T (~xi,j+1, t)− T (~xi,j , t))
−h2r(~xi,j , t)︸ ︷︷ ︸

:=F (~xi,j ,t)

Integration in Time

tk+1Z
tk

∂ (C(~xi,j) · T (~xi,j , t))

∂t
=

tk+1Z
tk

F (~xi,j , t)

Numerical Integration of the right side yields:

C(~xi,j) · (T (~xi,j , tk+1)− T (~xi,j , tk)) = ∆t · [(1−Θ) · F (~xi,j , tk) + Θ · F (~xi,j , tk+1)]

Θ = 0.5 : Trapezoidal rule ⇒ second-order accurate Θ 6= 0.5: First-order accurate

Explicit Euler Scheme (Θ = 0)

tk+1

tk

xixi−1 xi+1

• The explicit Euler or forward Euler scheme yields a diagonal matrix. Therefore the solu-
tion of a linear equation system is not necessary.

• Only values of the old time are used

• It is first order accurate

• It is only stable if ∆t < C
2λ · h2

121

Explicit Euler Scheme (II)

y(x)

y
(j)
h

(
1

f(x, y(x))

)

Implicit Euler Scheme (Θ = 1)

tk+1

tk

xixi−1 xi+1

• The implicit Euler scheme requires the solution of a linear equation system.

• Primarily values of the new time are used

• It is first order accurate

• It is unconditionally stable

Crank-Nicolson Scheme (Θ = 0.5)

tk+1

tk

xixi−1 xi+1

122

• The Crank-Nicolson scheme requires the solution of a linear equation system.

• Both values of the new and the old time are used

• It is second order accurate

• It is unconditionally stable in the || . . . ||2 norm. However oscillations can occur if ∆t ≥
C
λ h

2

Non-Smooth Initial Condition Crank-Nicolson ∆t = 5 · 10−5 s

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80

t = 0 s
t = 0.1 s
t = 0.2 s
t = 0.3 s
t = 0.4 s
t = 0.5 s

Non-Smooth Initial Condition Crank-Nicolson ∆t = 0.1 s

123

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80

t = 0 s
t = 0.1 s
t = 0.2 s
t = 0.3 s
t = 0.4 s
t = 0.5 s

Non-Smooth Initial Condition Different Schemes t = 0.1 s

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80

Crank-Nicolson dt = 0.1 s
Implicit dt = 0.1 s
Explicit dt = 0.1 s

Crank-Nicolson dt = 5e-5 s
Implicit dt = 5e-5 s
Explicit dt = 5e-5 s

Non-Smooth Initial Condition Different Schemes t = 0.5 s

124

 0

 20

 40

 60

 80

 100

 20 30 40 50 60 70 80

Crank-Nicolson dt = 0.5 s
Implicit dt = 0.5 s
Explicit dt = 0.5 s

Crank-Nicolson dt = 5e-5 s
Implicit dt = 5e-5 s
Explicit dt = 5e-5 s

Non-Smooth Initial Condition Explicit Euler dt = 0.1 s

-1e+06

-800000

-600000

-400000

-200000

 0

 200000

 400000

 600000

 800000

 1e+06

 20 30 40 50 60 70 80

t = 0.1 s
t = 0.2 s
t = 0.3 s

Darcy2D::SetupSystem2DTime

double alpha =1.0;

2 #ifdef CRANK_NICOLSON

alpha =0.5;

4 #elif defined(EXPLICIT)

alpha =0.;

6 #endif

125

// d i a gona l c o e f f i c i e n t and r i g h t hand s i d e
8 A(me,A.ColumnIndex(i,j)) = alpha*(k_w + k_e + k_n + k_s)*dt+C_;

b[me] = (Source(x,y)*hx_*hy_+bflux)*dt+C_*x0[me];

10 b[me] -= (1.- alpha)*(k_w + k_e + k_n + k_s)*dt*x0[me];

12 // west c o e f f i c i e n t
if (i+offsetX_ >0)

14 {

A(me,A.ColumnIndex(i-1,j))= - alpha * k_w * dt;

16 b[me] += (1.-alpha)*k_w*dt*x0[A.RowIndex(i-1,j)];

}

Darcy2D::SetupSystem2DTime

1 // sou th c o e f f i c i e n t
if (j+offsetY_ >0)

3 {

A(me,A.ColumnIndex(i,j -1))= - alpha * k_s * dt;

5 b[me] += (1.-alpha)*k_s*dt*x0[A.RowIndex(i,j -1)];

}

7

// ea s t c o e f f i c i e n t
9 if (i+offsetX_ <(globalNx_ -1))

{

11 A(me,A.ColumnIndex(i+1,j))= - alpha * k_e * dt;

b[me] += (1.-alpha)*k_e*dt*x0[A.RowIndex(i+1,j)];

13 }

15 // nor th c o e f f i c i e n t
if (j+offsetY_ <(globalNy_ -1))

17 {

A(me,A.ColumnIndex(i,j+1))= - alpha * k_n * dt;

19 b[me] += (1.- alpha)*k_n*dt*x0[A.RowIndex(i,j+1)];

}

Darcy2D::SetupSystem2DTime

void InitX (CRSMatrix &A, std::vector <double > &b,

2 std::vector <double > &x0)

{

4 x0.resize(nx_*ny_);

b.resize(nx_*ny_);

6 for (int i=0;i<nx_*ny_ ;++i)

{

8 if ((i*hy_ >=0.4)&&(i*hy_ <=0.6))

x0[i]=100.;

10 else

x0[i]=T0_;

12 }

}

Main Program

1 assembler.InitX(A,b,x);

assembler.Output2D("result0",x);

3 double dt=1./ std::max(nx,ny);

126

dt*=dt/2.;

5 double t=0.;

double nextOutput =0.1;

7 for (int i=0;t<=0.5 && i <200000000;++i)

{

9 std::cout << "t = " << t << std::endl;

assembler.SetupSystem2DMPITime(A,b,x,dt);

11 #ifdef EXPLICIT

for (size_t j=0;j<b.size ();++j)

13 x[j]=b[j]/A(j,A.RowToColumnIndex(j));

#else

15 A.SOLVER(x,b,1e -10);

#endif

17 t+=dt;

if ((t+dt/2>= nextOutput)&&(MPI:: COMM_WORLD.Get_rank ()==0))

19 {

std:: ostringstream number;

21 number << t;

assembler.Output2D("result"+number.str(),x);

23 assembler.WriteDXHeader("result"+number.str ());

nextOutput +=0.1;

25 }

}

Summary Groundwater Flow and Partial Differential Equations

• Groundwater Flow

• Classification of Partial Differential Equations

• Discretisation schemes for partial differential equations

• The cell-centered finite-volume method

• The vertex-centered finite-volume method

• Time-dependent Problems / Parabolic Equations

Summary Iterative Solution of Linear Equation Systems

• Basic solvers for linear equation systems

• Advanced solvers for linear equation systems

• Parallel Iterative Solvers

Summary Parallel computing

• Architectures of Parallel Computers

• Shared Memory Parallel Computing

• Basics of Parallel Programming

127

• Message Parsing Interface (MPI)

• Analysis of Parallel Algorithms

• Parallel Iterative Solvers

128

	Introduction
	Subject of the Lecture
	Concrete Example
	Topics the Lecture and the Exercises

	Groundwater Flow
	Partial Differential Equations
	Examples for PDE types
	Sphere of Influence

	Spatial-Discretisation Methods
	Recapitulation: The Finite-Difference Method
	Recapitulation: The Finite-Element Method
	The Finite-Volume Method
	The Vertex-Centered Finite-Volume Method

	Solution of Linear Equation Systems
	Direct Solution of Sparse Linear Equation Systems
	Iterative Solution of Sparse Linear Equation Systems
	Relaxation Methods

	Parallel Computing
	Introduction
	Why Parallel Computing ?
	(Very Short) History of Supercomputers

	Single Processor Architecture
	Von Neumann Architecture
	Pipelining
	Superscalar Architecture
	Caches

	Parallel Architectures
	Classifications
	Uniform Memory Access Architecture
	Nonuniform Memory Access Architecture

	Things to Remember
	Private Memory Architecture
	Things to Remember

	Process Model
	A Simple Notation for Parallel Programs
	The Critical Section Problem
	Single Program Multiple Data
	Condition Synchronisation
	Things to Remember

	OpenMP

	Basics of Parallel Algorithms
	Data Decomposition
	Agglomeration
	Mapping of Processes to Processors
	Load Balancing
	Data Decomposition of Vectors and Matrices
	Matrix-Vector Multiplication

	Introduction Message Passing
	Synchronous Communication
	Asynchronous Communication

	The Message Passing Interface
	Simple Example
	Communicators and Topologies
	Blocking Communication
	Non-blocking communication
	Global Communication
	Avoiding Deadlocks: Coloring

	Things to Remember
	Analysis of Parallel Algorithms
	Examples
	Scalar Product
	Gaussian Elimination

	Scalability
	Fixed Size
	Scaled Size

	Things to Remember

	Parallel Iterative Solution of Sparse Linear Equation Systems
	Parallelization
	MPI Functions for Cartesian Grids
	Examples

	Debugging of Parallel Programs
	Time-dependent Problems
	Parabolic Problems

