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Abstract
In studies of the brain and the nervous system, extracellular signals – as measured
by local field potentials (LFPs) or electroencephalography (EEG) – are of capital
importance, as they allow to simultaneously obtain data from multiple neurons.
The exact biophysical basis of these signals is, however, still not fully understood.
Most models for the extracellular potential today are based on volume conductor
theory, which assumes that the extracellular fluid is electroneutral and that the
only contributions to the electric field are given by membrane currents, which can
be imposed as boundary conditions in the mathematical model. This neglects a
second, possibly important contributor to the extracellular field: the time- and
position-dependent concentrations of ions in the intra- and extracellular fluids.
In this thesis, a 3D model of a single axon in extracellular fluid is presented

based on the Poisson-Nernst-Planck (PNP) equations of electrodiffusion. This
fundamental model includes not only the potential, but also the concentrations
of all participating ion concentrations in a self-consistent way. This enables us to
study the propagation of an action potential (AP) along the axonal membrane
based on first principles by means of numerical simulations.
By exploiting the cylinder symmetry of this geometry, the problem can be

reduced to two dimensions. The numerical solution is implemented in a flexible
and efficient way, using the DUNE framework. A suitable mesh generation strategy
and a parallelization of the algorithm allow to solve the problem in reasonable
time, with a high spatial and temporal resolution. The methods and programming
techniques used to deal with the numerical challenges of this multi-scale problem
are presented in detail.
Special attention is paid to the Debye layer, the region with strong concen-

tration gradients close to the membrane, which is explicitly resolved by the
computational mesh. The focus lies on the evolution of the extracellular electric
potential at different membrane distances. Roughly, the extracellular space can
be divided into three distinct regions: first, the distant farfield, which exhibits
a characteristic triphasic waveform in response to an action potential traveling
along the membrane. This is consistent with previous modeling efforts and
experiments. Secondly, the Debye layer close to the membrane, which shows a
completely different extracellular response in the form of an “AP echo”, which
is also observed in juxtacellular recordings. Finally, there is the intermediate or
diffusion layer located in between, which shows a gradual transition from the
Debye layer potential towards the farfield potential. Both of these potential
regions show marked deviations from volume conductor models, which can be



attributed to the redistribution of concentrations and associated ion fluxes. These
differences are explained by analyzing the capacitive and ionic components of the
potential.
In an extension, we also include myelination into the model, which has a

significant impact on the extracellular field. Again, the numerical results are
compared to volume conductor models.
Finally, a model study is carried out to assess the magnitude of ephaptic

effects, i.e. the influence of the electric field of one cell on a neighboring cell, in a
somewhat artificial geometry. While the results probably can not be interpreted
quantitatively in the majority of physiological situations, the qualitative behavior
shows interesting effects. An axon can elicit an action potential in a surrounding
bundle of axons, given that the distance is small enough and the resistivity of
the extracellular medium is significantly increased. Further results of this study
are extremely large extracellular potentials with amplitudes up to 100mV and an
unusual neuronal firing mode in which the cell is not depolarized by an increase in
the intracellular potential, but by a decrease in the extracellular potential. Some
literature references are given that show that these observations are consistent
with previous studies.



Zusammenfassung
In Studien des Gehirns und des Nervensystems sind extrazelluläre Signale – gemes-
sen in der Form von Local Field Potentials (LFPs) oder als Elektroenzephalografie
(EEG) – von großer Bedeutung, da sie die simultane Erhebung von Daten mehre-
rer Neuronen erlauben. Die genaue biophysikalische Grundlage dieser Signale ist
jedoch noch immer nicht vollständig verstanden. Heutzutage basieren die meisten
Modelle für das extrazelluläre Potential auf dem Konzept von “Volume Conductors”
(Volumenleitern), bei denen angenommen wird, dass die extrazelluläre Flüssigkeit
elektroneutral ist und dass die einzigen Beiträge zum extrazellulären Feld von
Membranströmen stammen, die als Randbedingungen ins mathematische Modell
Einzug finden. Dies vernachlässigt einen zweiten, möglicherweise bedeutenden
Beitrag zum extrazellulären Feld: Die zeit- und ortsabhängigen Konzentrationen
der in den intra- und extrazellulären Fluiden befindlichen Ionen.
In dieser Arbeit wird ein 3D-Modell eines Axons in extrallulärer Flüssigkeit

auf Basis der Poisson-Nernst-Planck Gleichungen der Elektrodiffusion präsentiert.
Dieses fundamentale Modell beinhaltet das Potential und zudem die Konzentra-
tionen aller beteiligten Ionen in einer selbstkonsistenten Art und Weise. Dies
ermöglicht es, die Ausbreitung eines Aktionspotentials (AP) entlang der axonalen
Membran auf Basis grundlegender physikalischer Gesetze mit den Mitteln der
numerischen Simulation zu studieren.

Durch das Ausnutzen der Zylindersymmetrie der vorliegenden Geometrie kann
das Problem auf zwei Dimensionen reduziert werden. Die numerische Lösung ist
in einer flexiblen und effizienten Weise unter Verwendung des DUNE-Frameworks
implementiert. Eine geeignete Gittergenerierungsstrategie und eine Parallelisie-
rung des numerischen Algorithmus erlauben es, das Problem in angemessener Zeit
und mit einer hohen räumlichen und zeitlichen Auflösung zu lösen. Die verwen-
deten Methoden und Programmiertechniken zur Überwindung der numerischen
Herausforderungen dieses Multiskalen-Problems sind detailliert dargestellt.

Besondere Beachtung gilt dabei dem Debye-Layer, der Region nahe der Mem-
bran, innerhalb der die Konzentrationen starke Gradienten aufweisen. Diese
Region ist im Rechengitter explizit aufgelöst. Das Hauptaugenmerk liegt auf der
Entwicklung des extrazellulären elektrischen Potentials bei unterschiedlichen Ab-
ständen von der Membran. Der Extrazellulärraum kann grob in drei verschiedene
Bereiche aufgeteilt werden: Erstens das Fernfeld, in welchem die Wellenform einen
charakteristischen dreiphasigen Verlauf aufweist. Dies ist konsistent mit vorherge-
henden Modellierungsversuchen. Zweitens der Debye-Layer nahe der Membran,
welcher eine gänzlich andere extrazelluläre Antwort in Form eines “AP-Echos”



aufweist, welches auch in juxtazellulären Messungen beobachtet wird. Zwischen
diesen beiden Regionen befindet sich die intermediäre oder Diffusions-Schicht,
welche einen graduellen Übergang vom Potential des Debye-Layers zu dem des
Fernfeldes zeigt. Diese beiden letzten Regionen zeigen deutliche Abweichungen
von Volume Conductor-Modellen, die auf Konzentrationsumverteilungen und die
damit einhergehenden Ionenflüsse zurückgeführt werden können. Diese Unter-
schiede werden durch Analyse der einzelnen, kapazitiven und ionischen Beiträge
zum Potential erklärt.
In einer Erweiterung wird auch eine Myelinisierung und deren signifikanter

Einfluss auf das extrazelluläre Feld im Modell berücksichtigt. Die Resultate
werden wiederum mit Volume-Conductor-Modellen verglichen.

Schließlich wird eine weitere Modellstudie durchgeführt, die der Beurteilung
von ephaptischen Effekten dient, also der Beeinflussbarkeit einer Zelle durch
das elektrische Feld einer benachbarten Zelle, was unter Benutzung einer recht
artifiziellen Geometrie simuliert wird. Obwohl die Ergebnisse für die Mehrzahl der
physiologischen Situationen wahrscheinlich nicht quantitativ interpretiert werden
können, zeigen sie dennoch interessante qualitative Effekte. Ein Axon kann ein
Aktionspotential in einem umgebenden Axonbündel auslösen, solange die Distanz
zwischen beiden klein genug und die Resistivität des Extrazellulärraums stark
erhöht ist. Weitere Ergebnisse dieser Studie sind extrem große extrazelluläre
Potentiale mit Amplituden bis zu 100mV und ein ungewöhnlicher Feuermodus,
bei dem eine Zelle nicht durch die Zunahme des intrazellulären Potentials, son-
dern durch die Abnahme des extrazellulären Potentials depolarisiert wird. Dazu
werden einige Referenzen aus der Literatur angegeben, die zeigen, dass diese
Beobachtungen konsistent mit vorausgehenden Studien sind.
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1 Introduction

If we knew what it was we were doing, it
would not be called research, would it?

(Albert Einstein)

1.1 Motivation

When opening google.com and typing in the word “computational”, the first two
occurrences the auto-complete feature gives you are “computational fluid dynamics”
and “computational biology” (as of December 19, 2013). While this might in no
way be representative, it hints at the popularity the application of computational
methods in biology has gained. Recently, the field of computational neuroscience
has been established, which strives to use methods from computational sciences
for the understanding of the brain and the nervous system.
Why is this? Biology is a particular example of a field that has always been

dominated by experimental methods. This is not astonishing, since it deals with
the study of living organisms, which are complex and are hard to describe in a
theoretical framework. Observations have therefore been the primary source of
knowledge until today. However, for certain biological disciplines like systems
biology or molecular biology, mathematical models have been quite successful
in explaining and predicting the behavior of the underlying system, thereby
complementing experiments as a second pillar.

When it comes to complicated systems, the corresponding mathematical models
can not be evaluated by hand, either because the model – mostly in the form
of differential equations – is too complex, or simply because there is no known
analytical solution. For these cases, the computer has proven to be a powerful
tool for solving even the most difficult problems.

Computers can be used to carry out complicated calculations within a fraction
of a second, which in former times would have taken great mathematicians years.
Consequently, the computer has become the single most important tool in the
majority of mathematical divisions. Computer simulations based on the rigorous
mathematical foundation of numerical analysis have established as a third pillar
in addition to theory and experiment.
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In biology, the importance of numerical simulations is even reflected in the
terminology, where the phrases in vivo (in the living organism) and in vitro (in
the test tube) for the description of an experiment have been extended by in
silico (in the computer), showing that simulations are regarded as another form
of experiment.

Neuroscience, as a special case, imposes additional difficulties on experiments,
as the nervous system and particularly the human brain are especially complex
systems. Neurons, the main building blocks, show complicated morphologies,
extending and intertwining and eventually forming connections between each
other – the synapses. It is estimated that the average human brain consists of
about 85 billion neurons, about 20 billion of which are located in the neocortex,
the outer layers of the brain. On average, each of these neurons forms 7000
connections to other neurons, resulting in the impressive number of 1.5 trillion
synapses for the neocortex alone, in a volume of about 1.5 l [35]. This makes the
brain a very inaccessible organ rendering experimental investigations extremely
difficult.

It is also notable that the availability of intact human brain tissue naturally is
very restricted, so most of the experimental studies have been carried out in other
mammals such as mice and rats, whose brains show similarities to the human
one.
Considering all this, it is clear why in silico investigations in the form of

computer simulations have become increasingly popular. But there is more to
it: the brain computes, as does the computer – although in a very different way.
Both share the computation on an abstract level, i.e. transforming a certain set of
inputs into a set of outputs. While the circuit between input and output may look
completely different for a set of neurons and a desktop computer, both have the
fundamental property of implementing a transfer function from input to output
data, with an underlying encoding of the data. While this might seem trivial
on first sight, it has shown to be the hardest question of all: how is information
encoded in the brain?

For a computer, we know the numeral system is binary, we know how to map
sequences of bits to data types, how to (approximately) represent real numbers as
a bit string, and how to tell the processor to direct data through transistor gates
to implement a certain function. This is everything but trivial, but the process is
completely transparent, as human beings invented the concepts and built them
up from scratch, documenting structure and function down to the lowest level.
The brain, in contrast, was built by nature, so its structure and function have to
be reverse-engineered.

In fact, experiments can tell us something about the transfer function between
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input and output, but, to stay in the picture of a digital computer, telling that an
input bit sequence of 1010001010 is being transformed to a sequence of 100101
does not provide us with any knowledge, as long as we do not know what those
sequences mean. The application of information theory and data analysis on
experimental data, although still in its infancy, has already proven extremely
useful, and it can be expected that these methods will strongly shape the future
of neuroscience.

At present, the field of neuroscience is booming, reflected in billion-dollar
initiatives like the European Human Brain Project [71] or its American coun-
terpart BRAIN [58]. Still, the code of the brain has not been deciphered until
now. Joint efforts involving experimental and theoretical work will be required
to systematically uncover structure and function of the brain, starting at the
elementary unit, the single neuron.

In this thesis we will focus on the axon, the part of the neuron responsible for
generating the fundamental data unit of the brain, the action potential (AP). We
can think of it as a bit for now, but – as we will see later – it is not exactly binary,
as it can be shaped to a large degree by several physiological mechanisms. In this
work we are, however, not primarily interested in the action potential itself, but
rather in the electric field it generates extracellularly. The extracellular potential
is of special interest, as many experiments today rely on extracellular recordings
which allow to capture signals called local field potentials (LFPs) of a moderately
large amount of nearby cells without the need to place the electrode into the soma
of a neuron, as it is done in intracellular recordings. Extracellular recordings
are very useful for the investigation of the interplay of a network of neurons,
particularly “brain waves” emerging from synchronized firing of a large number
of neurons. These network oscillations can be observed in vivo as well as in
vitro, but not only by (invasive) electrode measurements, but also by noninvasive
electroencephalography (EEG). They are most commonly classified according to
their frequency, e.g. theta (4Hz–7Hz), alpha (8Hz–13Hz), beta (12Hz–30Hz),
and gamma (25Hz–100Hz).

Since these rhythms are used very frequently to explain network behavior of
the brain – and, as such, are also involved in deciphering the code of the brain – it
is crucial to understand the origin of these signals. This thesis strives to elucidate
how extracellular signals are generated based on first principles by setting up a
detailed model involving the movement of ions, the elementary charge carriers
responsible for any electric activity in living organisms.
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1.2 Challenges for Scientific Computing in
Computational Neuroscience

Above, we introduced the aspiring field of computational neuroscience. The name
implies the application of computational methods to the field of neuroscience.
But it does not pinpoint the actual character of the methods involved. In fact,
many projects in neuroscience are being relabeled and equipped with the trendy
tag “computational”, thus acknowledging that the used software for carrying out
statistical evaluations indeed involves computational methods. However, the use
of truly new computational methods in the sense of scientific computing involves
conceptual mathematic modeling and computer simulations, which – depending
on the complexity of these models – requires special numerical methods. It is clear
that the numerical simulation of complex biological models is not covered by the
domain of biology anymore, since it requires deeper knowledge in e.g. mathematics,
physics, and computer science.

The number of publications that use computer simulations as a complement to
experiments is steeply increasing. Still, many of these models are simplistic and
based on the availability of simulation tools such as NEURON [53]. Sometimes
it seems the models were merely fitted to reproduce the experimental data, and
not for their ability to explore situations which are not feasible in experimental
setups, or to make predictions which can be validated or falsified in experiments.
Likely, this is caused by the lack of expertise in scientific computing, therefore
limiting the complexity of models and the accuracy of simulations.
There are surprisingly few projects that actually employ high performance

computing (HPC), the discipline that deals with parallelized simulations running
on supercomputers. The underlying mathematical models often have systems
with millions or even billions of degrees of freedom (DOFs), such that they
are not solvable sequentially in reasonable time. This is the boundary that
many neuroscientific investigations do not dare to cross, as the parallelization of
numerical codes is cumbersome and requires special knowledge in both numerics
and programming. One of the few HPC projects in neuroscience is the Blue Brain
Project [70], which is now part of the EU initiative Human Brain Project. IBM
sponsored one of their Blue Gene supercomputers for the purpose of building
accurate models of the human brain based on a parallelized version of the
NEURON simulator. This project can therefore be seen as a lighthouse project
which dares to approach the challenge of tackling simulations with over a hundred
million connected neurons. The list of comparable projects using current methods
from scientific computing is small.
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The low visibility of scientific computing in neuroscience – as opposed to
many disciplines in physics, chemistry or engineering, like molecular dynamics,
groundwater flow or aerodynamics – should be seen as an encouragement. It is not
that methods of scientific computing are not needed in biology and neuroscience,
the opposite is the case: the nervous system is elaborate and delicate, with many
levels of abstraction from the macroscopic level of brain regions down to the
subcellular molecular level. On each of these levels, models of different complexity
may be employed. Time-dependent nonlinear partial differential equations (PDEs)
in three dimensions usually require parallelization in order to achieve reasonable
accuracy and resolution of the given domain, as the number of DOFs quickly
reaches the order of one million or more, where a sequential solution would take
too long. This involves techniques such as domain decomposition, suitable parallel
linear solvers and preconditioners, and parallel input/output (IO) for writing out
the results. A lot of experience and knowledge has been acquired in scientific
computing in other application domains, and it seems beneficial to transfer the
applied methods to the field of neuroscience.

In the present work, we will deal with a nonlinearly coupled system of PDEs in a
three-dimensional setting. Even after the introduction of a cylinder geometry and
the resulting complexity reduction to a 2D problem, large numbers of unknowns
ranging roughly between 105 and 107 are required. This necessitates an efficient
parallelization scheme to achieve acceptable simulation times. We will see that
not only the large number of DOFs, but also the inherent physical properties of
the PDE system provide substantial difficulties for the numerical solution of the
model. One central point will be the electrical property of the membrane acting
as a capacitance, which necessitates a fine spatial resolution in perpendicular
direction, while the direction parallel to the membrane may be resolved to a much
coarser degree. This results in a trade-off between the effort to reduce the number
of unknowns and the emerging anisotropy in the spatial resolution. It is known
that an anisotropic grid imposes severe difficulties on the numerical solution, as
the linear system to be solved involves dealing with a badly conditioned matrix.
This holds true even more in a parallel computation, since interior domain borders
(marking processor boundaries) need to be treated with special care.

For all these reasons, the development of a proper mathematical model together
with an accurate and efficient numerical solution is a topic on its own and very
much worth investigating in the context of scientific computing. Hopefully, the
insights gained throughout this thesis will not only contribute to the understanding
of neuronal signal propagation in the neuroscientific context, but also to the
field of scientific and high performance computing, as the methods used might
also be applied to related models with similar physical and numerical properties.
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Jointly, and most importantly from a personal point of view, we hope that this
thesis might serve as a small step and future motivation to bring the fields of
neuroscience and scientific computing closer together, as in the future many
open problems in neuroscience might be solved by the application of scientific
computing and its powerful computational methods.

1.3 Related Work

Simulations of neuronal signal propagation have a long history and are well
established in neuroscience as a useful tool for the study of brain function. Most
models today are based on the seminal work of Hodgkin and Huxley [55] for
the dynamics of membrane currents and the application of cable theory [84] to
account for the tree-like neuron morphology. In essence, the neuronal geometry
is reduced to a one-dimensional structure of line segments, and the evolution of
the membrane potential in time is given by a one-dimensional PDE – the cable
equation – which incorporates the Hodgkin-Huxley model of membrane currents
in each compartment. Two well-known simulators for these kinds of models are
NEURON [53] and GENESIS [23]. There is a vast number of studies using cable
equation models, and it is impossible to even list the most important ones1.

Several approximations and assumptions are made by the cable equation, which
are explained in detail in [56]. These assumptions are briefly summarized below.

1. The neuron cross section is small compared to its length, so variations in
radial direction can be neglected; the neuron can be accurately represented
as a 1D structure.

2. The extracellular space is isopotential (grounded) and does not have a
reverse effect on the neuron.

3. Magnetic fields are negligible.

4. All quantities, particularly membrane currents, can be described by contin-
uous variables, i.e. stochastic effects can be neglected, since the number of
participating ions is large enough and the ion diameter is sufficiently small
compared to the relevant physical length scales.

5. Intra- and extracellular spaces can be represented as a homogeneous medium
with effective physical parameters, e.g. diffusion coefficients and resistivity.

1As of March 14 2014, Google Scholar showed over 1400 citations of the original NEURON
paper by Hines and Carnevale.
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6. Ion concentrations do no vary significantly, so they can be regarded as being
constant.

7. The activity of a neuron is completely determined by its synaptic inputs
and intrinsic states, i.e. the electric activity of other neurons in the vicinity
does not have a direct effect.

8. The neuronal membrane can be modeled as a capacitor in parallel with a
conductance.

This is quite a number of assumptions. While some are certainly justified, others
can be questioned. In this context, particularly the assumptions of an isopotential
extracellular space and its independence of the intracellular space as well as
neglecting any concentration changes and their effects on the electric potential
may be seen critically. There have been some interesting modeling efforts that
address one or more of these approximations in order to come up with a more
accurate model.
In [83], concentration dynamics were included by coupling the Nernst-Planck

equation to the cable equation. Intracellular concentrations were allowed to
change, while extracellular concentrations were kept constant. The authors re-
ported deviations from the cable equation in small structures like dendritic spines,
since in restricted volumes concentrations can vary significantly. Furthermore, an
adjustment of the cable equation was proposed, where the constant ionic batteries
in the Hodgkin-Huxley model were replaced by concentration-dependent Nernst
potentials, which can be calculated from a separate set of equations for the ionic
concentrations. In a second step, also the single constant intracellular resistances
in each compartment were replaced by parallel resistances for each ion species,
which led to a better agreement with the Nernst-Planck cable model.

One central problem of the cable equation is the exclusion of the extracellular
space, which is the region of interest in this work. Most models for the extracellular
potential are based on volume conductor (VC) theory [81], where the extracellular
space is assumed to be electroneutral (and in most cases also homogeneous),
i.e. any concentration effects by ionic charges are neglected. The relevant
parameter for the extracellular medium in these models is the conductivity σ
(or equivalently, its inverse, the resistivity ρ). The problem is reduced to the
solution of the electrostatic part of Maxwell’s equations, where the membrane is
the only current source. The local changes in ion concentrations caused by drift
and diffusion and their contributions to the electric field are not considered.
Instead, current sources are imposed as boundary conditions. This way, the

electric potential can be calculated by Laplace’s equation. A special case is the
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line source approximation (LSA) [56], where the membrane surface is collapsed
to a line source, for which an analytical solution can be expressed in cylinder
coordinates. This avoids the need for a numerical solution and is computationally
tractable, since one only has to compute it at the points of interest. It has
also shown to give quite accurate results at distances larger than 1 µm from the
membrane in an experimental comparison [45].

Refined models consider an inhomogeneous extracellular space [20] that account
for effects like frequency filtering [19, 18].
An interesting technique in this context is the application of inverse methods

to these kinds of models, enabling the estimation of current source densities from
LFP measurements [80].
Another aspect of volume conductor models is that they are one-way models

which take their inputs from a cable equation simulation, but the result is not
fed back into the cable equation, such that intra- and extracellular space are still
completely decoupled. In a recent work [2], this is accounted for by solving the
governing equations not only on the extracellular domain, but on both intra- and
extracellular domains, coupled by Hodgkin-Huxley-type interface conditions.

More detailed models explicitly consider the dynamics of ionic concentrations
and their effects on the electric field, based on the Poisson-Nernst-Planck (PNP)
system of electrodiffusion. These models use the ion concentrations of all partici-
pating species – next to the electric potential – as primary variables, i.e. they
are explicitly solved for in the numerical simulations. In contrast to the work
in [83] mentioned above, concentrations and electric potential are fully coupled
through the Nernst-Planck and Poisson equations, respectively. These models
provide the most fundamental representation of neuronal dynamics among all
continuum models, given that magnetic fields can be neglected, which is the case
under physiological conditions2 [87]. However, they impose a serious challenge on
the implementation, as they have to be solved numerically using problem-specific
methods.

In [74], the reason for the high computational demand of electrodiffusion models
based on the PNP equations is discussed: the presence of a thin Debye layer close
to the membrane – over which concentrations change significantly – necessitates
a very fine spatial resolution. A clever approximation is suggested which replaces
the Debye layer by a special boundary condition, such that the remaining parts of
the domain can be approximated as electroneutral, eliminating the concentrations
from the equations. An extensive explication of the underlying asymptotic studies

2According to [87], the inclusion of magnetic fields into the calculation makes a difference of
about one in 109, as the relevant frequencies in neuronal tissue are small.
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1.4 Outline

can be found in [73]. An interesting by-product of this remarkable study is the
demonstration of the existence of a larger “intermediate layer” between Debye layer
and electroneutral regions. In [75], this methodology was applied to study the
effect of ephaptic coupling on cardiac action potential propagation in the absence
of any synapses or gap junctions. Many more studies are specifically concerned
with ephaptic coupling between neighboring cells, as reviewed in [40, 59]. We will
defer the detailed literature review of this particular topic to chapter 7.

In [68], a detailed 3D numerical simulation of electrodiffusion based on the PNP
equations was carried out for one node of Ranvier, showing the accumulation
and depletion of ions close to the membrane, and therefore the invalidity of the
electroneutrality approximation close to the membrane, as used in cable equation
and VC models. However, the study focused on deviations from the cable
equation, not on the extracellular signal, and the membrane thickness was greatly
overestimated as a consequence of the coarseness of the spatial discretization
dictated by the available computational resources. This also means the Debye
layer was not accounted for. Although these limitations render quantitative
statements difficult, it is the only study we know of dealing with the full set of
PNP equations in the setting of neuronal excitation.

In other fields, particularly in biophysical studies of ion channels, the application
of PNP is well-established. A review is given in [30]. Numerical methods for
electrodiffusion-reaction equations were analyzed in a comprehensive way in [69],
with special regard to surface potentials of biomolecules.

In summary, so far no model exists that explicitly resolves the relevant spatial
scales to study neuronal excitation on the detailed level of electrodiffusion. Most
importantly, there is no study we know of that actually uses the electrodiffusion
approach to model the extracellular potential.

1.4 Outline

In this work we strive to model the detailed evolution of the concentrations of the
most relevant ion species and the resulting electric field inside and (particularly)
outside the cell during the spread of an action potential along an axonal membrane.
To this end, the Poisson-Nernst-Planck equations are solved numerically by

application of the finite element method (FEM). To cope with the computational
demand, a cylinder symmetry is introduced, which enables us to solve a 3D
problem at 2D costs. We propose an efficient numerical scheme, particularly a
suitable computational grid which resolves the multiple spatial scales accurately
while still using only a minimal number of unknowns.
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The outline of this thesis is as follows: in the following chapter, the relevant
theoretical background will be treated. Chapter 3 discusses the general model,
its prominent features and the numerical methods used to solve the system. A
description of the implementation of the numerical algorithm follows in chapter 4.
In chapter 5, the results for an unmyelinated axon in extracellular fluid are shown.
We try to elucidate the evolution of the extracellular signal by looking at different
contributing mechanisms and compare the results with VC models. In chapter 6,
the modeling approach is extended to also include myelination. The necessary
modifications in the numerical scheme and the emerging simulation results are
discussed. In chapter 7, we consider neighboring nerve fibers and their ephaptic
effects on each other. Chapter 8 gives a summary and discusses the results and
future directions.
Some material in this work has been previously published in [82], parts of

which are reproduced and cited in the following without explicit mention. This
applies to section 1.3 and large parts of chapters 3, 5, and 8.
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2 Theory

Very simple was my explanation, and plausible
enough – as most wrong theories are!

(H.G. Wells)

This chapter serves as a basic outline of the theoretical background of this work.
It is divided into two parts: a mathematical part concerned mainly with the
numerical solution of PDEs and a second part that tries to list some fundamental
biophysical relations in the context of neuroscience.

2.1 Mathematical Aspects of Partial Differential
Equations

This section aims to act as a mini-primer on PDEs and its numerical solution
by the FEM. We will exclude the treatment of ordinary differential equations
(ODEs) here and refer to the well-established theory [49, 50] instead.

After a short look on the types of equations and their most important represen-
tatives, we will shortly introduce the basic concept of the finite element method.
By no means is this a complete treatise in the mathematical sense, for this we
refer to the excellent script [14], which we will be largely following hereafter.

2.1.1 Type Classification

A general linear second-order PDE can – assuming continuously differentiable
coefficients – be written in the form

Lu = −
n∑

i,j=1

aij(x)∂xj∂xiu+
n∑
i=1

bi(x)∂xiu+ c(x)u = f in Ω (2.1)

in the unknown u, where ∂xi is the shorthand notation for the partial derivative
∂
∂xi

with respect to xi and Ω is some domain, usually a subset of the n-dimensional
Cartesian space Rn. L is called a linear differential operator.
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2 Theory

Defining the matrix (A(x))ij = aij(x) and the vector b(x) = (b1(x), . . . , bn(x))T ,
eq. (2.1) is said to be

• elliptic in x, if all eigenvalues of A(x) are nonzero and have the same sign,

• hyperbolic in x, if all eigenvalues are nonzero, n− 1 eigenvalues have the
same sign and the remaining eigenvalue has the opposite sign, or

• parabolic in x, if one eigenvalue is zero, the remaining eigenvalues have the
same sign and the n× (n+ 1) matrix (A(x), b(x)) has full rank.

If this classification holds for every x ∈ Ω, this local property becomes a global
one and eq. (2.1) is simply called elliptic (parabolic, hyperbolic).
The names stem from the case n = 2, where the level set of equal function

values q = const. of the quadratic form q(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2

takes either the shape of an ellipse, a parabola, or a hyperbola, depending on
the values of the coefficients aij . Note that this classification is not complete,
i.e. there are also PDEs of mixed type.
This classification of PDEs is useful for their numerical solution. There does

not exist a general theory on the solution of partial differential equations, but
for the subclasses, statements can be made about existence and uniqueness of
solutions as well as about some of the properties these solutions have. This can
be exploited to develop numerical methods tailored to equations in a certain
class.

2.1.2 Prototypes

We will now have a look at some typical representatives of the above classes. In
the following, Ω ⊂ Rn is a (spatial) domain, Σ = (0, T ] is a time interval and
u : Ω → R or u : Ω × Σ → R denotes the unknown scalar function. We will
also specify boundary and initial conditions, which will have to fulfill additional
criteria (cf. [14, chapter 6]) in order to obtain a well-posed problem.

2.1.2.1 The Poisson Equation

The Poisson equation is a second-order elliptic PDE that arises naturally from
many physical problems. It can for instance be used to calculate the gravitational
potential due to certain masses, or the electrostatic potential due to a given
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charge density. It reads

∆u = f in Ω (2.2)
u = g on ΓD

∇u · n = j on ΓN

with Dirichlet boundary conditions g and Neumann boundary conditions j on
the boundary ∂Ω = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅. Here and in the following, n denotes
the unit outer normal vector. It is important to note that, since the Poisson
equation is not depending on time, it describes an instantaneous response or a
stationary state at which the system will settle given the source term f . If f = 0,
eq. (2.2) reduces to the Laplace equation.

2.1.2.2 The Heat Equation

The Heat equation is a second-order parabolic PDE describing the distribution of
a physical quantity (e.g. heat) as a diffusive process in a certain region over time:

∂tu−∆u = f in Ω× Σ (2.3)
u = g on ΓD × Σ

−∇u · n = j on ΓN × Σ

u = u0 on Ω× {0}.

with Dirichlet values g, Neumann values j and the initial condition u0. In
contrast to the Poisson equation, the heat equation is instationary, as is contains
a derivative with respect to time, meaning that it describes a transient process.

2.1.2.3 The Transport Equation

The transport or advection equation is a first-order hyperbolic PDE reading

∂tu+∇ · (vu) = f in Ω× Σ (2.4)
u = g on ΓD × Σ

vu · n = j on ΓN × Σ

u = u0 on Ω× {0}.

with Dirichlet, Neumann and initial conditions as before. It may for instance
describe the transport of certain substances in a fluid due to a known velocity
field v.

13



2 Theory

2.1.2.4 The Convection-Diffusion Equation

The convection-diffusion equation is a second-order mixed-type PDE, as it is a
combination of the parabolic heat eq. (2.3) and the hyperbolic transport eq. (2.4).
It describes the distribution of the quantity u due to diffusion and advection
(convection) over time:

∂tu−∇ · (D∇u) +∇ · (vu) = f in Ω× Σ (2.5)
u = g on ΓD × Σ

(−D∇u+ vu) · n = j on ΓN × Σ

u = u0 on Ω× {0}.

Here, D denotes the diffusion coefficient, which might in general be tensorial. In
the following, we assume the diffusion to be isotropic, such that D is a scalar
value.

The ratio between advective and diffusive forces can be quantified by the Péclet
number

PeL =
Lv

D
(2.6)

for a characteristic length L.

The bored reader at this point might wonder why the previous prototypic
PDEs were introduced out of any apparent context. We beg for patience until the
governing equations of electrodiffusion are introduced at the end of this chapter.
It will then become clear that the PNP system is a combination of the above
prototypes consisting of one elliptic and one convection-diffusion-type equation,
i.e. it contains parts of all of the prototypes introduced above.

2.2 Numerical Solution of PDEs by the Finite Element
Method

The task of solving PDEs like those in section 2.1.2 is really that of finding a
function u(x) that satisfies the PDE at every point in Ω × Σ. As there is an
(uncountable) infinite number of functions to choose from, this is certainly not
an easy task. When there is no analytical solution at hand, the goal is to find a
numerical (approximate) solution by reducing the solution candidates to a finite
number by discretization. This is the process of finding a finite number of points
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xi ∈ Ω, i = 0, . . . , NS − 1 (in space) and ti ∈ Σ, i = 0, . . . , NT − 1 (in time) on
which the solution is to be satisfied.

The common choice for instationary equations is the method of lines, where one
first discretizes the spatial variables, leaving the time continuous, and afterwards
the time variable. The last step reduces the task to the solution of an ODE
in only one variable, for which a suitable time-stepping method can be used.
Both discretizations yield a (spatial/temporal) grid on which we seek the discrete
solution of the continuous problem. For the space discretization, the FEM is the
method of choice in the following.

2.2.1 Triangulation of the Domain

The finite element method was designed to find a solution to a given PDE in
function space. For this, the spatial domain Ω is discretized to yield a triangulation
(also mesh, grid) T = {tj : j = 0, . . . ,m − 1} consisting of elements tj . In one
dimension, the domain Ω = (a, b) is subdivided into

a = x0 < x1 < . . . < xm = b

(not necessarily equidistant). Then for j = 0, . . . ,m− 1, the elements tj and the
mesh size h(tj) are given by

tj = (xj , xj+1) and h(tj) = xj+1 − xj .

We use h = maxt∈T h(t) to denote the maximum mesh size.
In higher dimensions, common choices for the elements are simplices (2D: trian-

gles; 3D: tetrahedra) or cuboids (2D: rectangles, quadrilaterals; 3D: cubes/cuboids,
hexahedra). Finding a suitable mesh is a problem on its own, as a “good grid”
depends on the considered equation and its physical properties, as we will see
later. Here, we will not delve into the details of mesh generation or adaptation
and simply assume that a suitable triangulation T has already been found.

2.2.2 The Finite Element Method

2.2.2.1 Weak Form

Before introducing Galerkin’s method, the heart of the finite element method,
we need to spend a few words on the requirements for the solution candidate
functions uh ∈ Vh living on the triangulation T .
Take for example the Poisson eq. (2.2): since it is of second order, a function

that satisfies the equation must be at least twice continuously differentiable. This
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imposes a severe restriction on the underlying function space Vh, as in practice
one might be perfectly content with a piecewise linear solution, which is only once
piecewise differentiable. It is therefore customary to solve the weak formulation
of the original PDE, which is obtained by multiplying the equation by a suitable
test function (the “variation”) and integrating over the domain.

For the exemplary eq. (2.2) with homogeneous Dirichlet conditions g =
0 on ΓD = ∂Ω (ΓN = ∅), we choose v to be vanishing at the Dirichlet boundary,
yielding ∫

Ω
∆uv dx =

∫
Ω
fv dx . (2.7)

After integrating by parts, the weak form reads∫
Ω
∇ · (∇u)v dx = −

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx , (2.8)

where we utilized that the boundary term vanishes due to v = 0 on ∂Ω. Defining
the bilinear and linear forms

a(u, v) = −
∫

Ω
∇u · ∇v dx and l(v) =

∫
Ω
fv dx ,

the problem now takes the form

Find u ∈ U : a(u, v) = l(v) ∀v ∈ V. (2.9)

A solution u to eq. (2.9) is called a weak solution. The weak solution is also
a solution of the strong formulation eq. (2.2) if u is in C2(Ω), i.e. if it is twice
continuously differentiable on the given domain (see [39, chapter 8.1.2]). Note
that even though we used a concrete example above, every linear PDE can be
written in the form eq. (2.9).

We now quickly touch the concept of linear operators. Let L(V,R) denote the
set of all linear and continuous operators A from V to R. V ′ = L(V ;R) is called
the dual space to V . This way, we obtain an alternative notation of eq. (2.9), the
operator notation:

Find u ∈ U : Au = l. (2.10)

Here, we have used the shortcut notation Au = A(u) and the definition

∀u ∈ U,∀v ∈ V : 〈Au, v〉V ′,V = a(u, v) ,
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so Au ∈ V ′ is the continuous linear form that is obtained from a(u, v) by fixing
the argument u. The scalar product 〈·〉V ′,V is defined according to the Riesz
Representation Theorem [14, Theorem 5.13].

Thus, eq. (2.9) has a unique solution if and only if the corresponding operator
A is invertible, i.e. if it is injective and surjective. This problem formulation nicely
reflects the practical implementation, where A is the matrix, u is the coefficient
vector representing the solution, and l is the right-hand side of the linear system
to be solved.

In summary, the finite element method relies on the solution of PDEs in weak
form, as it requires less regularity (“numbers of derivatives”) of the candidate
functions, allowing for instance the choice of piecewise linear finite element
functions for the solution of a second-order problem. This greater freedom in
controlling both accuracy and computational efficiency by the choice of a less
regular finite element functions has turned out to be very beneficial in practice.

2.2.2.2 Existence and Uniqueness of Weak Solutions

The weak formulation eq. (2.9) of a given PDE obviously has practical advantages
over the strong formulation. But is it also well-posed, i.e. does it have a unique
solution? To answer this question, we have to become a little more precise
and specify the classes of function spaces V we will be using and their different
properties. In the following, we always assume the spaces to be defined on some
domain Ω over the field of real numbers R. For a formal definition of these
important spaces, see [14, chapter 5].

• Banach space: A vector space equipped with a norm ‖·‖ which is complete
with respect to this norm, i.e. every Cauchy sequence will converge to an
element in the space V .

• Hilbert space: A Banach space which is additionally equipped with a
scalar product 〈u, v〉 and an induced norm ‖u‖ =

√
〈u, u〉.

• Lebesque space L2: A Hilbert space whose elements are required to be
square-integrable, i.e.

∫
Ω |u(x)|2 dx < ∞; here we see the connection to

integrals of the form eq. (2.7). This property also allows for the definition
of the scalar product 〈u, v〉 =

∫
Ω u(x)v(x) dx and the induced L2 norm

‖u‖ =
√
〈u, u〉 =

(∫
Ω u(x)2 dx

) 1
2 .

• Sobolev space Hk ⊂ L2: A subset of L2 which additionally requires the
existence of weak derivatives up to order k; a weak derivative ∂xu of a
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function u satisfies 〈u, ∂xv〉 = −〈∂ux, v〉 for every test function v ∈ C∞0 .
This ensures the existence of integrals of the form of those in eq. (2.8)
obtained by integration by parts. The scalar product is given by 〈u, v〉 =∑
0≤|α|≤k

∫
Ω(∂αu)(∂αv) dx and the induced norm as before by ‖u‖ =

√
〈u, u〉.

One commonly used example is the Sobolev space H1 of functions with
weak first order derivatives and scalar product 〈u, v〉 =

∫
Ω uv +∇u · ∇v dx

inducing the H1 norm ‖u‖ =
(∫

Ω u
2 + ‖∇u‖2 dx

) 1
2 .

Later on, we will see two concrete choices of function spaces for this rather
abstract setting: the space of piecewise polynomials on a given simplicial or
cuboid mesh, which is also used in the classical FEM.
The Lax-Milgram theorem (cf. [14, Theorem 5.21]) ensures the existence of a

unique solution of the weak problem eq. (2.9).
Theorem 1 (Lax-Milgram). Let V be a Hilbert space, a ∈ L(V × V ;R) and
l ∈ V ′. Then Problem eq. (2.9) is well-posed provided a is coercive (or elliptic),
i.e. it satisfies the condition

∃α > 0, ∀u ∈ V : a(u, u) ≥ α‖u‖2.

Moreover, the following a-priori estimate holds:

∀l ∈ V ′ : ‖u‖V ≤
1

α
‖l‖V ′ .

A direct proof can be found in [24]. An alternative is to reduce the Lax-Milgram
theorem to the Banach-Nečas-Babuška theorem [14, Theorem 5.2.1], which is
more general and only requires V to be a Banach space, not necessarily a Hilbert
space. The ellipticity of a implies that the corresponding operator A in eq. (2.10)
is invertible.

2.2.2.3 The Continuous Galerkin Method

To obtain finite-dimensional functions for the representation of solutions, we need
a corresponding function space Vh. The subscript h of Vh refers to the mesh size,
indicating that it is a finite subspace living on a certain mesh. An appropriate
choice of Vh will satisfy

inf
uh∈Vh

‖u− uh‖ → 0 as h→ 0 ,
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such that for small mesh sizes h, uh comes arbitrarily close to the function u
living on the original space V . We then pick trial or ansatz functions which form
a basis of the underlying function space Vh, such that every function uh can be
represented as a linear combination of the ansatz functions.
There are two principal variants for the choice of ansatz functions: in the

continuous Galerkin (cG) method they are defined to be globally continuous,
i.e. there are no jumps at element boundaries. The discontinuous Galerkin
(dG) method, which we will not cover here, allows the ansatz functions to be
discontinuous at element boundaries, making them especially useful for PDEs
which themselves have discontinuous solutions, like the transport eq. (2.4) with
an initial step condition.
Both variants need a second function space Wh for the test functions. In the

classical Galerkin method, the spaces for ansatz and test functions are the same,
Vh = Wh. If Vh 6= Wh, we obtain the class of Petrov-Galerkin methods, which
will not be covered here.

Given a mesh T , the abstract cG method now reads as follows:

1. Obtain the weak formulation of the PDE by integration and multiplication
with test functions v.

2. Choose a suitable function space Vh for the ansatz functions on T , e.g. the
space of piecewise polynomials of degree k, Pk(T ) / Qk(T ).

3. With the bilinear form a(u, v) and linear form l(v) from the weak formula-
tion, state the problem in the finite-dimensional subspace as

Find uh ∈ Vh : a(uh, v) = l(v) ∀v ∈ Vh. (2.11)

4. Find a basis of Vh

Φh = {ϕh1 , . . . , ϕhNh
}

of size Nh = dimVh.

5. As all function vh ∈ Vh can be represented as linear combinations of elements
of Φh, it is sufficient to use these instead of all test functions v in eq. (2.11).
Utilizing this and inserting the basis representation

uh =

Nh∑
j=1

zjϕ
h
j
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yields a linear system of equations

a(uh, v) = l(v) ∀v ∈ Vh

⇔ a

 Nh∑
j=1

zjϕ
h
j , ϕ

h
j

 = l(ϕhi ) ∀i = 1, . . . , Nh

⇔
Nh∑
j=1

zja(ϕhj , ϕ
h
j ) = l(ϕhi )

⇔ Az = b (A)ij = a(ϕhj , ϕ
h
i ), (b)i = l(ϕhi )

for the coefficient vector z ∈ RNh .

6. Solve the linear system by an appropriate linear solver.

Note how the discrete version eq. (2.11) of the weak problem formulation eq. (2.9)
has been reduced to a linear system of equations, representing a discrete version
of the operator formulation eq. (2.10).

2.2.2.4 Galerkin Orthogonality

We have just seen that Galerkin’s method can be used successfully to solve a
linear PDE in a finite-dimensional subspace. The question remains: why is this a
good strategy? In particular, what does the multiplication with test functions
and integration over the domain mean for this problem?

To understand this, let us again have a look at our Poisson example eq. (2.2).
The residual for this equation reads R(u) = ∆u− f , which is to be minimized by
the Galerkin method. Rearranging eq. (2.7) yields∫

Ω
(∆u− f)v dx =

∫
Ω
R(u)v dx = 0 . (2.12)

Fulfilling this relation with a discrete function uh for every v ∈ Vh means that the
residual is orthogonal to every test function v, as can be seen when expressing
eq. (2.12) in terms of the L2 scalar product1,

〈R(uh), v〉 = 0 ∀v ∈ Vh . (2.13)

1This is completely analogous to the vector space of real numbers, where two vectors are
orthogonal if their scalar product vanishes.
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For the weak solution, eq. (2.12) takes the slightly different form

−
∫

Ω
(∇uh · ∇v + fv) dx = 0 ∀v ∈ Vh , (2.14)

or, more generally, for the abstract Galerkin problem eq. (2.11),

r(uh, v) = a(uh, v)− l(v) = 0 ∀v ∈ Vh . (2.15)

The approximation error u− uh therefore fulfills

r(u− uh, v) = r(u, v)− r(uh, v) = a(u, v)− l(v)− (a(uh, v)− l(v))

= a(u, v)− a(uh, v) = a(u− uh, v) = 0 ∀v ∈ Vh .

This property is called the Galerkin orthogonality of the error u − uh with
respect to the bilinear form a. Since, after a choice of the space Vh, we are only
interested in the errors that are actually representable in Vh, a solution whose
error is orthogonal to all functions in the test space is optimal in this sense. The
orthogonal part of the error can simply not be captured in Vh and therefore we
have found the best solution available in Vh.

Another view on this problem is related to the L2 norm ‖u‖ =
√
〈u, u〉 induced

by the scalar product. By demanding the orthogonality of the residual, Galerkin’s
method actually calculates the L2 projection uh of the function u into the finite-
dimensional subspace Vh, which is known to give the best approximation in the
L2 norm [39, chapter 5.6].

2.2.2.5 Common Function Spaces

Now that we are convinced that Galerkin’s method gives an optimal solution in
a chosen function space Vh, we briefly mention two common choices for Vh for
simplicial and cuboid grids.

Pk Finite Elements The standard choice of ansatz and test functions are
polynomials. If we denote the space of polynomials of degree at most k in n space
dimensions as

Pnk = {u ∈ C∞(Rn) : u(x) =
∑

0≤|α|≤k

cαx
α} , (2.16)
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we can use the finite element space

Pk(T ) = {u ∈ C0(Ω) : u|t ∈ Pnk ∀t ∈ T } . (2.17)

on a conforming simplicial mesh (e.g. triangles, tetrahedra).

Qk Finite Elements For cuboid meshes (rectangles, cubes/hexahedra), the
space of polynomials of degree at most k is defined slightly differently as

Qn
k = {u ∈ C∞(Rn) : u(x) =

∑
0≤|α|∞≤k

cαx
α} (2.18)

with |α|∞ = maxi αi, αi ∈ N0 and dimQn
k = (k + 1)n. If all cubes in the mesh

T are axi-parallel, the space

Qk(T ) = {u ∈ C0(Ω) : u|t ∈ Qk ∀t ∈ T } (2.19)

can be defined analogous to the simplex meshes. This finite element space will
be used throughout this document with the choice of k = 1, i.e. it is a subspace
of the Sobolev space H1. The method of finding a suitable basis for this space is
covered in [14, chapter 7.5].

2.2.3 Nonlinear PDEs: Newton’s Method

So far, we have only considered linear PDEs. But in practice, one often has
to deal with nonlinear equations. Since the abstract existence theorems (Lax-
Milgram, Banach-Nečas-Babuška) only hold for linear PDEs, the well-posedness
of a nonlinear PDE has to be shown by other means, often on a case-by-case
basis. There does not exist a general theory for the solvability of general PDEs,
and it is commonly believed unlikely that such a general theory exists.

Assuming a unique solution exists, the generalization of the numerical solution
of such problems by the FEM is quite straightforward, as the nonlinear operator
can be linearized by Newton’s method and embedded into an iterative procedure.
Here we use the damped Newton method, see e.g. [34].
Given the initial guess u0, compute r0 = R(u0). Set k = 0 and iterate until

convergence:

1. Compute Jacobian matrix Ak = ∇R(uk).

2. Solve Akzk = rk with some linear solver.
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3. Update uk+1 = uk − σkzk, σk ∈ (0, 1].

4. Compute the new residual rk+1 = R(uk+1).

5. Set k = k + 1.

The residual R(u) contains entries a(uh, vh)− l(vh) from our weak form Galerkin
approximation in residual form. Additionally, the Jacobian ∇R(u), the derivative
of the residual with respect to all elements of u, is needed. This can either be
obtained by providing an analytical derivative of the operator L beforehand or by
using numerical differentiation. For the choice of the damping factor σ, one can
for instance use a line search strategy that tries to minimize the residual along
the search direction z.

Note that for a linear operator L, R(u) = Au− b and thus ∇R(u) = A. In this
case, the Newton method will simply solve the linear system and converge in one
iteration.

2.2.4 Time Discretization

The theory of ODEs [49, 50] has produced a vast amount of time-stepping schemes,
which is impossible to cover here. Instead, we will look at the Euler methods as
representatives of the two major classes of methods.
Suppose the initial value problem to be solved is

y′(t) = f(t, y(t)), y(t0) = y0 ,

where we can think of y(t) as our solution of the FEM solution of our PDE at
a certain time t. Suppose now as above the time interval has been discretized
at NT time points ti ∈ Σ, i = 0, . . . , NT − 1 with time intervals ∆ti = ti+1 − ti,
i = 0, . . . , NT − 2.
The explicit Euler (or forward Euler) reads

yi+1 = yi + ∆tif(ti, yi), i = 0, . . . , NT − 2 . (2.20)

It is a representative of the explicit time-stepping methods, as the right-hand
side only depends on quantities from the previous iterations.
Its antagonist is the implicit Euler (or backward Euler) method

yi+1 = yi + ∆tif(ti+1, yi+1), i = 0, . . . , NT − 2 , (2.21)

representing an implicit method, as the right-hand side depends on values that
are not known yet. In general, implicit schemes require the solution of a linear
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system of equations in each time step and hence tend to be more expensive.
However, they possess better stability properties that in many cases allow the
usage of larger time steps ∆ti.
Both methods in eqs. (2.20) and (2.21) are of first order accuracy, meaning

that the error of this method scales with O(∆ti).

2.2.5 Linear Solvers

As seen in the previous sections, the numerical solution of a PDE in the end
is always reduced to the solution of a linear system of equations. The variety
of methods for this kind of problem is overwhelming, ranging from the direct
solution by Gauß elimination with a complexity of O(n3) to very sophisticated
sparse iterative solvers [88] and parallel multigrid methods [10] with an optimal
complexity of O(n). A comprehensive list of methods is beyond the scope of this
thesis, and since the choice of a suitable solver is highly problem-specific, we will
defer this topic to the relevant chapters.

2.3 Fundamentals of Biophysics and Neuroscience

2.3.1 Structure and Function of Neurons

A neuron – see fig. 2.1 for an illustration – can be structurally divided into three
parts: The soma containing the nucleus as the center of a neuron is the largest
part. Multiple dendrites branch off from the soma, creating the dendritic tree,
which receives its input at synapses, the connections to other neurons. The third
part is the axon, which is a fiber that is often thinner than the dendrites, but
nevertheless can show quite complex branching as well. A neuron always has one
and only one axon.

Apart from this common property, axons can show a wide range of variations
among neurons. They may or may not be myelinated as in fig. 2.1, i.e. insulated
by a myelin sheath that is provided by a surrounding cell. In this case, the nodes
of Ranvier provide periodical segments exposing the underlying axon directly
to the extracellular space (ES). The nodes usually contain a high density of ion
channels, which provide for an active propagation of a traveling action potential
by means of transmembrane currents that keep the AP alive.

Between the nodes, at myelinated parts (or internodes), the signal propagates
passively, but significantly faster than in unmyelinated fibers, since virtually no
charge is lost across the myelinated membrane. The established view is that axons
are one-way paths, i.e. signals are always propagated away from the cell soma
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Figure 2.1: Illustration of a typical neuron. By LadyofHats [Public domain],
via Wikimedia Commons

towards other cells in an orthodromic fashion, although there have been some
hints that also antidromic propagation in the opposite direction may happen
under physiological conditions [7].
Figuratively (and keeping with the author’s favorite metaphor of electronic

devices), one can think of the dendrites as the neuron’s antennae collecting input
from other neurons, while the axon is the output channel. Action potentials are
generated at the axon initial segment close to the soma, and propagate down the
axonal arbor, where they will eventually stimulate other neurons (see fig. 2.2).
Stimulations of this kind, however, do not always have to be excitatory, that

is driving the target neuron to fire another action potential, but they may also
have an inhibitory effect, i.e. preventing the target neuron from firing. This
depends on whether the synapse transmitting the signal between two neurons –
or more specifically, the neurotransmitters it uses as a messenger – has excitatory
or inhibitory character. This is important, since an over-excitation can lead to
pathological situations in the brain, one extreme example being epilepsy. The
balance of excitation and inhibition is crucial for a functional brain.
The question remains how the elementary unit of information, the action

potential, is generated. As mentioned above, the axon plays the leading role in this
process. It turns out that nature takes advantage of elementary electrodynamics,
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Figure 2.2: Neuronal signaling mechanisms. By Looie496 created file, US
National Institutes of Health, National Institute on Aging created
original [Public domain], via Wikimedia Commons

using ions as charge carriers and the axonal membrane as an electric circuit. In
the following, some basic properties of passive membranes will be touched, before
we turn to the active parts of the membrane, the ion channels.

2.3.2 Membrane Physics

A biological membrane of finite thickness dmemb and an electric permittivity εmemb
has some important electric properties with influence on the two electrolytes it
separates. In the following, we will only consider the case where the electrolytes
on both sides of the membrane have the same solvent, water. Therefore, the
electrolyte permittivity εelec is a single value, and the only difference between
both sides is the ion concentration. For the two electrolytes, the terms cytosol
and extracellular space will be used hereafter, often abbreviated as CY or ES in
sub- or superscripts, respectively.
A schematic depiction of the membrane and one adjacent electrolyte is given

in fig. 2.3. We see that the (electrically charged) membrane attracts oppositely
charged counterions and repels equally charged co-ions. As a consequence,
an electric double layer (EDL) forms: one layer of counterions directly at the
membrane, and another layer of co-ions, which is attracted by the counterion layer.
Several names are linked with the theory of electric double layers. Helmholtz
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[51] was the first to realize that such an EDL has the capacity to store electric
charges and therefore acts as a capacitor. Gouy and Chapman [46, 28] noted
that this capacitance depends on the applied membrane voltage and the ionic
concentrations; they were also the first to find that the ion concentrations decrease
exponentially with distance from the membrane, which can be described by
Maxwell-Boltzmann statistics. This added a diffuse layer to the Helmholtz layer
of fixed charges directly at the membrane interface. Further improvements were
made by Stern [93] and others, resulting in a quite complex theory of different
layers and their interactions.
A very good summary of the theoretical background is given in [67, chapter

12]. One central equation describing the potential profile in the presence of a
membrane is the Poisson-Boltzmann equation.

Figure 2.3: Schematic picture of a membrane and electrolyte. By Elcap
(Own work) [CC0], via Wikimedia Commons

2.3.2.1 Poisson-Boltzmann Equation

The Poisson-Boltzmann equation

∇ · (ε∇φ) = − e2n∗

ε0kBT

∑
i

zin
0
i exp(−ziφ) (2.22)

is a special case of the Poisson equation. Here, φ is the dimensionless relative
electric potential energy with respect to the thermal energy (φ = eU/kBT with U
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given in units of volts; at room temperature, φ = 1 corresponds to U ≈ 25mV); ε
is the relative permittivity, which again may be position-dependent, and T is the
temperature of the solvent. The remaining constants are the vacuum permittivity
ε0, the Boltzmann constant kB, and the elementary charge e.

In comparison to eq. (2.2), the charge density on the right-hand side has been
replaced by a Boltzmann distribution for the ion concentrations at equilibrium

ni = n0
i exp(−ziφ) (2.23)

due to a certain potential that has been established at the membrane. Here, ni
denotes the concentration of species i with valence zi and bulk concentration n0

i .

The equation basically describes how a charged membrane in an ionic solution
causes accumulation of counterions, i.e. ions with opposite charge with respect to
the membrane charge. This membrane charge could be some surface charge of a
biomolecule or, as in this work, the charge due to ions on the other side of the
membrane. In either case, the potential profile will cause a charge density profile
with opposite sign, as counterions are attracted and co-ions are repelled from the
membrane with a certain charge. As a consequence, the previously described EDL
of two oppositely charged regions forms at the boundary between membrane and
electrolyte. Figure 2.3 shows a typical potential profile as described by eq. (2.22).

The Poisson-Boltzmann equation proves useful to test a numerical algorithm,
as the calculated equilibrium charge density can be compared with the analytical
expression eq. (2.23).

2.3.2.2 Debye-Hückel Theory

For monovalent solutions and small surface potentials (< 25mV according to
[67]), eq. (2.22) can be linearized to the Debye-Hückel equation [32]

∇2φ =
1

γ2
D

φ , (2.24)

where

γD =

√
εelecε0kBT

e22 IS
(2.25)
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is called the Debye length. This is an important property of an electrolyte which
is inversely proportional to the square root of the ionic strength

IS =
∑
i

1

2
niz

2
i . (2.26)

The Debye length is a characteristic spatial scale over which electrostatic inter-
actions close to the membrane are screened (i.e., decaying) exponentially. It
therefore gives a measure on the distance over which the membrane influences
the electric field to a large degree.

For strong electrolytes, γD is small. However, for electrolytes of lower concen-
tration, the Debye length is larger and has a significant effect in a larger range
around the membrane. A common term for this vicinity is the Debye layer, the
region of up to a few Debye lengths. Here, we will define the Debye layer to be
10 times the Debye length. Outside the Debye layer one can safely assume that
concentrations have decayed to their bulk values, such that membrane effects do
not play a role.

2.3.3 Ion Channels

It is obvious that a simple solid membrane will not be sufficient to yield some
kind of excitation. After the previous demonstrations, we know that the Debye
layer experiences an accumulation of ions towards the membrane. Hence, we
can think of the membrane as a capacitance separating charges present on the
two adjacent electrolytes. In order to allow charge carriers to actually cross the
membrane, we now introduce ion channels in the membrane.

With this, the neuronal membrane can be adequately described by an equivalent
circuit as in fig. 2.4, consisting of a capacitance in parallel with a conductance
and a battery. The conductance now represents one out of the multitude of ion
channels that exist in biological membranes, allowing for a current to establish
between intra- and extracellular space. The battery here stands for the reversal
potential of the ion channel. We will now have a look at the most important
channel types responsible for the action potential generation.

2.3.3.1 Leak Channels

The simplest kind of ion channels are leak channels, which have a constant
conductance gL. These play an important role for the resting state of a neuron.
The current flowing through channels of this type will depend on the concentration
gradient ∇ni and the potential gradient ∇φ between both sides of the membrane
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V

Cm

EL

gL

Figure 2.4: Equivalent circuit for a patch of membrane. A patch of mem-
brane can be represented by a capacitance Cm in parallel with a series
of a leak conductance gL and a battery EL representing the (Nernst)
reversal potential.

(cf. [17]). For one ion species, Nernst’s Equation is very successful in predicting
the reversal potential

E =
RT

zF
ln
nES

nCY (2.27)

of a leak channel that is selective for a certain ion. Here, R denotes the gas
constant and F the Faraday constant. The Goldman-Hodgkin-Katz (GHK) or
simply Goldman equation extends this to the case of multiple monovalent species,
reading

E =
RT

F
ln

∑N
i PM+

i
[M+

i ]ES +
∑M

j PA−j
[A−j ]CY∑N

i PM+
i

[M+
i ]CY +

∑M
j PA−j

[A−j ]ES

 , (2.28)

with [M+
i ] and [A−i ] denoting cation and anion concentrations, respectively, and

Pi being the relative permeability of the membrane for ion species i. E gives the
resting potential of a neuron with respect to extracellular space.

The Goldman equation makes some assumptions about the intrinsics of the
ion channel: first of all, it assumes a constant electric field (i.e., a linear potential
drop) over the membrane; secondly, all ions cross the membrane independently,
so there is no interaction between them. It is clear that we need the (relative)
permeabilities of the membrane for all considered ion species in order to predict the
resting potential in this way. In practice, permeabilities are not as easily available
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as conductances, although the quantities are related. However, a conductance as
a purely electric property can readily be obtained from a direct membrane current
measurement by Ohm’s law, while this proves more difficult for permeabilities,
which is a chemical property of the ions involving the diffusion coefficient and
the water-membrane partition coefficient.

When dealing with conductances, one can instead use the parallel conductance
model (PCM) [106], which simply uses Ohm’s and Kirchhoff’s laws applied to
an equivalent circuit of the form in fig. 2.4 with multiple leak conductances in
parallel, one for each ion species. Requiring the net membrane flux to be zero at
equilibrium, we get the simple relation

E =

∑N
i giEi∑N
i gi

(2.29)

with the leak conductances gi and corresponding reversal potentials Ei as cal-
culated by eq. (2.27) for each ion species separately. It is easy to see that this
reduces to the Nernst eq. (2.27) for a single species.
When dealing with equations that calculate the resting potential of neurons

due to the concentrations of certain ions on both sides of the membrane, it is
important to note that all of these are based on certain assumptions that might
or might not be true in the specific case:

One might ask why the voltage equation is so hard to derive and
so closely tied to minute assumptions when the analogous Nernst
equation is so simple to obtain [...] and so general. The contrast
is typical of the difference between equilibrium and nonequilibrium
problems. The Nernst equation describes a true equilibrium situation
and can therefore be derived from thermodynamics as a necessary
relation between electrical and “concentration” free energies with no
reference to structure or mechanism. On the other hand, the zero-
current voltage equation represents a dissipative steady state. [...]
Only the sum of charges moving is zero. The reversal potential is
not a thermodynamic equilibrium potential. Such nonequilibrium
problems often can make little use of thermodynamics and require
empirical relationships closely tied to the structure and mechanism
of the flow. The assumptions are often simplistic and no more than
approximations. They are models. [52, p. 452]

With that in mind, it depends on the underlying model whether eq. (2.28) or
eq. (2.29) is adequate to calculate the resting potential E. In practice, it also
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depends on the availability of parameters, i.e. whether we think in terms of
permeabilities or conductances. In the following, we will take the electrical
engineer’s point of view, and look at the membrane in terms of conductances and
equivalent circuits.
Leak channels are also called passive channels, in contrast to active channels,

whose conductance changes in time, depending on the membrane potential or the
concentrations of certain compounds. We will restrict ourselves to the voltage-
dependent ones, whose dynamic properties were described in the seminal work
by Hodgkin and Huxley.

2.3.3.2 The Hodgkin-Huxley System of Membrane Excitation

V

Cm

ENa

gNav

EK

gKv

EL

gL

Figure 2.5: Equivalent circuit for the Hodgkin-Huxley membrane patch
model. It consists of a membrane capacitance Cm in parallel with
three branches, each consisting of a series of conductance and battery,
representing the ionic current and reversal potentials, respectively.
Note that the voltage-gated conductance are dynamic, while the leak
conductance does not change over time. Reversal potentials of sodium
(ENa) and potassium (EK) have opposite sign.

Hodgkin and Huxley [55] studied ion channel kinetics in the squid giant axon,
a fiber that can be up to 1mm in diameter, providing a very accessible way for
electrophysiologic measurements. They considered only three ion channel types:
two voltage-dependent channels selective for sodium (Na+) and potassium (K+),
respectively, and one (virtual) leak channel. This results in the electric circuit
of fig. 2.5 with three different conductances gL, gNav and gKv with associated
currents IL, INa and IK. We largely follow [65] for the rest of this section.
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Using Kirchhoff’s current law for a parallel circuit, the equation for the current
reads

Cm
∂V

∂t
= IL + INa + IK + Iinj , (2.30)

where V is the membrane potential and Cm is the membrane capacitance re-
sponsible for the capacitive current. Iinj stands for the injected current or, more
generally, any current source contributing to the potential on the intracellular
side of the membrane. The ionic currents can be expanded to

IL = gL(EL − V ) (2.31)
INa = gNav(ENa − V ) (2.32)
IK = gKv(EK − V ) , (2.33)

where Ei denotes the reversal potential of the ion channel i, as can be calculated
by eq. (2.27). When the channel is permeable to more than one ion species – as
the single leak channel above – its reversal potential is usually calculated using
eq. (2.28) or eq. (2.29).

The constant leak conductance gL is the inverse of the membrane resistance.
It is very common to express the electric quantities in terms of unit length or
unit area, since the measured values are often only available as densities. The
membrane resistance then becomes a resistivity rL = RLπr

2 with the radius of
the neurite r in cm, yielding the unit Ω cm2. Analogously, the capacitance cm
per unit area in units F/cm2 can be used instead of the total capacitance Cm.

The conductances above can also be expressed in terms of conductivities
(commonly in units mS/cm2), and the currents change to current densities, which
need to be multiplied by the membrane area to get an absolute current.

The remaining active channel conductances gi(V, t) are defined as

gNav = ḡNavm
3h (2.34a)

gKv = ḡKvn
4 , (2.34b)

where m,h, n are time- and voltage-dependent gating particles – taking values
from the interval [0, 1] – for the sodium activation, sodium inactivation, and
potassium activation, respectively. In combination they state which fraction of
the maximum conductance ḡi of channel i is open. It is notable that the concept
of gating particles is a purely theoretical one, i.e. there is no direct physical
equivalent in the chemical structure of an ion channel.
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The kinetics of gating particles are given by the ODEs

dn

dt
= αn(V )(1− n)− βn(V )n (2.35a)

dm

dt
= αm(V )(1−m)− βm(V )m (2.35b)

dh

dt
= αh(V )(1− h)− βh(V )h (2.35c)

with corresponding rate functions

αn(V ) = cT 0.01 vtrap(10− (V − Vrest), 10)

βn(V ) = cT 0.125e−(V−Vrest)/80

αm(V ) = cT 0.1 vtrap(25− (V − Vrest), 10)

βm(V ) = cT 4e−(V−Vrest)/18

αh(V ) = cT 0.07e−(V−Vrest)/20

βh(V ) = cT
1

e(30−(V−Vrest))/10 + 1
,

which were slightly adapted to account for temperature dependence by a factor

cT = 3
T−6.3

10

and zeros in the denominator of rate functions by a function vtrap as used in
NEURON [27]:

vtrap(x, y) =

{
x

ex/y−1
x/y 6= 0

y(1− x
2y ) else .

This completes the description of the Hodgkin-Huxley (HH) model. It has since
been modified to include arbitrary ion channel types in addition to the ones
present in the original model by defining rate functions, gating particle kinetics
and maximum conductances for each added channel, yielding one additional
current in eq. (2.30). Adding dependence on the concentration of a certain ion
or molecule is straightforward, given a good model for the time-evolution of
concentrations is available. Models that follow the basic scheme of the original
HH are called HH-type models and are probably the most successful ones in
modeling membrane excitation.
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2.3.4 Cable Equation

It is important to note that the HH model in section 2.3.3.2 only represents a single
patch of axon, as there is no spatial dependence. This corresponds to reducing
the neuron to a point in space. In the real world, however, neurons can show quite
complex morphologies, and channel types and densities can vary significantly
across different parts of the neuron. In search of a mathematical model for this,
neuroscientists have rediscovered cable theory – originally developed to study
signal decay in underwater telegraphic cables by Lord Kelvin – to describe the
potential spread in complicated neuronal morphologies (cf. e.g. [84]). The cable
equation reads

1

Ra(x)

∂2V

∂x2
= Cm(x)

∂V

∂t
− Imemb(x) (2.37)

with the axial (cytosol) resistivity Ra and the membrane capacitance Cm (see
the schematic equivalent circuit in fig. 2.6). As in the case of the HH model,
quantities may be expressed per unit length. In any case, Ra(x) and Cm(x) are
depending on the position-dependent radius r(x) of the neurite.

Cm

EL

gL

Ra

Cm

EL

gL

Ra

Cm

EL

gL

Ra Ra

V

Figure 2.6: Equivalent circuit for a spatially extended neuronal mem-
brane. Multiple (in this case passive) membrane patches are con-
nected through axial resistances Ra, which in general are position-
dependent.

This equation is a one-dimensional parabolic diffusion-reaction PDE and essen-
tially describes the potential propagation as a transient diffusive process along a
cylinder of varying radii, where the signal velocity depends on cytosol resistivity
Ra (and implicitly also the fiber diameter d = 2r(x)). The right-hand side
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corresponds to the HH eq. (2.30), where all trans-membrane contributions to the
intracellular potential are lumped together into a single term Imemb(x).

The cable equation has been very successful for modeling excitation of spatially
extended neurons, and the simulation program NEURON [53] is the de-facto
standard among neuroscientists.

2.3.5 Extracellular Space

So far we have only seen models of (parts of) the neuronal membrane and the signal
propagation within neurons. What is missing in these models is the extracellular
space. This is an important structure, as large amount of experimental data today
is obtained by extracellular measurements. From the theoretical point of view, it
is therefore desirable to have a suitable model of how signals are transmitted in
extracellular space.
One more note on the wording. In the literature, the term LFP is used with

slightly different meanings, apart from the fact that it is poorly named anyway.
In the most general sense, it describes the potential time course obtained at a
single point in extracellular space as a superposition of potential contributions
stemming from a number of surrounding neurons. In most experimental contexts,
however, the term describes an already low-pass filtered signal, which does not
contain any fast components like those from action potentials. For the latter, the
term extracellular action potential (EAP) has found its way into the terminology.
It should be noted that in the following, when the term LFP is used, we denote
with this the unfiltered potential at any point in space, regardless of the number
of contributing cells (in the present case, only one or two). Since we only consider
axonal membrane currents following an AP as contributions, it should be clear
that this is essentially synonymous to an EAP in the absence of any synaptic
currents or contributions by other cells, in contrast to the common usage.

2.3.5.1 Volume Conductor Theory

The field of volume conductor theory deals with the propagation of electric
and magnetic fields within volume conductors like the brain [81]. It therefore
provides a model of the extracellular space, without explicitly representing its
complex geometry. Instead, it is characterized as a homogeneous medium with
an effective conductivity σ. It is based on the quasi-static approximation of
Maxwell’s equations by neglecting the influence of magnetic fields on the electric
field and the existence of any free charges in the medium. The electromagnetic
part can be neglected by estimating its effect in the relevant frequency range and
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finding that it is orders of magnitude smaller than the electrostatic contributions.
When the timescales for the balancing of free charge in the medium are compared
with the timescales of neural excitation, the former is found to happen so fast it
can be regarded as instantaneous, see [2] for an in-depth derivation. This results
in a Laplace equation

∆φ = 0 in Ω (2.38)
φ = g on ΓD

σ∇φ · n = j on ΓN

for the potential due to current densities j at the cell boundary and a given con-
ductivity σ of the extracellular medium. This equation is dual to the electrostatic
equation

∆φ = 0 in Ω (2.39)
φ = g on ΓD

ε∇φ · n = f on ΓN

due to a boundary charge density f and an electric permittivity ε of the medium.
Note that both equations have a homogeneous right-hand side by the absence of
any free charges in the medium.

Interestingly, eq. (2.38) uses current sources, which are inherently time-dependent.
It therefore provides a stationary state for the extracellular potential which will
establish given the conductivity of the medium. Following the above reasoning
that this process happens instantaneously, the equation takes the same form
as eq. (2.39), predicting an immediate potential response due to a given charge
density.

2.3.5.2 Line Source Approximation

The line source approximation introduced in [57] is an analytical solution to the
volume conductor eq. (2.38) under a certain geometry approximation, namely,
the finite thickness of the neuron fibers is neglected and collapsed to a line. It is
widely used as an effective model to compute the extracellular potential at any
point in space, using only the values of the membrane currents at a finite number
of line segments.
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The equation for a point (r, h) due to a single line source j reads

Φj(r, h) =
ρIj

4π∆s
log

∣∣∣∣∣
√
h2 + r2 − h√
l2 + r2 − l

∣∣∣∣∣ , (2.40)

where Ij is the total transmembrane current of line j, r is the radial distance
from the line of length ∆s, h is the longitudinal distance from the end of the line,
and l = ∆s+ h is the distance from the start of the line. The parameter ρ = 1

σ
describes the resistivity of the extracellular medium. The complete extracellular
potential Φ at any point (r, h) of a neuron morphology consisting of a number
M of connected lines is then simply given by the superposition of all line source
potentials:

Φ(r, h) =

M∑
j=1

Φj(r, h) . (2.41)

This model is very convenient especially when using cable equation models
based on a line segment approximation of the original neuron geometry, since all
necessary data is readily available and the only free parameter is ρ. Note also
that – in contrast to a numerical solution of eq. (2.38) – the LSA eq. (2.40) does
not need to specify any boundary conditions next to the membrane currents, as
it implicitly fulfills a potential of zero at infinity.

2.3.5.3 The Poisson-Nernst-Planck Equations of Electrodiffusion

The most general approach to model a neuron and the surrounding space is
to consider the – in the true sense of the word – atomic computation unit of
the brain: the ion. In contrast to the approach of volume conductor theory in
section 2.3.5.1, free charges are not neglected, but modeled explicitly through ion
concentrations.
A suitable model for the movement of ions in a static solvent considers both

chemical diffusion (due to a concentration gradient) and electrostatic drift (at-
traction/repulsion due to a potential gradient), often summarized by the term
electrodiffusion.

This is described by the Nernst-Planck equation

∂ni
∂t

+∇ · Fi = 0 (2.42a)
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with the ion flux

Fi = −Di (∇ni + zini∇φ) , (2.42b)

where ni, i = 1, . . . , N are defined as relative concentrations (with respect to a
scaling concentration n∗ = NA, the Avogadro constant) with units mM for the N
different ion species, zi (as before) is the valence and Di the (position-dependent)
diffusion coefficient of ion species i. Together with the Poisson equation for the
electric potential

∇ · (ε∇φ) = − e2n∗

ε0kBT

∑
i

zini , (2.43)

this constitutes the PNP system.

Equation (2.42) is of convection-diffusion type and describes the time-dependent
change in concentrations due to diffusion and drift through an electrical field,
while the elliptic eq. (2.43) gives the electric potential φ at any point in space.
We can see that each PDE is linear in its primary variable, but together the
system is nonlinear due to the coupling.

Neglecting the finite ion size and representing the ion concentrations as contin-
uous variables in a mean-field approach was found to be valid [67], as the typical
size of an ion (about 1Å = 100 pm, the extent of the Stern layer) is one order of
magnitude smaller than the smallest relevant spatial scales (Debye length, about
1 nm for typical ion concentrations in body fluids).

Let us finally spend a few words on the analysis of solutions for the general
3D PNP system. The majority of publications using the PNP system come from
the field of semiconductor analysis, although many of them also deal with the
electric fields inside ion channels and around biomolecules. [69] provides a good
starting point for this, as it gives a comprehensive overview over previous works
involving the PNP equations and also touches the topic of its mathematical
analysis. Existence and stability of solutions has been shown for the steady-
state case [60]; solutions are presumed not to be unique and it is assumed that
restrictions on the boundary conditions would have to be made for this to hold.

For the instationary case under closed-system boundary conditions, existence
and convergence to stationary solutions for long-time behavior could be shown [22].
In [38], the system is analyzed in the presence of permanent charges, explicitly
mentioning ion channels as one source. In [105], existence and uniqueness of
global weak solutions to the general drift-diffusion-Poisson system are shown in
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the presence of an additional reaction term; references therein treat this system
under various boundary conditions.

The literature is quite extensive, but we are not aware of a statement on the well-
posedness of the general problem eqs. (2.42) and (2.43) under arbitrary boundary
conditions, especially not for the model at hand – which will be introduced in
the following chapter – using two (intra- and extracellular) electrolytes separated
by a membrane with imposed nonlinear boundary flux conditions by the HH ion
channel model.

After this tour through different neuron models, we have now arrived at the
most general continuum model. On first sight, this system only describes ion
movements in electrolytes. We will see in the following chapter how to include
the membrane and its ion channels into this framework in order to obtain a very
detailed electrodiffusion model of a neuron and its surrounding.
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3 General Model of an Axon in
Extracellular Space

Numerik ist ein sehr schmutziges Geschäft.

(Hans-Peter Gail)

The model considered throughout this work will deal exclusively with the axonal
part of the neuron. We first mention the governing equations and their boundary
conditions, then the numerical methods used to solve those equations in an
efficient and accurate way are presented. This chapter is largely based on an
edited version of [82].

3.1 General Remarks

In section 1.3, we mentioned the basic assumptions most cable equations models
are based on today. Half of those can be dropped when using the PNP equations
of electrodiffusion.

We do not neglect changes in the radial direction (1), nor do we regard the
extracellular space as isopotential (2). Most importantly, we explicitly represent
the concentrations as primary variables, which are allowed to change in space and
time, in contrast to assumption 6. Furthermore, we couple intra- and extracellular
space, such that the assumption of independence (7) can be discarded as well.

The remaining assumptions are supposed to hold, i.e. the validity of the mean-
field approach that allows us to represent all quantities as continuous variables
(4), neglecting magnetic fields (3) and the equivalent circuit assumption from the
HH model (8). Assumption 5, which states that the ES can be regarded as a
homogeneous medium, is not a necessary one in our model, as permittivity ε and
diffusion coefficients Di may in principle be position-dependent. However, we
chose these coefficients to be homogeneous and constant in all considered cases.
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3.2 A Simplified Axon Model in Cylindrical
Coordinates

As the solution of a full 3D system is computationally expensive, we exploit
the rotational symmetry of an idealized unbranched axon. By representing the
computational domain in cylinder coordinates and assuming there is no change
in angular direction, it can be reduced to two dimensions. This enables the
calculation of 3D results with a drastically reduced computational complexity.
For the numerical solution, the rectangular elements of the computational grid
will be treated as (hollow) cylinders, and the volumes and integration elements
will be calculated accordingly.

In the upper part of fig. 3.1, the cylinder geometry is shown with the two-
dimensional subset highlighted, constituting the effective computational domain.
The x-axis represents the domain’s symmetry axis in axial direction (usually
denoted h or z in cylinder coordinates), eliminating the angular coordinate θ from
the equations. The y-axis is usually denoted by r or ρ in cylinder coordinates
and stands for the radial direction. For historical reasons1 we will stick to the
variables x and y for the coordinate axes in the following.

The domain consists of three partitions: cytosol, membrane, and extracellular
space. Cytosol and extracellular space are electrolytes, yielding the electrolyte
domain Ωelec = ΩCY ∪ ΩES. It may contain an arbitrary number N of concen-
trations of different ion species. Here, however, we will restrict ourselves to the
minimal set of N = 3 monovalent species sodium (Na+), potassium (K+), and
chloride (Cl−). Sodium and potassium are needed for the ion channel dynamics
triggering an action potential; chloride is a representative of the anions needed
for electroneutrality in the bulk solution and does not cross the membrane in this
model.
The membrane domain Ωmemb separates the two parts of the electrolyte do-

main, therefore Ωelec is not connected. Ωelec and Ωmemb form a partition of the
computational domain: Ω̄ = Ω̄elec ∪ Ω̄memb.

3.3 PNP Equations and Boundary Conditions

This setup necessitates the introduction of additional boundary conditions on the
membrane-electrolyte-interface Γint – next to the obligatory boundary conditions
on the domain boundary Γext – such that the set of all boundary points is given

1Previous versions of this model were in 1D and plain 2D, with the coordinate axes named
accordingly.
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Figure 3.1: Two-dimensional computational domain for the cylinder-
symmetric axon model. The upper part shows the cylinder geom-
etry into which the 2D computational grid is embedded, assuming
continuous symmetry in the angular direction. In the lower part, the
domain boundary Γext is represented by solid lines, while the interior
(electrolyte-membrane) boundary Γint is plotted with dashed lines.
This divides the domain into three subdomains: the (non-connected)
electrolyte domain Ωelec = ΩCY ∪ ΩES consisting of two subdomains
and the separating membrane subdomain Ωmemb. The Debye layer
of ΩES close to the membrane is highlighted in gray, followed by
the nearfield and farfield parts. The lower boundary represents the
inner-cell symmetry axis. Note that this scheme is not to scale, as the
actual mesh sizes in y-direction differ by several orders of magnitude
between Debye layer and farfield, making the grid very anisotropic.
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by Γ = Γint ∪ Γext. To properly define the boundary conditions in this setup in a
general way, we first need to introduce a little bit of notation for the description
of the boundaries and their corresponding boundary condition types.

As can be seen in fig. 3.1, the exterior boundary Γext = Γbottom∪Γleft∪Γright∪
Γtop consists of four parts, and the interior boundary Γint = ΓCY ∪ ΓES of two
non-connected parts at either side of the membrane.

To increase the notational complexity even more, each of these boundary subsets
may again be a partition of two subsets for Dirichlet and Neumann conditions,
denoted schematically by subscripts Γ·,D and Γ·,N , respectively. Additionally,
the boundary condition type may be different for each equation of the PNP
system. In this context, however, it will not be necessary to distinguish between
individual concentrations; is is sufficient to have one set of boundaries for each
equation type, denoted by the addition of superscripts ΓP

·,· and ΓNP
·,· for Poisson

and Nernst-Planck equation, respectively.
In summary, we arrive at the final notation of a boundary in the schematic form

Γ
(E)
L,T , where L specifies the location of the boundary, T the boundary condition

type (D irichlet or N eumann), and E the equation for which it is defined (Poisson
or N ernst-P lanck).

With this notation of the boundaries, we now have the Nernst-Planck eq. (2.42)
defined on Ωelec with boundary conditions

Fi · n = j
(NP)
i on Γ (NP)

ext,N ∪ Γ
(NP)
int (3.1a)

ni = g
(NP)
i on Γ (NP)

ext,D (3.1b)

and the Poisson eq. (2.43) defined on the whole domain Ω with boundary condi-
tions

ε∇φ · n = j(P) on Γ (P)
ext,N (3.2a)

φ = g(P) on Γ (P)
ext,D , (3.2b)

where n denotes the unit outer normal vector. For consistency, of course, Γ (·)
ext,N ∪

Γ
(·)
ext,D = Γext holds for each equation. From eq. (3.1) we see that the internal

concentration boundary is always a Neumann boundary, as we want to describe
membrane fluxes, which are equivalent to the more commonly used term of
membrane currents by a constant factor ezn∗. For the external boundaries, any
combination of boundary conditions is possible in principle. Nevertheless, as the
solution of the Poisson eq. (2.43) is only defined up to a constant, we need at
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least one point with a Dirichlet condition in order to have a well-posed problem
with a unique solution.

One more word about the domains of eq. (2.42) and eq. (2.43), which are
obviously different: the Poisson equation is defined (and continuous) on the
whole domain, while the Nernst-Planck equation is only defined on the electrolyte
subdomain. This means that, for simplicity, we assume the membrane to be free
of charge carriers. (Fixed) membrane surface charges could easily be added as an
additional source term fP in the Poisson equation, but those are not considered
here.
For the Nernst-Planck equation, the precise locations of eqs. (3.1) and (3.2)

may be problem-dependent, but in most considered cases they will be the same.
Therefore, we give the definition that holds for the majority of setups hereafter;
if boundary conditions are defined differently, this will be explicitly stated in the
following. The general scheme reads

j
(NP)
i =

{
fmemb
i (ni, φ, t) on Γ (NP)

int

0 on Γ (NP)
ext,N = Γext \ Γtop

g
(NP)
i = n0

i on Γ (NP)
ext,D = Γtop

j(P) = 0 on Γ (P)
ext,N = Γext \ Γtop

g(P) = 0 on Γ (P)
ext,D = Γtop ,

where we call the constant n0
i the bulk concentration of species i. We can see

that in this general scheme the locations of Neumann and Dirichlet boundary
conditions match for Poisson and Nernst-Planck equations, respectively.

The membrane flux function fmemb
i is the heart of this model and will be defined

in the next section. The Dirichlet boundary conditions for the concentrations
g
(NP)
i on the upper exterior boundary model an infinite reservoir for each ion
species. The potential is clamped to zero at the upper extracellular boundary by
means of g(P), which introduces an error equal to the value of the real potential
value φ̂(ymax) calculated for an unrestricted domain, where the potential is 0 for
y →∞.

For a point charge on the membrane, this error would correspond to an absolute
shift at each point in the domain. As the potential of a point charge falls off
as 1

r in 3D, an increase of the domain size by a factor 100 will reduce the error
by a factor 1

100 . For a finite line charge (like in the present case of an active
membrane), this is only true if the radial distance is large compared to the length
of the line charge. Otherwise, the potential drop is a logarithmic function of the
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membrane distance (cf. LSA, e.g. in [45] and eq. (2.40)). In any case, increasing
the domain size in y-direction will reduce the error introduced by the upper
Dirichlet boundary. A sufficiently large domain size of ymax = 10mm was chosen
to account for this.
At the lower boundary, which represents the intracellular symmetry axis, the

potential gradient and ion fluxes are vanishing by the definition of j(NP)
i and j(P),

such that no boundary artifacts are introduced.

3.4 Derivation of the Membrane Flux

The most important part for the boundary conditions – and, as we will see later
on, the dynamics of the system as a whole – are the membrane currents. To
represent those, we use the HH system from section 2.3.3.2 in a slightly modified
form: the leak channel was split into two separate leak channels for Na+ and K+,
respectively. The corresponding conductances now read

gNa = gNav + gNaL (3.3)
gK = gKv + gKL

(3.4)
gCl = 0 , (3.5)

where the voltage-dependent parts gNav and gKv of the total conductances gNa
and gK are given in eq. (2.34a) as before. The leak parts gNaL and gKL

add up
to the total leak conductance of the original HH model,

gNaL + gKL
= gL .

The reason for splitting up the leak channel becomes apparent when we look
at the Goldman eq. (2.28): here, different permeabilities of the membrane for
different ion species determine the membrane potential, given the intra- and
extracellular bulk concentrations. When we now think in terms of HH-type ion
channels and, hence, in terms of conductances instead of permeabilities, the
PCM eq. (2.29) is the right choice for the membrane potential, using relative leak
conductances gNaL

gL
and gKL

gL
.

Whether we take the view of permeabilities (Goldman) or conductances (PCM),
it is the relative quantities of channels that matter. We need a means to express
these relative values in the model, since a single channel – as in the original HH
model – is not sufficient if we include concentrations explicitly.
For the definition of the membrane flux, each point x ∈ ΓCY on the cytosol-
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membrane interface is associated with a point µ(x) ∈ ΓES on the opposite
membrane-extracellular interface by a map µ(x) = x+ dmemb ·nCY, where dmemb
is the membrane thickness and nCY is the unit outer normal at x pointing in the
direction from cytosol to membrane. The values of potential and concentrations
evaluated at these points are called φCY = φ(x), nCY

i = ni(x), φES = φ(µ(x))
and nES

i = ni(µ(x)).

We now take the single Hodgkin-Huxley membrane current

Imemb
i = gi(φ, t)(JφK− E)

for the membrane potential JφK = φCY − φES and replace the constant battery
E by a variable concentration-dependent reversal potential calculated from the
Nernst eq. (2.27). After adding the necessary scaling factors to bring fmemb

i =
Imemb
i /ezn∗ to SI units mol/(m2 s), we obtain the concentration-, potential- and
time-dependent membrane flux fmemb

i of species i ∈ {Na,K},

fmemb
i (x) = fmemb

i (µ(x)) = gi(φ, t)
kT

e2z2n∗

(
zJφK + ln

nES
i

nCY
i

)
. (3.6)

Note that two opposite points on the membrane interface are identified with
each other here, i.e. the membrane thickness is essentially neglected. This is a
compulsory assumption with respect to the underlying membrane model, which
was replaced by an equivalent circuit by the HH model in fig. 2.5, where the
spatial extent of the membrane is inherently not represented.

But this is also reasonable from the physical point of view, as the membrane
thickness (in the range of a few nm) is so small that any delay from an ion
crossing the membrane can be neglected and considered instantaneous in view of
the governing AP time scales in the range of milliseconds. Of course, the Poisson
equation is not affected by this. The correct potential fall-off over the membrane
is respected, as its spatial extent is represented explicitly.

This interior boundary condition fits nicely into our framework, as it unifies
the potential-dependent HH system with the concentration-dependent Nernst
equation to arrive at an expression that represents all the features of the potential-
and concentration-dependent ion flux Fi of the PNP system. An equilibrium
state of this model is expected to satisfy the Nernst eq. (2.27) (for a single ion
species) or the PCM eq. (2.29) (for multiple species) for the potential as well
as the concentration distribution eq. (2.23) predicted by the Poisson-Boltzmann
eq. (2.22). This will be tested in chapter 5.
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3.5 Numerical Methods

3.5.1 Weak Form and Discretization

For the numerical solution of the PNP system as defined in section 2.3.5.3 and
with boundary conditions given in section 3.3, we use the finite element method
introduced in section 2.2 with piecewise linear, globally continuous Q1(T ) nodal
basis functions on an axi-parallel rectangular grid, as defined in section 2.2.2.5.
More specifically, the computational grid T will always be tensor grid, i.e. it

can be written as the Cartesian product of the two coordinate vectors, T = X×Y .
This allows for several optimizations in the numerical code, which turn out to be
beneficial for the computational efficiency.

For application of the FEM, we obtain the weak formulation in residual formu-
lation for each equation i, i = 1, . . . , N + 1 of the PNP system by multiplication
with test functions vi, integrating over the respective domain and applying in-
tegration by parts. We assume the vi have been chosen to fulfill the respective
Dirichlet boundary conditions g(NP)

i and g(P).
For the Nernst-Planck equation, the temporal part

RNP,T =

∫
Ωelec

∂ni
∂t

vi dx , i = 1, . . . , N (3.7a)

and the spatial part

RNP,S =

∫
Ωelec

Di (∇ni + zini∇φ) · ∇vi dx

+

∫
ΓN

jNPvi ds , i = 1, . . . , N (3.7b)

are combined yielding

RNP = RNP,T +RNP,S . (3.7c)

For the Poisson equation, we get

RP =

∫
Ω
−ε∇φ · ∇vN+1 +

(
e2n∗

ε0kT

∑
i

zini

)
vN+1 dx

+

∫
ΓN

jPvN+1 ds (3.8)
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and therefore the residual for the full system reads

R =

(
RNP

RP

)
. (3.9)

If we now denote the unknown function by u = (n1, . . . , nN , φ)T and the vector
of test functions by v = (v1, . . . , vN+1)T , the finite element problem according to
section 2.2.2.4 can be written as

Find u ∈ QN+1
1 (T ) : R = R(u, v) = 0 ∀v ∈ QN+1

1 (T ) . (3.10)

By applying the method of lines, each equation is discretized in space first by
representing the unknown functions ni and φ as well as the test functions vi by
Q1(T ) nodal basis functions on the tensor grid T , and then in time using the
implicit Euler time-stepping scheme from eq. (2.21).

3.5.1.1 Space Discretization

As suggested in fig. 3.1, the grid is refined toward the membrane in y-direction.
This is essential in order to resolve the Debye length, the characteristic length
scale over which the electrolyte ion concentrations deviate significantly from their
bulk values close to the membrane (see section 2.3.2.2).
In x-direction, the grid is allowed to be much coarser, as there is no Debye

layer to resolve. This results in a very anisotropic grid, especially at grid cells
close to the membrane with ratios of up to hx

hy
= 200 000 between mesh sizes in

x- and y-direction.
The cylinder symmetry introduces another subtle difficulty for the numerical

treatment of the system. Since the cell volumes increase super-linearly in positive
y-direction (roughly with y dy), the entries of the full residual R in eq. (3.9) differ
by several orders of magnitude (109 for a domain size of 10mm) solely by the
presence of volume integrals in the weak form of the equations. This imposes a
severe difficulty for the linear solver.

A threshold volume scaling strategy is applied to account for this: at a certain
distance from the membrane, a reference volume Vref is calculated. All entries of
the residual from an unknown at node i, where the corresponding volume Vi is
greater than Vref, are scaled by a factor Vref/Vi. Here, Vi is defined as the minimum
volume of all adjacent cells of node i. So we are essentially compensating for the
large cell volumes by scaling down those residual entries that stem from cells with
a volume larger than the threshold volume Vref. By choosing a certain threshold
volume Vref, we can exclude the cytosol, membrane and Debye layer cells close
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3 General Model of an Axon in Extracellular Space

to the membrane from this scaling procedure. These cells are comparably small
in volume, but contribute large entries to the residual because of the exhibited
gradients close to the membrane. Therefore, scaling these residual entries would
increase those already large entries, which is not desired. The threshold volume
is chosen such that only residual contributions from large volume elements in
more distant extracellular space are scaled down.
Mathematically, this corresponds to multiplying a diagonal matrix from the

left to the linear system, meaning that the same linear system is solved in each
Newton iteration. This scaling greatly improves the convergence properties of
the Newton algorithm for this cylinder geometry setup.

3.5.1.2 Time Discretization

The choice of the time-stepping scheme strongly depends on the Péclet number
(cf. eq. (2.6)), or, in the discrete case, the maximum cell Péclet number of the
Nernst-Planck eq. (2.42),

Peh,max = max
tk∈T

i∈1,...,N

∥∥∥∥hk · ωiDi

∥∥∥∥
∞

with mesh size vector hk =
(
hx
hy

)
and velocity vector ωi = Dizi∇φ evaluated on

each cell tk, respectively.
A value of Peh > 1 means the advective (hyperbolic) part of eq. (2.42) is

dominating, otherwise the equation is diffusion-dominated and it is more parabolic.
Usually, for Peh > 2, an explicit time-stepping scheme is used to account for
the advection-dominance limiting the maximally possible time step size. In the
remaining cases, an implicit scheme will yield a stable solution and enable the
use of larger time steps due to the diffusion dominance.

We see that the scalar diffusion coefficient Di cancels out in the above equation,
such that, for monovalent ions, the condition Peh,max < 1 is satisfied if the
potential does not vary by more than 1 (corresponding to about 25mV) over the
extent of one grid cell.

For the present model with parameters in the physiological range and a mesh
resolving the Debye layer, the potential gradient is always sufficiently fine resolved.
Thus, the maximum grid Péclet number was always significantly smaller than 1,
and the implicit Euler scheme was chosen. Since the system is very susceptible
to numerical oscillations, the choice of an implicit scheme provides an additional
benefit. Implicit schemes tend to smooth out these unphysical oscillations over
time, while they may be amplified in explicit schemes.
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3.5 Numerical Methods

The HH system as the driving force of an AP shows a great variability of the
time scales on which the system dynamics act. During an AP, membrane fluxes
and potential differences are large and change rapidly, so a small time step is
needed to capture the dynamics during this period. On the other hand, potential
differences during inter-spike intervals are small and so are the magnitudes of
ion fluxes, allowing for the use of a larger time step. Therefore, an adaptive
time-stepping strategy is used to speed up the simulation by controlling the time
step ∆t depending on the dynamics of the system.

The time step is bounded by minimum and maximum values of ∆tmin = 0.05 µs
and ∆tmax, respectively. The value of ∆tmax depends on the problem and will
range between 10 µs–50 µs. During an action potential (membrane potential
JφK > −50mV) or when an external stimulation is present, the maximum time
step is additionally limited to ∆tmax,AP = 10 µs.
Apart from these fixed bounds, the change of the time step depends on the

number of Newton iterations itk needed to complete the previous time step k:

∆tk+1 =


∆tk × 1.1 itk < itmax ∧ itk ≤ itk−1

∆tk/1.2 itk > itmin

∆tk else .
(3.11)

The upper and lower iteration bounds for adjusting the time step, itmax and itmin,
depend on the problem.

3.5.2 Solving the PDE System

As seen in section 2.3.5.3, each equation eq. (2.42) and eq. (2.43) alone is linear
in its unknowns. One could therefore use an operator-splitting approach and
alternately solve the equations by a linear solver until convergence, in each time
step. However, it could be observed that a very small time step (in the order of
nanoseconds) is necessary to solve the system this way.
Since the nonlinearity of the whole system results from the coupling of both

equations, it seems reasonable to represent this crucial feature also in the numerical
method. The system is therefore solved fully-coupled using Newton’s method,
which requires the solution of one single large linear system in each iteration.

As described in section 3.4, the dynamic channel conductances from the HH
scheme are needed to calculate the total membrane flux fmemb

i . Hence, for each
channel type i, one additional ODE per gating particle has to be solved in each
time step. This is done using a simple implicit Euler step. The membrane flux is
calculated once at the beginning of each time step and kept fixed for the whole
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3 General Model of an Axon in Extracellular Space

Newton iteration. This way, the unknowns from the HH scheme do not enter the
full system matrix for the PNP system, which avoids convergence issues arising
from changing boundary conditions. However, this introduces a small splitting
error of the order of O(∆t).

The time step size is adapted in a rather conservative manner (cf. section 3.5.1.2).
Still, the Newton iteration might not converge for a chosen time step value ∆t
for various reasons. A restart mechanism was implemented to account for this: if
the solver does not converge for a given time step ∆t, the procedure is repeated
for the halved time step ∆t

2 . A maximum number of three restarts is allowed,
otherwise the simulation will be terminated.
A significantly higher stability was observed for the fully-coupled approach

using Newton’s method, leading to possible time steps of the order of tens of
microseconds, as indicated by the values of time step thresholds from the previous
section.

3.5.2.1 Linear Solvers

For small systems, SuperLU [33] was used, for larger systems with more than
50 000 unknowns, a stabilized biconjugate gradient (BiCGStab) iterative solver,
preconditioned by an inexact LU (ILU) decomposition, turned out to be faster
while maintaining the same accuracy. A combination of a restarted generalized
minimal residual (GMRes) method in combination with an algebraic multigrid
(AMG) preconditioner proved to be very robust and efficient when solving the
system in parallel. Both ILU and AMG preconditioners are capable of coping with
the grid anisotropy introduced by the spatial discretization in section 3.5.1.1, and
the usage of state-of-the art iterative linear solvers like BiCGStab and GMRes is
crucial in order to attain a reasonable computation time for the problem at hand.

3.5.3 Validation of the Numerical Algorithm

To test the numerical algorithm from section 3.5 and to validate the implementa-
tion as a DUNE module, which will be covered in the next chapter, a number of
simulations have been run and compared to recently found unsteady analytical
solutions of the PNP equations for the case of a single electrolyte domain [89].
These solutions provide a useful test suite, as they allow for tests of the

numerical methods with different boundary conditions and under different physical
conditions. In particular, test cases for both diffusion- and advection-dominated
conditions are presented.
For the rest of this section, we use a normalized version of the PNP system,
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where the temperature T in eq. (2.43) is chosen such that the constant − e2n∗

ε0kBT
on the right-hand side of the Poisson equation is equal to 1. Similarly, the
diffusion coefficient is fixed at D = 1m2/s. As a consequence, the potential and
concentrations are scale-free and it does not make much sense to express them in
common physical units. Here, we consider them as dimensionless. The interval
[−5 5] is used as the computational domain.
We now give a short overview over the three one-dimensional solutions2 and

provide numerical results that demonstrate the proper convergence behavior.

Closed system (hamburger) This solution describes an insulated system, i.e.
it has zero boundary flux. The initial condition is smeared out over time, and, as
such, this solution represents a diffusion-dominated case. We depict the solution
for the potential and a single monovalent ion species (say, sodium) in fig. 3.2.
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Figure 3.2: Solution for hamburger example at different time points.

In order to assess the convergence behavior in space and time separately, we
first chose a very small time step ∆t = 10−9 and carried out 1000 time steps. At
tend = 10−6, the errors in L2 and L∞ norms were calculated with respect to the
analytical solution for different mesh sizes h = 2−4 to 2−11, which can be seen
in fig. 3.3a. Due to the very small time steps, time discretization errors should
be negligible compared to the spatial errors. This is confirmed when looking at
the convergence order in fig. 3.3b, which shows the expected order of 2 for Q1

finite elements as soon as the grid is fine enough to accurately resolve the initial
condition.

2Since in 1D, the PNP can be transformed to the Burgers equation, each test case was named
after a different burger, for no scientific reason.
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Figure 3.3: Hamburger convergence behavior in space.

Then, we chose a fine spatial resolution of 29 cells and assessed the temporal
errors by varying the time step ∆t from 1 down to 2−10. At tend = 10, errors
were calculated as before, this time assuming spatial errors to be negligible, see
fig. 3.4a. Again, we find the expected convergence order of 1 for the first order
implicit Euler scheme in fig. 3.4b.
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Figure 3.4: Hamburger convergence behavior in time.

Spatially homogeneous outflow (cheeseburger) The second example describes
a system with a spatially uniform concentration and an outflow boundary condi-
tion. Over time, the concentration leaks out of the domain boundary due to a
symmetric outward flow centered at x = 0. This results in a successive decrease
of the spatially constant concentration, as visible in fig. 3.5. This example tests
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the correctness of the numerical algorithm regarding non-zero time-dependent
Neumann boundary conditions.
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Figure 3.5: Solution for cheeseburger example at different time points.

Convergence in space for the potential is second-order, but this does not hold
for the concentrations in fig. 3.7b. This result is intuitively clear respecting
the concentration is spatially homogeneous. An increase in grid resolution can
not be expected to yield an improvement for a function which can already be
represented accurately with only a single cell. We confirm this by noting that
the concentration error in fig. 3.6a is already close to machine precision at the
coarsest resolution. Therefore, the strange behavior in the convergence order plot
fig. 3.6b is uncovered to be numerical noise.
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Figure 3.6: Cheeseburger convergence behavior for spatial discretiza-
tion.

The behavior in time is not affected by this and shows first-order convergence
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in fig. 3.7b as soon as the time step is sufficiently small. Interestingly, the
concentrations initially show a slightly super-linear convergence speed.
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Figure 3.7: Cheeseburger convergence behavior in time.

Pure advection (bicmac) The last solution is purely advective, therefore the
ion flux F = −D (∇ni + zini∇φ) is reduced to F = −Dizi∇φni and the drift
velocity v = Dizi∇φ is replaced by a constant advection velocity v = 1. As a
result, the initial concentration profile is simply transported to the right in fig. 3.8.
This test case especially checks the numerical algorithm’s ability to cope with a
drift-dominated system.
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Figure 3.8: Solution for bigmac example at different time points.

This example is not as reluctant as the previous one and we see the full
convergence order for both potential and concentrations, i.e. second order in
space (fig. 3.9b) and first order in time (fig. 3.10b). In comparison to the
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previous examples, the final convergence order is reached only for relatively fine
discretization levels. The maximum concentration error is especially susceptible
to this at coarser mesh sizes, since in these cases the transported concentration
peak can not be captured exactly by the grid. We also see quite a delay in the
time convergence at large time steps, which can be attributed to the smoothing
character of the implicit Euler method.
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Figure 3.9: Bigmac convergence behavior for spatial discretization.
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Figure 3.10: Bigmac convergence behavior in time.

Summarizing the validation by analytical solutions, we obtain the expected
order of convergence in space and time for all test cases. Schönke [89] also
describes a methodology to construct solutions in higher dimensions from the 1D
solutions, but we refrain from carrying out extensive convergence analyses within
the scope of this work.
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Warning: ISO C++ says that these are
ambiguous, even though the worst conversion
for the first is better than the worst
conversion for the second.

(gcc 4.5)

This chapter strives to give a minimal overview over the implementation of the
numerical algorithm from section 3.5.

4.1 The DUNE Framework

The implementation was done in C++ using DUNE (Distributed and Unified
Numerics Environment) [13], a framework for the grid-based solution of PDEs.
It consists of several modules, the heart of which is dune-grid containing the
abstract grid interface [11] based on a rigorous mathematical description of
hierarchical grids [12].
Existing grid implementations (or grid managers, in DUNE jargon), can be

plugged into the framework by e.g. an adapter fulfilling the abstract interface. This
is made possible by the extensive usage of C++ template techniques [102], which
allows for the inclusion of arbitrary implementations without a big performance
loss. This also summarizes the main design principles in DUNE: flexibility with
regard to the reusability of software components and – at the same time –
efficiency by removing the interface overhead at compile-time using generic
programming techniques. The key here is to replace conventional inheritance
(dynamic polymorphism) by static polymorphism, where the complete inheritance
hierarchy is known at compile-time, thereby eliminating the runtime overhead of
e.g. function table lookups necessary in dynamic polymorphism.

One main advantage of this approach is that one is not restricted to a certain
grid implementation. There exist quite a number of grid managers with different
features, but none of these is universal. Most grid managers are rather specialized
towards a certain class of algorithms. DUNE makes it possible to simply exchange
the underlying grid without having to rewrite the code for the numerical solution,
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as it is based on the abstract interface. This has proven to be very handy in
practice, as virtually any application can be solved within a single framework.

DUNE modules are classified into two groups: The core modules providing the
basic functionality, and additional modules which extend the functionality of the
core modules or implement a specific application. The core modules are

• dune-common: classes used by all DUNE modules, including data structures
for dense vectors and matrices as well as the program dunecontrol providing
the build system logic.

• dune-geometry: provides geometric information of the grid cells (included
in the more general term of an entity in DUNE) based on generic reference
elements, their mapping into the global space and quadrature rules for
integration.

• dune-grid: contains the abstract grid interface and a small number of grid
implementations as well as adapters for external grid managers.

• dune-istl: the iterative solver template library (ISTL) contains a number
of iterative linear solvers and preconditioners that were designed specifically
with respect to parallel efficiency.

• dune-localfunctions: this module defines functions living on the reference
elements which can be used to assemble global finite element functions.

In addition, the following modules were used for the implementation:

• dune-pdelab: PDELab [15] is a discretization module which allows the
user to specify a local operator living on a single grid cell. The functionality
of PDELab then allows the generic assembly of the global matrix by means
of a grid operator and its (sequential or parallel) solution by arbitrary
combination of preconditioners and solvers from dune-istl. It also contains
a Newton implementation.

• dune-multidomaingrid: this module provides a Dune::MultidomainGrid
metagrid on top of a DUNE grid which allows for the definition of arbitrary
subdomains, useful for multi-physics applications [77].

• dune-multidomain: this is an add-on module for PDELab which, in con-
junction with dune-multidomaingrid, allows for the definition of different
local operators on different subdomains of the Dune::MultidomainGrid
[76]. The operators can be coupled in a very flexible way, integrating nicely
into the PDELab framework.
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The joint functionality of these modules is used in the application module
dune-ax1, whose main components will be described in the following section.

4.2 The DUNE Module dune-ax1

The module dune-ax1 contains all the code that was used to implement the
numerical solution of the model from section 3.2. The main actors in this module
are listed below.

4.2.1 Directory Structure

The directory structure of the dune-ax1 module looks as follows:
dune-ax1

src
dune

ax1
acme0
acme1
acme1MD
acme2
acme2_cyl

common
configurations

default
ES
laplace
step

operator
channels

common
The src directory contains the application drivers, while the dune/ax1 folder

contains a number of subfolders which demonstrate the historical evolution of
the application. The folders acme0 to acme2 represent the different evolution
stages from a simple 1D model without a membrane on a Dune::OneDGrid to
a 2D model with a membrane using Dune::MultidomainGrid. The reason for
keeping the older stages was that initially the Subversion [96] version control
system was used, which has its difficulties when using different development
branches. After the switch to Git [44], keeping different versions in different
branches has become quite easy, but the older stages are still there as a Subversion
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legacy. The most recent version of the application resides in acme2_cyl. The
folder channels contains classes representing a variety of HH-type ion channels
that can be vectorized to a single ChannelSet. Additional classes used by every
application can be found in common. The next section will describe the main
classes in acme2_cyl and common.

4.2.2 Main Components

In the following, the main components responsible for the implementation are
listed. Yet, this section does not only serve to list the purpose of each of these
components; we will also highlight some of the concepts used, both with respect
to programming techniques and to numerical subtleties.

acme2_cyl_par.cc This is the only .cc file in the application, all the others are
header files containing (mostly templated) classes. This is due to the fact that,
when using C++ templates, the usual separation between header and source files
is no longer possible [61, p. 10]. The name contains the acronym “acme”, which
stands for “active membrane”1. The other building blocks of the name refer to the
grid dimension (“2”), the cylindrical coordinate system (“cyl”), and the parallel
solution of the equations (“par”).
acme2_cyl_par.cc as the application driver contains the main()-routine, which

reads command line arguments and config file parameters, calls the grid genera-
tion procedure in Ax1GridGenerator, and sets up the Dune::MultidomainGrid.
Afterwards, it calls Acme2CylFactory, which instantiates the central data class
Acme2CylPhysics and hands all the objects over to Acme2CylSetup.

Ax1GridGenerator This class has a static method generateTensorGrid(),
which fills two CylinderGridVectors with coordinates for the x- and y-direction.
The vector class CylinderGridVector is a modified version of a class by Dominic
Kempf [63], which contains several methods for conveniently adding successive
coordinates according to different strategies, e.g. equidistant spacing, linearly
increasing spacing, spacing increasing according to a geometric series, and many
more. These methods are particularly useful in the present case of strongly
varying mesh sizes in y-direction (cf. section 3.5.1.1), as they allow for a smooth
transition of grid spacing between regions with very small and rather large mesh
sizes. The method generateTensorGrid() calls these functions according to the

1Intentionally, it is also a reference to the ACME (“A company that manufactures everything”)
company from the TV series Looney Tunes.
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minimum/maximum grid spacings specified in the config file in order to set up the
tensor grid vectors X and Y . The generated vectors have the desired properties
of a very fine resolution in y-direction at the membrane, and sufficiently coarse
spacings away from the membrane and in x-direction, in order to minimize the
number of grid points.
After generating the grid coordinate vectors, the actual grid hierarchy is set

up. In particular, this hierarchy consists of a Dune::YaspGrid in a Dune::
GeometryGrid metagrid, which itself is wrapped by a Dune::MultidomainGrid.
The reason for this stacked metagrid hierarchy is the following: the structured
Dune::YaspGrid is very efficient and it allows for an arbitrary parallel domain
decomposition; however, it is an equidistant grid in each coordinate direction. To
make this a tensor grid, the functionality of Dune::GeometryGrid is used, which
enables to specify a coordinate function mapping the (equidistant) base grid nodes
to those provided by the tensor product X×Y . Finally, Dune::MultidomainGrid
provides the possibility to define (even non-connected) subdomains and interior
boundaries, which is just what we need for the multi-domain problem at hand.
Each level in the grid hierarchy is paid for by an additional computational over-
head. In performance tests, the runtime for a program that excessively called
functions on the grid geometry – the most basic functions that are called in the
innermost loops of the local operator, and therefore the most time-consuming
operations introduced by the nested grid hierarchy – increased by approximately
30% when using Dune::GeometryGrid. We consider this acceptable with re-
spect to the functionality provided. A similar overhead is expected for the
Dune::MultidomainGrid.

Acme2CylFactory By implementing the (static polymorphism version of the)
factory pattern [43], Acme2CylFactory creates an instance of an Acme2CylPhysics
template class. Most of the template parameters of Acme2CylPhysics are spec-
ified by a static configuration class residing in the subdirectory acme2_cyl/
configurations, containing compile-time constants and the class types for ini-
tial and boundary conditions. The resulting object of Acme2CylPhysics knows
about the classes for initial and boundary conditions as well as all relevant model
parameters for the desired simulation setup. The configurations classes, on the
contrary, are only used as “read-and-forget” classes by Acme2CylFactory, i.e. their
sole purpose is to provide read-only data for the instantiation of the physics class.
The reason for this approach is the restriction imposed by using generic

programming, where all of the types used as template parameters must be
known at compile-time. Therefore, for each of the configurations, there exists one
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corresponding class. At compile-time, the code for each of these configurations
is generated. This increases compilation time, but for a reasonably low number
of configurations, this overhead is acceptable, as it adds the benefit that a
certain simulation setup can then be chosen at runtime, by means of a config file
parameter.

Acme2CylPhysics Once created, this class contains all relevant model parame-
ters. It is the central data class in the application and provides additional methods
for extracting data attached to certain grid cells and, most importantly, to both
membrane interfaces. The values at the two opposite sides of the membrane are
necessary for the calculation of the trans-membrane flux fmemb

i , as could be seen
in section 3.4 on page 46. For this purpose, Acme2CylPhysics internally holds a
map that identifies two opposite Dune::IntersectionIterators with each other,
corresponding to the map µ(x) from section 3.4. For all the other data attached
to grid entities, std::vectors are used in combination with Dune::IndexSets,
which provide the corresponding index used in the vectors for a given grid element.

Since grid data and some meta information about the grid and its elements is
needed virtually anywhere in the application, almost every one of the following
classes hold a reference to the physics object. It is a bit unsatisfactory from
the software design point of view to have such a central data class that is used
everywhere in the program, but it is the only way if we do not want to sacrifice
efficiency for a cleaner design.

Acme2CylGeometrySwitch This struct was added when extending the simula-
tor from Cartesian 2D to cylinder coordinates. It seemed advantageous to be
able to use both coordinate systems without having to maintain two different
code bases or suffer from performance impairments, which could be achieved by
using template meta programs (TMPs) [102], a technique that utilizes template
specialization in order to implement conditional behavior depending on the type
of an object. This is best exemplified when looking at the code:

struct Acme2CylGeometrySwitch
{

template <typename GEO , bool useCylinderCoords =
USE_CYLINDER_COORDINATES >

struct GeometrySwitch
{

typedef GEO type;
};
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template <typename GEO >
struct GeometrySwitch <GEO ,true >
{

typedef Acme2CylGeometry <GEO > type;
};

// . . .
}

We see that the procedure is actually quite simple. Acme2CylGeometrySwitch
contains a template struct GeometrySwitch with two template parameters: the
type of the original (2D, Cartesian) Dune::Geometry class of the current grid,
and a boolean flag that evaluates to true when the cylinder coordinate system
is to be used. In the simplest case, the flag useCylinderCoords is false and
thus the nested typedef type of GeometrySwitch will evaluate to the template
parameter GEO. A second version of GeometrySwitch is partially specialized
on the second template parameter. The compiler will give preference to this
specialized version when the boolean flag is true, and the nested typedef type will
evaluate to Acme2CylGeometry<GEO> instead of GEO. It is immediately clear that
the flag has to be a compile-time constant in order for this to work. The default
value USE_CYLINDER_COORDINATES can be set in a global header constants.hh
for convenience. The functionality of Acme2CylGeometry is described next.

Acme2CylGeometry This class can be seen as a wrapper class around the orig-
inal geometry class providing the transformation to cylinder coordinates. But
technically, it works differently, since it is designed as a mixin:

template <typename Geometry >
class Acme2CylGeometry : public Geometry
{

// . . .
};

The mixin pattern describes the method of deriving from a class which itself
is given as a template parameter. It can be seen as the static polymorphism
version of the famous Gang of Four decorator pattern [43]. Consequently, an
Acme2CylGeometry object is not a wrapper around the original Geometry, it is a
Geometry object and therefore inherits all of its methods. This way, overhead is
only added for those member functions that need to be adapted. Furthermore, it
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eliminates the overhead of additional lookups that would arise when using dynamic
polymorphism, and it allows the compiler to perform better optimizations, as
the father class type is known at compile-time. In conjunction with the switch
Acme2CylGeometrySwitch, this can be implemented as follows:

// Get geometry o b j e c t from a g i v en e n t i t y i t e r a t o r
// ’ e i t ’
const GeometryOrig& geoOrig = eit ->geometry ();
// Use sw i t c h to choose o r i g i n a l or c y l i n d e r geometry
// type , depend ing on compi le−t ime f l a g
typedef typename Acme2 Cyl Geometry Switch ::

GeometrySwitch <GeometryOrig ,useCylinderCoords >::
type Geometry;

// ’ geo ’ i s now e i t h e r a p l a i n 2D or a c y l i n d e r
geometry

const Geometry& geo(geoOrig);

When the flag useCylinderCoords is true, the 2D geometry geoOrig will be
replaced by a new Acme2CylGeometry object geo, which is copy-constructed from
geoOrig.
When it is false, the typedef Acme2CylGeometrySwitch::GeometrySwitch

<GeometryOrig>::type will evaluate to the original type GeometryOrig, and the
only overhead is the creation of a single const reference. With this setup we
can switch between both coordinate systems simply by setting a single boolean
compile-time flag. Finally, we can also create two different executables for each
case from the same code, which allows for direct comparison between 2D and 3D
results.

Acme2CylSetup The setup() method of this class essentially plugs together all
the different DUNE components, particularly the local operators. Following the
residual definition in section 3.5, one operator for the assembly of each residual
in eqs. (3.7a), (3.7b), and (3.8) has to be defined.
In order to couple Nernst-Planck eq. (2.42) and Poisson eq. (2.43), how-

ever, the residuals for the spatial part of the subdomain Ωelec are treated to-
gether by a single operator Acme2CylOperatorFullyCoupled, assembling the
combined residual RΩelec = (RNP,S, RP,Ωelec)

T . Here, RP,Ωelec denotes those
entries of the full Poisson residual RP from elements belonging to the Ωelec
subdomain. The class Acme2CylOperatorFullyCoupled is a modification of
the Dune::PDELab::ConvectionDiffusionFEM local operator from dune-pdelab.

65



4 Implementation

The modification involves the treatment of all N + 1 variables (N concentrations,
1 potential) in a single operator.

Using a single operator of convection-diffusion type is possible because both
Nernst-Planck and Poisson equations can be written in the form of a convection-
diffusion eq. (2.5). The two parameter classes NernstPlanckParameters and
PoissonParameters are used to insert the correct coefficients for eq. (2.42) and
eq. (2.43), respectively, into the convection-diffusion equation of form eq. (2.5).
The remaining entries RP,Ωmemb of the full Poisson residual are assembled by

a separate operator taking only contributions from the subdomain Ωmemb into
account. For this, the existing class Dune::PDELab::ConvectionDiffusionFEM
is used, again in conjunction with a PoissonParameters class.

A third operator NernstPlanckTimeLocalOperator handles the temporal part
of the residual, RNP,T. A combined instationary operator Dune::PDELab::
OneStepGridOperator is obtained automatically by the functionality of dune-
multidomain. This grid operator is handed over to the Dune::PDELab::Newton
class, and all solver and infrastructure objects are forwarded to the class Acme2
CylSimulation.

Acme2CylSimulation The simulation class is responsible for carrying out the
time loop for the instationary problem. In each iteration, the new boundary
conditions are calculated, especially the membrane flux, which is done in the
helper class MembraneFluxGridFunction. Then the grid operator is used to
assemble the full Newton matrix and residual, which is then solved for in each
iteration according to section 2.2.3.
By a suitable choice of template parameters for the class Dune::PDELab::

MultiDomain::MultiDomainGridFunctionSpace, the ordering of DOFs in the
vector and matrix data structures can be specified. In conjunction with addi-
tional template parameters in Dune::PDELab::ISTLVectorBackend, DOFs can
be blocked together. In this case, all unknowns belonging to a certain node are
blocked together, yielding a matrix with (N + 1)× (N + 1) blocks that shows a
block-tridiagonal pattern.

Note that this is only possible when using a single membrane element layer, since
then the number of unknowns at each grid vertex is the same, i.e. N concentration
and one potential variable. This is the precondition for using the vertex-blocking
strategy, as the DUNE matrices currently only allow block matrices of equal size
in the large system matrix. For n > 1 membrane elements, there are isolated
potential variables at grid vertices inside the membrane, rendering the blocking
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strategy impossible and prohibiting the solution of large systems, as the linear
solver would not converge anymore.
The matrix pattern is illustrated in fig. 4.1: in comparison to a naive lexico-

graphic order of DOFs as in fig. 4.1a, the vertex-blocked order in fig. 4.1b shows
a much more advantageous diagonal structure, which reveals to consist of three
block-diagonals in the zoom-in fig. 4.1c.
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Figure 4.1: Comparison of matrix structure depending on DOF order-
ing. The left panel shows a lexicographic ordering of unknowns with
an unfavorable sparsity pattern. Using a vertex-blocked ordering
(center) yields an advantageous diagonal pattern, which reveals to
consist of multiple block-diagonal matrices when zooming in (right).

This structure is very beneficial for the linear solver performance, as both ISTL
implementations of the ILU and AMG preconditioners make great use of the
block structure. For the iterative solver itself, i.e. BiCGStab or GMRes, the
block-diagonal pattern is absolutely crucial, since otherwise it would not converge
for setups with a large number of unknowns.
The termination criterion of the Dune::PDELab::Newton implementation de-

pends on two values: the absolute norm of the residual, the defect ‖rk‖ in iteration
k, denoted by absLimit, and the relative norm with respect to the initial residual
‖rk‖
‖r0‖ , the reduction. Tolerances for both errors can be provided, and convergence
is acknowledged as soon as one of the error tolerances is satisfied.

Usually, prescribing a certain reduction is desired, as the absolute value of the
defect depends on the mesh resolution. But in certain situations, providing an
absolute limit is necessary, for example when the desired reduction can not be
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reached in every time step due to changing dynamics (and hence the condition
of the problem). One example for such a case is when a system reaches steady-
state. Then, the initial defect will usually be small in each time step and using
the reduction from previous time steps with higher initial defects would be too
restrictive, as the initial defect now is already close to the reachable limit. These
error tolerances have to be found individually for each problem, and they critically
determine convergence and accuracy properties of the numerical solution.

After each solve of the PNP system, the simulation class triggers the output of
solution vectors and diagnostic data in Acme2CylOutput.

Acme2CylOutput The output class essentially only writes out all relevant simu-
lation data to files. However, the generic implementation is intrinsically quite
complicated, as there is a plethora of PDELab grid functions living on different
parts of the grid and on different function spaces. Therefore, not only do the grid
function classes have different domain and field types, they also require different
output strategies. For example, the membrane potential is a single value that is
only defined on membrane interfaces, while the concentrations are aggregated
into a vector of size N that lives on electrolyte elements only. This problem is
solved again using TMPs [102]. The TMP OutputStrategy switches between the
different output methods, based on the type of the grid function to be written.

Two file formats are used for the output: Gnuplot [104] and HDF5 [97]. For the
gnuplot output, a custom output class GnuplotTools2D writes ASCII files that
can be examined on-the-fly while the simulation is running. The adapter class
HDF5Tools internally uses the HDF5 libraries to write the data to the complex
binary .h5 file format. In production runs, the gnuplot output is used only for
the output of small diagnostic data, while the large solution vectors are written
to the more storage-efficient HDF5 format.
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Things that are complex are not useful, things
that are useful are simple.

(Michail Kalashnikov)

After the definition of the model in chapter 3 and its implementation in chapter 4,
we are now ready to look at the results for an unmyelinated, homogeneous axon
in extracellular fluid. Again, this chapter is based largely on an edited version of
[82].

5.1 Simulation Setup

In the following, we consider a square computational domain of size 10mm ×
10mm, where the axon extends from y = 0 to ymemb = 500 nm. Note that ymemb
represents the axon radius due to cylinder symmetry. The membrane thickness
was chosen to be dmemb = 5 nm.

The choice of grid parameters for the main setup used for most of the results
in this chapter can be found in table 5.1. Cases with a different choice of
parameters will be explicitly mentioned. In x-direction, a uniform spacing of
hx is used. The minimum Debye length for the given intra- and extracellular
concentrations is about 0.9 nm, so a minimum grid spacing of hmin

y = 0.5 nm
was chosen at the membrane in y-direction to account for this. For the rest
of the y-direction, a mixture of geometrically increasing and equidistant mesh
widths was used: starting from the membrane, the grid spacing is smoothly
increased up to a maximum of hmax

y = 100 µm. The large difference between
these lengths underlines the multi-scale character of this model, resulting in a
maximum anisotropy of hxhy = 200 000.

The diffusion coefficients Di were chosen to be the diffusivity in water for each
ion species. The relative permittivity ε was 80 in the electrolytes and 2 on the
membrane, in accordance with [69]. The temperature was fixed at T = 6.3 ◦C as
in the original HH model [55].
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Table 5.1: Simulation parameters for the unmyelinated axon model.

Parameter Value Unit Description

GRID

xmax 10 mm Domain size (x-direction)
ymax 10 mm Domain size (y-direction)
ymemb 500 nm Radius of the axon
dmemb 5 nm Membrane thickness
hx 100 µm Mesh size in x-direction
hmin
y 0.5 nm Minimum mesh size in y-direction (De-

bye layer)
hmax
y 100 µm Maximum mesh size in y-direction

#DOFs 73 124 1 Total number of unknowns

PHYSICS

εmemb 2 1 Membrane permittivity
εelec 80 1 Electrolyte permittivity

[Na]CY
0 12 mM Intracellular Na+ bulk concentration

[K]CY
0 125 mM Intracellular K+ bulk concentration

[Cl]CY
0 137 mM Intracellular Cl− bulk concentration

[Na]ES0 100 mM Extracellular Na+ bulk concentration
[K]ES0 4 mM Extracellular K+ bulk concentration
[Cl]ES0 104 mM Extracellular Cl− bulk concentration
DNa 1.33× 10−9 m2/s Na+ diffusivity
DK 1.96× 10−9 m2/s K+ diffusivity
DCl 2.03× 10−9 m2/s Cl− diffusivity
gNav 120 mS/cm2 Conductance of the voltage-gated Na

channel
gKv 36 mS/cm2 Conductance of the voltage-gated K

channel
gL 0.5 mS/cm2 Total leak conductance

NUMERICS

reduction 1× 10−5 1 Newton reduction
absLimit 1× 10−5 1 Newton absolute limit
tend 20 ms Simulated time
∆tmin 0.05 µs Minimum time step
∆tmax 50 µs Maximum time step
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Parameter Value Unit Description

NUMERICS

∆tmax,AP 10 µs Maximum time step during AP
itmin 10 1 Newton iteration threshold for time

step increase
itmax 30 1 Newton iteration threshold for time

step decrease

5.1.1 Parallelization

For the simulation parameters summarized in table 5.1, the problem consists of
73 124 unknowns per time step. When simulating until tend = 20ms, we obtain
an average time step size of 13.6 µs, resulting in a total computation time of
about 19 h for the sequential solution on a single processor.

While this is not intractably long, it is certainly not suitable for rapid prototyp-
ing. Therefore, it seemed beneficial to parallelize the algorithm, also considering
that we planned to add myelin to the model, which would supposedly require a
much higher number of DOFs.
In an effort to minimize problems due to an improper domain decomposition,

the grid was chosen to be partitioned only in x-direction. This way, the membrane
will only be cut vertically, as suggested in fig. 5.1, where the processor boundaries
are marked by vertical dashed lines. This partition ensures that the two electrolyte
subdomains do not get separated from their associated patch of membrane, which
would cause problems implementation-wise for the calculation of membrane fluxes.

It also prevents numerical problems, as membrane and Debye layers should be
handled on a single processor to cope with the grid anisotropy. An overlap of one
cell is used at processor boundaries, marked by the shaded area in fig. 5.1.

To assess the performance of the parallelization, we ran simulations on the same
problem with different processor counts (strong scaling). Table 5.2 shows the
timings for different processor counts. For p = 10 processors the total computation
time is reduced to about 2.5 h, yielding a speedup of 7.58.

These results are quite good, considering that, according to the developers1, the
stacked metagrid hierarchy described in section 4.2.2 can not be expected to scale
perfectly in parallel. In addition, we have to consider that even in the parallel

1i.e. DUNE developers Steffen Müthing for Dune::MultidomainGrid and Christian Engwer for
Dune::GeometryGrid (personal communication)
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runs, quite a large amount of debug output is written to disk and standard output
sequentially by the root node, which further impairs the scaling performance.

Since the goal of the parallelization was not getting perfect scaling properties,
but rather achieving a reasonable speedup in computation time, we were content
with these results and no further attempt was made to specifically optimize the
algorithm to yield a better parallel performance.

Figure 5.1: Partition of the unmyelinated axon computational domain
for the parallel case. The computational domain with its three
subdomains is shown as before; additionally, processor boundaries
(vertical dashed lines) and overlap elements (shaded) are shown, in
this case exemplary for p = 7 processors. Note that this method gives
optimal control over the load balancing and ensures that membrane
interfaces never coincide with processor boundaries.

5.1.2 Linear Solver and Numerical Performance

The number of 73 124 DOFs is a small one within the context of HPC, and this
would allow for the usage of a direct linear solver (LS) like SuperLU on each
processor, even in the sequential case. Nevertheless, we chose to use an iterative
solver in perspective of solving larger problems. For the present problem, an
overlapping BiCGStab solver preconditioned by an ILU0 decomposition proved
to be a good choice, as visible in the solver statistics table 5.3.
Only one or two linear solver iteration per Newton iteration were needed on

average, indicating that the ILU0 preconditioner is very effective. This is not
surprising, since we deliberately chose to group together all unknowns at a certain
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Table 5.2: Simulation timings for the parallel solution using different
processor counts p. For each processor count p, the total computa-
tion time, the needed number of time steps, and the average solution
time per time step (full Newton iteration) are shown together with the
resulting speedup with respect to the sequential problem.

p Total comp.
time [s]

# time steps avg. time /
time step [s]

speedup

1 69042.3 1469 47.00
2 35556.1 1469 24.20 1.94
4 18721.3 1469 12.74 3.69
10 9101.12 1469 6.20 7.58

grid vertex in order to create dense 4× 4 blocks. This arrangement allows the
ILU0 preconditioner to invert the blocks on the diagonal exactly, which essentially
captures the nonlinearity in the PNP system, the coupling between Nernst-Planck
and Poisson equations.

Table 5.3: Solver statistics per time step for the parallel solution using
different processor counts p. All values are averages over all time
steps. The total time includes matrix and residual assembly as well as
the actual solution time by Newton’s method. The solver time includes
both ILU decomposition and LS time, the LS time only the actual
BiCGStab solve. The number of linear solver iterations per Newton
iteration stays at a very low level for all processor counts.

p speed-
up

total
time

assembler
time [s]

solver
time [s]

LS time
[s]

LS
it.

LS time /
it. [s]

Newton
it.

1 44.9519 38.0977 0.30445 0.085314 1.22 0.070337 1.9993
2 1.94 23.1669 19.4495 0.34784 0.137967 2.3 0.059875 1.9993
4 3.69 12.1984 10.2244 0.22298 0.095068 2.44 0.043907 1.9993
10 7.55 5.9506 4.8945 0.27284 0.128984 2.8 0.046578 1.9993
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5.2 Simulation Results

The remaining part of this chapter serves to show several simulation results for
the case of an unmyelinated axon. The most interesting case of an axon firing an
action potential and demonstrating the various processes involved in this state of
excitation, however, requires a valid initial state, which is the resting state of the
membrane.

Since the concentration distribution at resting potential as well as the precise
potential profile are unknown, a transient equilibration simulation has to be
carried out for each simulation setup with a change in the computational grid,
boundary conditions, or bulk concentration values n0

i . The process of obtaining a
physically consistent equilibrium state is described first, followed by the actual
action potential simulations.

5.2.1 Equilibrium States

As quoted in section 2.3.3.1 on page 31, the resting state of the neuronal membrane
is not a true equilibrium state in the thermodynamical sense, as only the sum
of fluxes goes to zero. Nevertheless, we will use the terms resting state and
equilibrium state synonymously, which is also common practice in the literature.
The reader should keep in mind that indeed the more general concept of a flux
equilibrium is meant by this.

The procedure of obtaining the equilibrium state is as follows: the model from
section 3.2 is initialized by setting the ion concentrations within one electrolyte
domain uniformly to their intra- and extracellular bulk values n0

i (see table 5.1).
Then the leak channels are opened and the evolution of membrane currents is
simulated using a fixed time step ∆t = 10 µs until the sum of trans-membrane
fluxes is sufficiently close to zero, which, for most setups, was the case after a
simulated time of 1 s. It is important to note that voltage-dependent channels
are kept closed during the whole equilibration to avoid premature AP firing.
The bulk concentrations were chosen such that each electrolyte initially is

electroneutral, i.e. the net charge is zero, which is a reasonable assumption both
physically and biologically with respect to energy minimization principles.
In the following, the generated equilibrium states are depicted by plotting

the relevant values along a line perpendicular to the membrane, i.e. parallel to
the y-axis. This is possible because the x-components of the ion fluxes during
equilibration are negligible, therefore the solution only changes notably in y-
direction. This fact allows for a fast equilibration procedure: the equilibrium
state is obtained for a grid with only one element in x-direction, and the hereby
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obtained values are interpolated onto the fine grid when starting the actual
AP simulations. This way, the equilibrium state can be generated within a few
minutes instead of hours.
When selectively opening only the leak channel for one ion species, the equi-

librium membrane potential is expected to be equal to the corresponding ionic
reversal potential, as predicted by eq. (2.27). The first two rows in table 5.4 show
the calculated equilibrium potentials which indeed match the value calculated by
Nernst’s equation.

When opening both Na and K leak channels, the equilibrium membrane poten-
tial will reach a value between the two channels reversal potentials, depending on
the ratio of Na and K leak conductances. The relative leak conductances that
result in a resting potential of about −65mV can be found in the third row of
table 5.4. The resting potential exactly matches the value predicted by the PCM
eq. (2.29). The total leak conductance (0.5mS/cm2) was always kept constant.

Table 5.4: Relative leak conductances and resulting equilibrium mem-
brane potentials.

Leak conductances Equilibrium membrane potential
gNaL gKL

JφK

1.0 × 0.5 mS/cm2 0.0 × 0.5 mS/cm2 50.62 mV

0.0 × 0.5 mS/cm2 1.0 × 0.5 mS/cm2 −82.18 mV

0.13 × 0.5 mS/cm2 0.87 × 0.5 mS/cm2 −64.92 mV

Figure 5.2 shows the intra- and extracellular charge density profile at equilib-
rium. As predicted by the Poisson-Boltzmann eq. (2.22), both electrolytes adjust
their concentrations to follow a Boltzmann distribution towards the membrane.
Figure 5.3 shows the evolution of membrane fluxes during the equilibration phase.
The sum of inward- and outward-directed fluxes tends to zero, marking the
neuron’s resting state.

5.2.2 Action Potential

The action potential simulations are carried out by loading the equilibrium state
generated as described in the previous section. Then the gating particles p of
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Figure 5.2: Equilibrium charge density. The equilibrium charge density re-
sulting from contributions of all three ion species (solid lines), com-
pared with a Boltzmann distribution (dashed lines). Only the range
close to the membrane is depicted, where the charge density profile
undergoes its greatest change.
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Figure 5.3: Equilibration of membrane fluxes. Na (lower line), K (upper
line), and summed membrane fluxes (middle line) are shown for the
equilibration phase. The sum of fluxes vanishes at equilibrium.
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voltage-gated channels are initialized to their steady state

p∞(Vrest) =
αp(Vrest)

αp(Vrest) + βp(Vrest)

with respect to the calculated membrane resting potential Vrest, as in [65, p. 146].
This is also the default initialization procedure in NEURON [53, chapter 8.3].
As opening the voltage-gated conductances changes the ratio of conductances
between ion species, the leak channel ratio is corrected such that the ratio of each
ion species’ sum of conductances with respect to the total membrane conductance
stays constant, corresponding to the values chosen for the equilibration procedure
(cf. table 5.4). This ensures that the membrane potential JφK does not drift
off from the generated resting potential Vrest after opening the voltage-gated
channels.
Here we acknowledge again that only relative conductances matter for the

membrane potential, as can be seen both from the Goldman eq. (2.28) and the
PCM eq. (2.29), i.e. the general validity of the equilibrium state is maintained
by this modification. However, the recalculation of leak conductances involves
rounding errors, which have a small, but observable effect on the membrane
potential in the sub-millivolt range. The system is allowed to settle with respect
to the changed channel conductances for a low number of time steps to account
for this.

To evoke an action potential, a sodium rectangle pulse is injected into the cell
by adding a fixed amount of sodium at the stimulation site located near the left
domain boundary at xstim = (150 µm, 0 µm) for 2ms. The pulse had a value of
0.965 nA in this setup.

The membrane is depolarized close to the stimulation site and, after reaching
threshold, an action potential is generated due to the ion channel kinetics from
section 2.3.3.2. The potential wave travels along the axon, opening more channels
along the way and keeping the action potential alive, resulting in a wave traveling
at constant velocity. The conductance velocity depends on the time constants
of the ion channel kinetics, but also on the intra- and extracellular ion diffusion
coefficients, and has a value of about 0.93m/s for this setup.

5.2.2.1 Intracellular Potential

Figure 5.4 shows the potential time courses at different x-positions along the axon.
The y-position is about 488 nm, but this does not have a large impact, as the
intracellular potential is fairly constant outside the Debye layer in this direction.
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In a first approximation, it is also equal to the membrane potential, since the
extracellular potential is much smaller. The first AP has a higher amplitude
than the following ones, caused by the proximity to the stimulation site. Also,
switching off the stimulus is reflected by an artifact in the repolarization phase of
the first AP at t = 2ms.
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Figure 5.4: Action potentials evoked at equidistant positions along the
axon. The leftmost AP has a higher amplitude than the others due to
the vicinity to the stimulus site. The following curves at equidistant
positions along the axon are identical and show constant onset delay,
indicating a wave traveling with constant speed.

5.2.2.2 Membrane Flux

The total membrane flux consists of two main components: an ionic and a
capacitive component, see fig. 5.5. The ionic flux itself is the sum of sodium and
potassium fluxes through the membrane’s (active and passive) ion channels. The
other component is a consequence of the electric properties of the membrane. As
seen in section 2.3.3, the membrane separates charges and therefore acts as a
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capacitor. The capacitive flux is a consequence of the virtual current caused by
charge redistribution at both sides of the membrane. In cable equation models,
this current has to be specified explicitly by setting a membrane capacitance
parameter, while in the electrodiffusion model, it is implicitly contained in the
PNP equations through the concentrations contained in the adjacent electrolytes.
It can be calculated by using the textbook formula for the capacitive current

IC = C
dU

dt
= C

kT

e

dJφK
dt

, (5.1)

where U is the potential across the capacitor, in this case the membrane potential
JφK brought to units of Volts, and C is the membrane capacitance.

In the following, C will be expressed as the capacitance per unit area, as it is
also the common choice in electrophysiology literature. It can be calculated by
the formula for a cylinder capacitor

C = 2πε0εmemb
l

A ln r2
r1

≈ 0.35× 10−2 F
m2 (5.2)

with l the length, A the surface area of the membrane patch, and r1 = ymemb and
r2 = ymemb + dmemb marking the opposite membrane boundaries, respectively.
The value turned out to be the same when using the formula for a parallel-plate
capacitor

C =
ε0εmemb

dmemb
, (5.3)

suggesting that the membrane can be regarded as a parallel capacitor in a first
approximation, as the membrane thickness is small compared to the axon diameter.
In summary, we have

fC =
1

eNAA
IC =

1

eNAA

ε0εmemb

dmemb

kT

e

dJφK
dt

as the third trans-membrane flux next to the ionic fluxes fNa and fK defined in
section 3.4 on page 46.
The total ionic flux follows the sodium flux in the rising phase of an AP and

is later antagonized by the potassium flux, resulting in a “down-up” shape in
fig. 5.6a. One interesting detail here is the small peak at the rear end of the ionic
flux. This comes out of the standard HH model directly, because the sodium
current declines faster than the potassium current. This feature has been referred
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to as a “gratuitous bump” in [31, p. 307] and can be interpreted as an artifact of
the original HH model, although later studies showed that such a structure can
be observed under the influence of certain drugs in experiments.
In contrast, the capacitive flux is proportional to the time-derivative of the

membrane potential and therefore shows an opposed behavior in fig. 5.6b. The
sum of both components results in the total membrane flux in fig. 5.7, following
roughly a triphasic “up-down-up” shape.
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Figure 5.5: Different components of the membrane flux at fixed point
on the membrane. These are shown at the same x-coordinate as
the potential curves from fig. 5.8. The total flux consists of capacitive
and ionic flux, which itself is the sum of Na and K channel fluxes.

5.2.2.3 Near- and Farfield Extracellular Potential

We will now focus on the time evolution of EAP signals at any point in the
extracellular domain. In fig. 5.8, the potential time courses are plotted for the
same x-coordinate at increasing distances from the membrane. Some major
features can be identified from these curves: a first positive peak (P1) followed by
a larger negative peak (N1), then a (very) small second positive peak (P2) with a
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Figure 5.6: Ionic and capacitive membrane flux at fixed point on the
membrane. Shown are the respective components of the total mem-
brane flux from fig. 5.5. The ionic flux is dominated by the sodium
current during the depolarization phase, and later by the potassium
current during repolarization; therefore it has a “down-up” shape. On
the contrary, the capacitive flux is proportional to the time derivative
of the membrane potential, therefore it goes up before it goes down.
Together, these two components form the “up-down-up” shape of the
total membrane flux in fig. 5.5.

4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5
−15

−10

−5

0

5

x 10
−6

Time [ms]

Io
n 

flu
x 

[m
ol

/m
2  s

]

x=5050 [µm]

 

 
Total flux

Figure 5.7: Total membrane flux at fixed point on the membrane. This
is the same total flux as in fig. 5.5, shown separately.
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subsequent longer phase of slowly varying potential with negative curvature (S),
and a last peak (P3). This characteristic “up-down-up” shape is maintained at
various distances from the membrane. The potential time course generally shows
similarities with the total membrane flux at the same x-coordinate (fig. 5.5),
suggesting that the membrane currents are the main contributors to the EAP.
The EAP of the point closest to the membrane, however, shows deviations

from the general pattern, notably in the rear part P2 – S – P3. Consequently,
the second peak P2 does not look like a peak, but more like a kink at a distance
of only a few micrometers away from the membrane, because the following part
S shifts from a negative edge towards a more or less constant, slightly negatively
curved bow. We will see later on that this can be attributed to electrostatic forces
from the membrane and the resulting concentration redistributions influencing
the nearfield potential.
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Figure 5.8: Extracellular potential at various distances from the mem-
brane. The potential time courses for a fixed x-coordinate x =
5.05mm are shown for several different y positions. While the char-
acteristic triphasic shape is maintained, the amplitude spans several
orders of magnitude as the signal is strongly attenuated with distance.

Since the action potential is a traveling wave, we can alternatively look at
snapshots of the extracellular potential and concentrations at a fixed point in
time. These profiles simply move through space with a constant (known) velocity,
such that the complete information about the potential and the EAP dynamics
at any point in space can be gained from these plots. As the signal moves in
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positive x-direction for all following snapshots, we read from “right to left” when
assessing the behavior of the profile in time, as opposed to the time course in
fig. 5.8.

As expected, the nearfield potential profile (a few nanometers to about 10 µm
from the membrane) in fig. 5.9 shows the same pattern as the total membrane
flux in fig. 5.7 and the EAP in fig. 5.8. The profile begins to the right with a
rise in the potential (corresponding to P1) followed by a sharp drop (N1) and
another rise (P2). After this first phase, the potential has a longer phase of low
variation (S) until another, less pronounced peak is observed at the rear end of
the traveling action potential (P3).
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Figure 5.9: Snapshot of the nearfield extracellular potential profile. The
plot shows the potential values for a stripe of the extracellular domain
ΩES just above the extracellular Debye layer (i.e., above the gray area
from fig. 3.1), at a fixed time. It shows a more complex structure
compared to the Debye layer.

The distance between the end of P1 and the beginning of P3 at the beginning
of the nearfield region is a good measure for the timescale of the extracellular
field we term the “EAP valley length”, the region with negative potential values.
It gives a characteristic length scale for the range of simultaneous ion channel
activity along the axon. In this simulation, it is about 2000 µm at the beginning
of the nearfield region. Of course, the EAP valley length is largely determined by
the AP velocity.

Figure 5.10 shows the potential for a large part of the extracellular space on a
logarithmic scale, demonstrating that the nearfield potential profile essentially
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continues into the farfield, albeit attenuating quickly with distance. The details
of the shape that could be previously seen in figs. 5.8 and 5.9 have been smoothed
out in this depiction by the logarithmic scaling, but the general pattern of the
EAP stays the same: a positive upwind domain (P1) just in front of the opening
channels, followed by a negative middle region (N1, S), and then again a positive
rear domain (P3). The EAP valley length (the diameter of the green area)
increases notably with distance, which we account to the diffusive character of
the system.
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Figure 5.10: Snapshot of the whole extracellular potential. A contour plot
of the log-scaled extracellular potential at a fixed time point. The
domain was cut at the left, right, and upper boundary to exclude
artifacts introduced by the boundary where the potential is almost
zero and switches signs due to small numerical errors.

5.2.2.4 Debye Layer Extracellular Potential

The spatial structure of the extracellular potential profile within the Debye
layer, i.e. at most a few nanometers from the membrane, shows a different
picture, see fig. 5.11a. It is almost exclusively dominated by the intracellular
potential (cf. fig. 5.11b), meaning that the intracellular potential spreads across
the membrane into the extracellular space, if with a greatly reduced amplitude.
We call this potential the “echo” of the action potential.
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The potential damping over the membrane will now be quantified. In [67,
chapter 12], a parameter s is used to estimate the electrical coupling between
intra- and extracellular electrolytes. It is defined as

s =
γD

dmemb

εmemb

εelec
(5.4)

in our usual notation of lengths and permittivities, and with γD being the Debye
length of the extracellular electrolyte. For s = 1, the electrolytes are fully
coupled, for s = 0 fully decoupled, meaning that the extracellular side does
not see anything of the intracellular potential (φout = 0). In the present setup,
s ≈ 0.0045. This is small, but not at all negligible, since extracellular potentials
are generally orders of magnitude smaller than intracellular ones. As a result,
a small s might still yield a potential that is comparable in amplitude to the
extracellular potential, in absolute numbers. A value of s = 0.0045 describes two
weakly coupled electrolytes.

Moreover, we found that s is not only a vague estimation for the coupling, it
is indeed the exact constant of proportionality between intra- and extracellular
potential at the membrane interface:

φout = sφin . (5.5)

We found this relation to be very accurate over the whole time course of a
simulation for an arbitrary x-coordinate along the membrane, implying that
the Debye layer profile in fig. 5.11a is just the constant s times its intracellular
counterpart in fig. 5.11b. As a result, the membrane potential can be expressed
in terms of only one of these two potentials:

JφK = φin − φout = φin − sφin = (1− s)φin

=
1− s
s

φout .

This means we have found an analytical expression for the relation of the elec-
tric potentials at opposite membrane boundaries, provided only a few physical
parameters of membrane and electrolyte are known. It remains to be shown
under which conditions this relation is valid. In extreme cases – where the bulk
electrolyte ceases to exist, as the bulk concentrations are not constant anymore
(see also chapter 7) – we found that eq. (5.5) does not hold anymore. Under most
physiological conditions, however, it might be a valid relationship that would
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enable the calculation of the extracellular membrane interface potential from the
intracellular one and vice versa.
Looking at the definition of s, another interesting connection can be made.

An extracellular solution with higher ionic strength in the sense of eq. (2.26)
implies, according to eq. (2.25), a smaller Debye length, which, in turn, means
faster screening of concentrations. As a result, also the constant s is decreased,
lowering the electrical coupling with the intracellular electrolyte. Essentially,
this corresponds to a local increase in permittivity. It can be understood by
recognizing that the concentrations always counteract the membrane potential –
as counterions are attracted and co-ions repelled – such that a stronger electrolyte
with a higher concentration of counterions will be more successful in “swallowing”
the membrane charge and therefore screening the potential.
The question of how much of the intracellular potential is “felt” on the extra-

cellular side is hence not only a property of the membrane, but to a large degree
also of the extracellular electrolyte itself. This fact raises the question whether
the assumption of fully independent intra- and extracellular electrolytes – which
some models rely on, see below – can be made in general. We now see that the
degree of dependence heavily relies on the magnitude of concentrations, which
might vary significantly among different brain areas.
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Figure 5.11: Snapshot of the Debye layer extracellular potential profile.
In the left part, the potential values for a narrow stripe of the
extracellular domain ΩES (corresponding to the gray area from
fig. 3.1) just above the membrane are plotted at a fixed time. This
turns out to be the intracellular action potential (right) propagating
over the membrane, with a significantly reduced amplitude.
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5.2.2.5 Transition Interval from Debye Layer to Nearfield

We have seen that nearfield/farfield and Debye layer potential time courses behave
quite differently. While the former is dominated by membrane currents, the latter
is driven by the intracellular potential, damped by a constant factor s. To further
investigate the change of EAP shape during the transition between Debye layer
and nearfield, we look at extracellular time courses much in the same way as
in fig. 5.8, but this time only for positions located between Debye layer and
nearfield, in fig. 5.12. The transition between the AP echo shape very close to
the membrane (figs. 5.12a and 5.12b) and the more intricate shape following the
membrane flux (figs. 5.12f to 5.12i) can be observed to happen within the range
of only a few nanometers, as depicted in figs. 5.12c to 5.12e.
In the course of this transition, the single peak from fig. 5.11a we termed the

AP echo is divided into two parts P1 and P2 by an interrupting negative peak
N1. Comparing again with fig. 5.5, we see that N1 results from the negative peak
present in the membrane flux, which is the consequence of opening voltage-gated
sodium channels and the following massive depletion of sodium ions. Roughly
speaking, the activation of sodium channels and the resulting negative peak N1
splits up the single positive peak from the AP echo into two peaks P1 and P2.
Looking closely, we can also see that the interrupting negativity N1 time-shifts
from left to right between fig. 5.12c and fig. 5.12f, shifting also the relation
in magnitude between P1 and P2. Furthermore, the rear part of the AP is
superimposed by the membrane flux components S and P3.
This interesting behavior can be further elucidated by looking at the large

concentration and potential gradients present in this range, illustrated for the
potential in fig. 5.13. It shows the spatial profile of the EAP time courses from
fig. 5.12 – normalized to baseline at t = 2ms in each point – at distinct time
points, which are indicated as vertical lines in fig. 5.12. The markers in fig. 5.13,
on the other hand, correspond to the respective positions of figs. 5.12a to 5.12i.

We can see a rapid fall-off in the potential profile with increasing distance from
the membrane in the normal scale fig. 5.13a, but the log-scaled fig. 5.13b shows a
switch in fall-off behavior. Note that there are some irregularities in the transition
interval where the EAP shape changes. From this, we can read that the potential
time courses are not directly comparable at the chosen time points. For example,
peak P1 in fig. 5.12c is smaller than P2, whereas in fig. 5.12d the opposite is the
case, due to the time-shift of N1 over distance. A better approach to define the
potential decay is via its maximum value in time. This is illustrated in fig. 5.14,
which shows the peak values of the potential time courses from fig. 5.12 (again
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Figure 5.12: Extracellular potential time courses over Debye layer. For
a selected number of points in the Debye layer, the extracellular
time courses show a transition from the AP echo dominated shape
directly at the membrane (panels a-b), via an intermediate shape
(panels c-e) towards the characteristic up-down-up shape (panels f-i),
which is also found at more distant positions, see fig. 5.8
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relative to baseline). The peak for each point possibly occurs at a different point
in time.
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Figure 5.13: Potential profile over Debye layer at various time points.
The values are relative to baseline at t = 2ms in each point. The
left panel shows the potential profile close to the membrane, which
is attenuated quickly with distance, independent of its value at the
extracellular membrane interface at different times. The right panel
shows the log-scaled absolute values of the same data, demonstrating
the exponential screening over the Debye layer. Since the potential
courses are not directly comparable due to the change in shape over
the Debye layer, the log-scaled plot shows some irregularities in this
region.

The analog is shown for the charge density in fig. 5.15. As before, we see a rapid
fall-off in normal scale plot (fig. 5.15a), which can be shown to be exponential
with an appropriate logarithmic scaling (fig. 5.15b).

In contrast to the charge density, a significant change in fall-off behavior is
found in the potential when traversing the Debye layer. Over the first 5 nm from
the membrane, it drops exponentially together with the charge density. Then
the rapid decay changes to a much slower one, where it is driven primarily by
membrane currents whose influence does not drop that drastically with distance.
Thus, instead of dropping towards zero as the concentrations do, the potential
only drops exponentially until it has reached a value in the same order as the
membrane current contributions.
We conclude that close to the membrane, the influence of the intracellular

potential is so large that all contributions by membrane fluxes are hidden in
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Figure 5.14: Decay of peak-to-baseline in EAP over Debye layer. For the
EAPs in fig. 5.12, the difference between peak and baseline potential
(value at t = 2ms) is plotted on a log-scale, showing an abrupt
switch in the fall-off rate.
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Figure 5.15: Charge density profile over Debye layer at various time
points. As in fig. 5.13, the left panel is in normal scale, the right
panel are the log-scaled absolute values. The kinks between y =
518 nm and y = 520 nm are a consequence of the charge density
switching signs, as it is already close to zero. In both panels, the
plotted markers correspond to the positions of the time courses in
fig. 5.12.
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the dominating AP echo. In this small range close to the membrane, the PNP
system seems to be described very well by the stationary Poisson-Boltzmann
eq. (2.22), letting the concentrations undergo an exponential decay towards their
bulk values. As the right-hand side of eq. (2.22) is an exponential function, the
potential – after integrating twice – must also follow an exponential function and
decay rapidly towards the “bulk potential”, which is zero for an electroneutral
bulk solution. However, this bulk potential is never reached, as by traversing
through the Debye layer, the influence of membrane fluxes increases, and the
Poisson-Boltzmann equation does not provide a suitable representation anymore.

5.2.2.6 Extracellular Concentrations

In analog to the nearfield and Debye layer potential in figs. 5.9 and 5.11, we
can also look at concentration snapshots, see fig. 5.16. We stated above that
the charge density (fig. 5.16d) is always oriented opposed to the potential, as
counterions are attracted to and co-ions repelled from the membrane, consistent
with the Poisson-Boltzmann eq. (2.22). In fig. 5.15b, we also saw that the charge
density drops exponentially over the Debye layer at any given time, satisfying
the equilibrium Boltzmann distribution on the right-hand side of eq. (2.22). This
indicates that in the Debye layer, the stationary Poisson-Boltzmann equation
is valid also for the timescales present in this instationary case. The membrane
transshipment happens so fast it can be considered instantaneous.

As expected from the charge density profile in fig. 5.15, the concentrations fall
off very quickly. Close to the membrane, sodium (fig. 5.16a) as the main counterion
(at equilibrium, the membrane is negatively charged from the extracellular point
of view) shows an inverted AP shape, since it is repelled by the incoming (positive)
action potential. Chloride as a co-ion, on the other hand, follows the AP shape due
to its negative charge (fig. 5.16c). A slightly different picture shows for potassium
in fig. 5.16b, whose shape shows similarities to the sodium profile, albeit somewhat
distorted. Since the extracellular potassium bulk concentration is two orders
of magnitude lower than those of sodium and chloride, the previous reasoning
of membrane currents being hidden in the steep concentrations gradients does
not fully apply here. In contrast to the other two ion species, a small variation
by membrane currents in absolute numbers has a larger effect due to its lower
bulk concentration, so that the influence of membrane currents can be clearly
seen in the potassium concentrations, especially the increase after opening of Kv

channels to the left of the profile. The total charge density in fig. 5.16d follows
the counterions, mainly the higher concentrated sodium ions.
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(d) (Scaled) charge density

Figure 5.16: Snapshot of the Debye layer and nearfield concentration
profiles. The concentration profiles of all three ion species and the
charge density are plotted up to a distance of about 10 µm from
the membrane. The strong concentration gradients close to the
membrane demonstrate the influence of the Debye layer. The charge
density can be seen to be dominated by the sodium concentration.
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5.3 Comparison with Other Models

In order to compare the electrodiffusion results with existing models for the
extracellular potential, a 10-fold finer x-resolution of hx = 10 µm was used
to ensure an accurate resolution of membrane dynamics, especially membrane
potential and channel currents. A finer y-resolution of hmax

y = 10 µm did not
yield a notable difference, so it was kept at hmax

y = 100 µm.

5.3.1 Line Source Approximation

The LSA model as an analytical solution of eq. (2.38) on page 37 has been
introduced in section 2.3.5.2. It can be used to calculate the extracellular
potential as a superposition of current contributions of a finite number of line
segments, as produced e.g. by a NEURON simulation. But also the extracellular
field computed by the electrodiffusion model can easily be compared with the
LSA results, as the membrane currents can be calculated directly as the sum of
ionic currents – known from the membrane flux boundary conditions – and a
capacitive current2

Ij = Iionic(x) + IC(x) (5.6)

= eNA

(
N∑
i=1

fmemb
i (x) + fC(x)

)
, (5.7)

where the capacitive flux fC was calculated as described in section 5.2.2.2, and x
is the center of the membrane-extracellular interface corresponding to line j in
LSA notation.

The resistivity ρ was chosen manually in such a way that the positive peaks P1
of electrodiffusion and LSA approximately matched for moderately large distances
from the membrane (> 5 µm in this case). This resulted in a value of ρ = 72 Ω cm,
corresponding to a conductivity of σ = 1.39 S/m, which is in good agreement
with [16] and 20-27.5% lower than in [42]. This is plausible, respecting that
measurements in [16, 42] were carried out at room/body temperature, while the
data in this work was generated at a lower temperature of T = 6.3 ◦C, causing a
lower conductivity. It should also be noted that this value matches well with the
conductivity of 60 Ω cm–70 Ω cm for Ringer’s fluid, an electrolytic solution that
is isotonic to body fluids like blood or cerebrospinal fluid [40].

2Note that unfortunately, the capacitive current IC was omitted in [82]. A correction is available
under http://dx.doi.org/10.1016/j.bpj.2013.12.026. This work already contains the
corrected version.
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Figure 5.17 shows the comparison of potential time courses for LSA and elec-
trodiffusion (ED) models at various distances from the membrane. Additionally,
the difference between the two curves is plotted.
One can see that both signals agree very well for larger distances from the

membrane (> 5 µm). For distances below a few microns, however, the deviations
are clearly visible. Especially the latter part of the signal after N1 shows qualitative
differences. A special case is the potential at a point directly adjacent to the
membrane in fig. 5.17a, which is exclusively dominated by the AP echo in
the electrodiffusion simulation, while LSA predicts a much smaller amplitude.
Continuing across the Debye layer and into the nearfield regime, both signals
show better matches for increasing distances, where the EAP calculated by the
electrodiffusion model tends to have smaller amplitudes and a tail (P2 – S – P3)
that is shifted downwards. A notable difference is also the potential answer to
the stimulus artifact, which happens instantaneously in the form of a rectangle
pulse in LSA, while the gradual electrodiffusion answer is much smoother in
comparison.

5.3.1.1 Separate Inspection of EAP Contributions

To further investigate the reason for the nearfield differences between ED and LSA
results, an additional simulation was carried out to eliminate the contribution
of ionic currents. To this end, an “echo simulation” was set up with the same
parameters as before, but with all membrane channels closed, resulting in zero
membrane fluxes. The lower potential Neumann-0 boundary condition was
replaced by a time-dependent Dirichlet boundary, generated separately by an
action potential simulation as before (the “source simulation”). This resulted in a
setup where the contributions of ionic membrane currents are eliminated, enabling
the assessment of the membrane potential and induced capacitive currents alone.
This can, in turn, be compared to the LSA model with only capacitive currents,
allowing for the evaluation of differences of capacitive contributions separately.
A notable difference between these simulations and the one considered before

is the usage of discrete Dirichlet values from the source simulation as a boundary
condition in the passive membrane solution. An interpolation of these discrete
values generated kinks in the lower potential boundary condition, which made
the system very susceptible to numerical oscillations. The kinks got picked up
and amplified quickly in the numerical solution, especially at larger distances
from the membrane, probably due to the threshold volume scaling. When using
a finer space grid – as mentioned above, with mesh parameters hmax

y = 100 µm
and hmax

x = 10 µm – together with a finer time grid, with upper time step values
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Figure 5.17: Comparison of ED and LSA potentials. The time courses
of extracellular potentials calculated by electrodiffusion (ED, solid
lines) and line source approximation (LSA, dashed lines) models
are compared at different distances from the membrane (a-i) for a
fixed x-coordinate. Additionally, the difference (dash-dotted lines)
between the two curves is shown. The different behavior for the part
between N1 and P3 is apparent at lower distances, but for larger
distances, a good agreement can be found.
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of ∆tmax = 10 µs and ∆tmax,AP = 1 µs for the source simulation, and additionally
using the same space and time grid in the passive membrane setup, the oscillations
could be successfully eliminated.
Figure 5.18 shows the EAP time courses at the same points as before for the

full ED simulation in fig. 5.8, in comparison with LSA calculated using only the
capacitive flux I = IC . As expected, Debye layer potentials deviate completely,
as the AP echo simulation still captures strong Debye layer gradients. But
interestingly, the match outside the Debye layer is remarkably well. Notable
differences can be made out during the on- and offset of the stimulation artifact
until t = 2ms.
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Figure 5.18: Comparison of the capacitive component of the EAP for
ED and LSA. This shows only the capacitive component of the full
EAP in fig. 5.17 for LSA (dashed lines) and ED (solid lines) model,
as generated by the echo simulation.

Since now the potential from the source simulation as well as the reduced
AP echo simulation are available at the same points in space and time, it is
possible to simply subtract the potentials of both electrodiffusion simulations
from each other, yielding a potential due to ionic currents only. In analogy to the
isolated capacitive component in fig. 5.18, this allows us to assess the isolated
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ionic component of the EAP in fig. 5.19. In contrast to the capacitive component,
the potential due to ionic currents shows bold deviations also for large distances.
It now becomes clear that the nearfield deviations between electrodiffusion and
LSA models can be tracked down to the ionic component of the EAP.
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Figure 5.19: Comparison of the ionic component of the EAP for ED
and LSA. This shows only the ionic component of the full EAP
in fig. 5.17 for LSA (dashed lines) and ED (solid lines) model, as
calculated by subtracting results of the echo simulation from the
source simulation.

We have now arrived at a point where we can try to explain the difference
between the full electrodiffusion model and volume conductor models like LSA.
The deviations have been found to originate in the ionic part of the extracellular
potential, the main contributor. The literature reveals several hints for an
explanation: in [41], the authors describe a region of potassium accumulation
around a nerve fiber with an approximate size of 30 nm, which is referred to
as a Hodgkin-Frankenhaeuser space or simply Frankenhaeuser space in later
publications. This might actually be a different name for the diffuse layer from
the EDL field, see section 2.3.2. In his analysis of the PNP equations, Mori [73]
describes the existence of an intermediate diffusion layer of size √γD between
Debye layer and bulk solution and also mentions Frankenhaeuser spaces in this
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5 Model of an Unmyelinated Axon

context. However, the dimension of his diffusive layer is orders of magnitude
larger (about 30 µm for a Debye length of γD = 0.9 nm) than the dimension
mentioned in [41]. This difference in magnitude does not have to be contradictory:
while the diffuse layer is the region where concentrations deviate from their bulk
values, Mori’s diffusion layer describes the region in which these concentration
deviations have an influence on the potential, such that the electroneutrality
assumption can not be used. In any case, the existence of such a layer and its
influence on the EAP might be the very difference we see in fig. 5.19 and therefore
the one that is not captured in volume conductor models.

5.3.2 Numerical Solution of the Volume Conductor Equation

In addition to the special case of the line source approximation, the underlying
PDE was also solved numerically, to which we will refer as VC in the rest
of this section, in dissociation to the analytical LSA. Our main goal was to
have a second model to compare with, and to ensure our numerical methods
work correctly, as in this case VC should give the same results as LSA. The
same computational grid and exterior boundary conditions as for the source
simulation from the previous section were used for the VC simulation, the
only difference being that we only used the extracellular domain ΩES of the
source grid for faster computations, eliminating the cytosol unknowns from the
system. The internal membrane flux conditions were loaded from a previous
PNP simulation. Large parts of the implementation infrastructure described
in section 4.2.2 could be reused for this, with the only major change being
the usage of a different parameter class LaplaceParameters for the operator
Dune::PDELab::ConvectionDiffusionFEM.

To validate the numerical results, they were first compared to the LSA model,
which should give an exact match within the tolerance of numerical and boundary
errors present in the numerical algorithm. Figure 5.20 shows this comparison.
As before, a wide range of the extracellular space was chosen, including very
small distances from the membrane. This serves to detect deviations close to the
membrane current source, because the LSA uses a collapsed line source, while the
numerical simulation uses the full cylinder surface source. No notable differences
can be found even very close to the membrane, suggesting that the representation
as a line source is a valid approximation. At larger distances from the membrane,
the artifact of the grounding Dirichlet boundary in VC becomes visible. Since this
error is an absolute one (cf. the elaboration in section 3.3), its relative influence
grows with increasing distance from the membrane. Within the considered range,
i.e. at sufficient distances to the upper boundary, the error is still acceptable.
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Figure 5.20: Comparison of numerical and LSA solution to the volume
conductor equation. A wide range of extracellular points was used
to assess the accuracy of the numerical solution (solid lines). The
match is very good even at small membrane distances, indicating
that the line source approximation (dashed lines) provides a suitable
reduction of the full cylinder geometry. At larger distances, the
influence of the upper Dirichlet boundary leads to notable deviations
from LSA.
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5 Model of an Unmyelinated Axon

After ascertaining the numerical solution is correct, it can be compared to
the electrodiffusion results generated on the same computational grid, shown in
fig. 5.21. Unsurprisingly, the plot shows the same situation as in fig. 5.17.
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Figure 5.21: Comparison of ED and VC results. Both numerical simulations
(ED, solid lines; VC, dashed lines) were generated on an identical
computational grid and compared at the same positions as before in
fig. 5.17, showing essentially same differences (dash-dotted lines).
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5.4 Summary

5.4 Summary

The modeling approach of chapter 3 was applied to an axon with homogeneous
channel densities. The resulting extracellular potentials can largely be attributed
to the membrane currents following the HH system, consistent with existing
models based on volume conductor theory.

However, close to the membrane, where the Debye layer was explicitly resolved,
we found significant differences, as large concentration and potential gradients
towards the membrane dominate the membrane currents. In accordance with
the Poisson-Boltzmann eq. (2.22), the concentrations are screened exponentially,
relaxing to their bulk values over the extent of the Debye layer. The changes
in concentration triggered by membrane fluxes here are small compared to the
deviations of concentrations from their bulk values in the Debye layer, therefore
this does not have a significant effect on the potential. While this region with
prominent characteristics is only about 10 nm wide, its effect on the EAP shape
is clearly visible up to distances of at least 5 µm, underlining the importance of
this modeling approach.

We note that this is consistent with the PNP system analysis in [73], where a
diffusion layer with an extent on the order of √γD is found. We attribute the
deviations between LSA and electrodiffusion model to the presence of such a
layer with associated concentration redistributions and its effects on the potential.
On the contrary, the good agreement with the LSA model in large parts of the
domain can be regarded as a validation of our model. The only free parameter
in the LSA model, the resistivity ρ, was fitted to yield the optimal agreement
with our data, and turned out to match very well with reported values from the
literature.
From the computational point of view, even this seemingly simple example

of a homogeneous axon imposes a severe challenge on the numerical solution.
At the membrane, sharp discontinuities (in concentrations) as well as steep
gradients (concentrations and potential) occur, which were accounted for by a
sub-nanometer grid resolution in radial direction. In longitudinal direction and
off the membrane, large mesh sizes on the order of 102–103 µm were used. The
usage of appropriate linear solvers was crucial to cope with the introduced grid
anisotropy. The multi-scale character of the system also shows in the generated
solution. For example, the amplitudes of the potential differ by several orders
of magnitude between the intracellular values (about 100mV), the extracellular
values close to the membrane (up to a few 100 µV in the Debye layer), and some
microns away from the membrane (fractions of 1 µV).
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6 Model of a Myelinated Axon

If our brains were simple enough for us to
understand them, we’d be so simple that we
couldn’t.

(Ian Stewart)

To handle myelinated axons, some major changes are required in the model,
causing further adjustments in the discretization and the numerical algorithms.
These changes will be presented in this chapter as well as their influence on the
simulation results.

6.1 Representation of Myelin in the Model

The relevant changes to include a myelin sheath around the axon – with respect
to the general model from chapter 3 – concerns the membrane. Following the
model assumption of a cylindrical axon, the myelin wrapper can be seen as a
hollow cylinder that encloses the axon, albeit with a larger radius than the axonal
membrane.

In reality, myelin is not a homogeneous material, it rather consists of multiple
repeating layers of lipid – consisting of polar heads and hydrophobic tails – and
water (cf. [54, chapter 6.17]). To simplify the myelin representation, the presence
of these multiple layers with varying dielectric constants is neglected. Instead, it
is assumed to be a homogeneous material with an effective electric permittivity
εmyel, which does not impose a problem if one is not interested in the fine-granular
potential profile across the myelin sheath, but rather the effective membrane
potential.

Estimated values for εmyel are within the range of 3–8.5 [54, 78]. An increased
myelin sheath thickness or tighter binding with the membrane might, however,
result in a decreased value [72]. Furthermore, the effective value should also
respect the lower axonal membrane permittivity of εmemb = 2, which is located
below the myelin sheath. For the rest of this chapter, we made the more or less
arbitrary choice of εmyel = 6, which can easily be changed in the application’s
config file.
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6.1 Representation of Myelin in the Model

The computational domain from section 3.2 needs to be adjusted to represent
the myelin sheath as well, as shown in fig. 6.1, where the myelin is included
explicitly. It can be seen that the dashed membrane interface is not a straight
line anymore, it rather consists of multiple horizontal and vertical parts. If the
Debye layer was to be resolved for this membrane interface shape, as suggested
in fig. 6.1, the number of grid points would become very large, resulting in an
intractable number of DOFs.

Figure 6.1: Computational domain with explicit myelin representation.
Due to the varying membrane thicknesses, the resolution of the Debye
layer would require an unnecessarily high number of unknowns when
using a tensorial grid.

Fortunately, a property of the potential can be utilized. It can be observed
that, in a first approximation, the potential shows a linear decay across the
membrane. This is due to the fact that the Debye length γD is much smaller
than the membrane thickness dmemb, meaning that charges on both sides of the
membrane only have a limited effect on the electric field inside the membrane.
Arguing mathematically, the right-hand side of the Poisson eq. (2.43) is close to
zero, thus yielding a potential with zero curvature.
This was validated in simulations with a fine membrane resolution (n = 10

membrane elements in y-direction) and compared to the case n = 1, showing a
negligible deviation in fig. 6.2. As described in section 4.2.2, this also enables
blocking the system matrix, which is of great advantage for the performance of
preconditioner and linear solver.
When assuming a linear potential course over the membrane, a nice property

can be utilized: a membrane with thickness d1 and permittivity ε1 as in fig. 6.3a
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6 Model of a Myelinated Axon
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Figure 6.2: Comparison of potential profiles for different membrane res-
olutions. Potentials across the membrane at a fixed x-position of
5mm (center of the axon) at two exemplary time points: resting state
at t = 4.7ms (left) and AP peak at t = 5.7ms (right). Solid lines
show the profile for n = 10 membrane elements and dashed lines for
a single membrane element in y-direction. Differences are negligible
at every point in time (not shown).

will have the same membrane potential decay as another membrane with thickness
d2 = d1

2 and permittivity ε2 = ε1
2 in fig. 6.3b. With this, the myelin parts of the

membrane from fig. 6.1 can be “collapsed” onto the axonal membrane by changing
the permittivity accordingly, see fig. 6.4. This results conceptually in the same
computational grid as for an unmyelinated axon, with only one finely resolved
Debye layer on each side of the membrane.

Following the previous explication, the collapsed myelin permittivity ε′myel can
be calculated as

ε′myel = εmyel
dmemb

dmyel
,

with the (nodal) membrane thickness dmemb as before and the myelin thickness
dmyel, which was chosen to be 500 nm in the following. With this, we arrive at
ε′myel = 0.06.
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6.1 Representation of Myelin in the Model
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Figure 6.3: Relation of linear potential decay and membrane thick-
ness/permittivity. Doubling membrane thickness and permittivity
(left) results in the same membrane potential difference when the
potential is linear across the membrane.

collapse

Figure 6.4: Computational domain with collapsed myelin representa-
tion. Myelination is represented implicitly, by collapsing the mem-
brane to a homogeneous thickness and instead using effective permit-
tivities that compensate for the thickness modification.
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6 Model of a Myelinated Axon

6.2 Simulation Setup

The changes in the axonal geometry described above require a number of changes
in the numerical implementation, which will be presented in the following.

6.2.1 Modified Grid Generation

The grid spacing in x-direction can not be equidistant as before, since the
different material properties of myelin and nodes of Ranvier have to be accurately
represented without using a prohibitively small grid size. A related problem arises
through the jumping material coefficients, necessitating the introduction of fine
transition intervals between myelin and nodes of Ranvier. Inside the membrane
groups – where the permittivity is constant – a coarser, equidistant mesh size
may be used. Analogous to the y-direction, abrupt changes in mesh width are
avoided.

This results in a mesh generation procedure as follows: the transition intervals
between myelin and node of Ranvier – as well as the node of Ranvier itself –
are finely resolved with a minimum mesh width of hmin

x . This value should be a
fraction of the node width lnode = 1 µm, here we used hmin

x = 100 nm. Outside the
transition interval, the grid spacing is smoothly increased following a geometric
series up to a maximum equidistant grid size of hmax

x = 10 µm for the myelin
parts. This procedure is mirrored towards the next node of Ranvier and repeated
for each node until the end of the x-interval. The length of an internode segment
lmyel = 999 µm was chosen such that the starting coordinates of two successive
nodes of Ranvier are always 1mm apart.
For an axon with 10 nodes of Ranvier and above parameters lnode, hmin

x and
hmax
x , this will increase the overall number of grid points by a factor of 7-8 in

comparison to the unmyelinated case. This number is acceptable, especially when
running the simulation in parallel, where even a much finer grid is still tractable.
In the following, we will consider a reference setup with a myelinated axon of

length 48mm consisting of 48 nodes of Ranvier. The number 48 derives from
the fact that the simulation was run on a machine with 48 cores, allowing an
easy partitioning that puts one node of Ranvier on each processor, see below. All
relevant parameters are listed in table 6.1.
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6.2 Simulation Setup

Table 6.1: Simulation parameters for the myelinated axon model.

Parameter Value Unit Description

GRID

xmax 48 mm Domain size (x-direction)
ymax 10 mm Domain size (y-direction)
ymemb 500 nm Radius of the axon
dmemb 5 nm Membrane thickness
dmyel 500 nm (Implicit) myelin thickness
lnode 1 µm Width of one node of Ranvier
lmyel 999 µm Width of myelin internode
hmin
x 100 nm Minimum mesh size in x-direction

(node of Ranvier)
hmax
x 10 µm Maximum mesh size in x-direction

(myelin)
hmin
y 0.5 nm Minimum mesh size in y-direction

(Debye layer)
hmax
y 100 µm Maximum mesh size in y-direction

#DOFs 5 250 448 1 Total number of unknowns

PHYSICS

εmemb 2 1 Membrane permittivity (node of
Ranvier)

ε′myel 0.06 1 Collapsed membrane permittivity
(myelin)

εelec 80 1 Electrolyte permittivity

[Na]CY
0 12 mM Intracellular Na+ bulk concentration

[K]CY
0 125 mM Intracellular K+ bulk concentration

[Cl]CY
0 137 mM Intracellular Cl− bulk concentration

[Na]ES0 100 mM Extracellular Na+ bulk concentra-
tion

[K]ES0 4 mM Extracellular K+ bulk concentration
[Cl]ES0 104 mM Extracellular Cl− bulk concentration
DNa 1.33× 10−9 m2/s Na+ diffusivity
DK 1.96× 10−9 m2/s K+ diffusivity
DCl 2.03× 10−9 m2/s Cl− diffusivity
gNav 1200 mS/cm2 Conductance of the voltage-gated Na

channel
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6 Model of a Myelinated Axon

Parameter Value Unit Description

PHYSICS

gKv 360 mS/cm2 Conductance of the voltage-gated K
channel

gL 0.5 mS/cm2 Total leak conductance

NUMERICS

reduction 5× 10−6 1 Newton reduction
absLimit 1× 102 1 Newton absolute limit
tend 20 ms Simulated time
∆tmin 0.05 µs Minimum time step
∆tmax 10 µs Maximum time step
∆tmax,AP 10 µs Maximum time step during AP
itmin 10 1 Newton iteration threshold for time

step increase
itmax 30 1 Newton iteration threshold for time

step decrease

6.2.2 Permittivity Smoothing

Making sure the grid resolves the membrane group transitions is crucial, but the
membrane permittivities will still exhibit a sharp discontinuity at these transitions.
Therefore, membrane permittivities are smoothed at the start of a simulation by
applying the smoothstep function

smoothstep(x) = 3x2 − 2x3 (6.1)

to transitions intervals, effectively applying cubic Hermite interpolation. The
extent dT of a transition interval depends on the width of the nodes of Ranvier.
Here, it was chosen to be 100 nm, i.e. 1

10 of the node width. This results in the
membrane permittivity profile in fig. 6.5; the effects of the smoothing operator
can clearly be seen when zooming into a node transition interval in fig. 6.5b. This
prevents numerical oscillations at sharp coefficient discontinuities, to which the
standard finite element method is very susceptible.

6.2.3 Parallelization and Adjustments of Numerical Methods

Due to the increasing computational demands by the inclusion of myelin into
the model, the numerical solution was only run in parallel. As before, the grid
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(a) Extracellular membrane permittivity profile
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(b) Zoom into one node of Ranvier

Figure 6.5: Equilibrium permittivity profile. The relative permittivities
exhibit jumps at membrane group boundaries, resulting in a comb-
shaped profile (left). The discontinuities were smoothed to prevent
numerical oscillations, as can be seen in the zoomed-in transition
region between myelin and node of Ranvier (right).

was partitioned only in x-direction. This not only ensures a joint treatment of
membrane and adjacent electrolyte on one processor, it additionally avoids placing
the highly dynamic nodes of Ranvier close to a processor boundary, which imposes
a serious difficulty for the parallel solver. We ensured that nodes of Ranvier were
always close to the middle of each processor subdomain, as illustrated in fig. 6.6.
The fact that the computational grid now has strongly varying mesh sizes in

both x- and y-direction introduces severe problems for the linear solver. The
BiCGStab iterative solver that was used for the unmyelinated case exhibited
breakdowns when solving the problem in parallel, preferentially when using a
higher number of processors. This is a known problem of the default BiCGStab
algorithm [90], which can apparently be circumvented by so-called look-ahead
techniques (see, e.g., [25]). These techniques have not yet been implemented in
the dune-istl module.
But fortunately, there are a number of alternative linear solvers to choose

from. For the problem at hand, we used a GMRes iterative solver, preconditioned
by an AMG with an ILU0 smoother and using SuperLU on the coarsest grid.
The GMRes turned out to be very robust, albeit slightly less performant in
comparison to BiCGStab. Using the AMG preconditioner in conjunction with an
ILU smoother takes care of the strong grid anisotropy.
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6 Model of a Myelinated Axon

Figure 6.6: Partition of the computational domain for the parallel case.
As in the unmyelinated case, the domain is divided by cuts in vertical
direction. In the myelinated case, additional care has to be taken in
order to not place the highly dynamic nodes of Ranvier close to a
processor boundary, as suggested in the sketch.

6.2.4 Solver Scaling Tests

We again assessed the parallel performance of the numerical solution using
the new linear solver backend. This time, however, we avoided strong scaling
measurements, since this would inevitably place the processor boundaries close
to nodes of Ranvier when choosing the number of nodes smaller than p. On the
other hand, taking a setup with the number of nodes of Ranvier equal to the
highest processor count p = 48 and using successively less processors to solve it
was not an option either, since the sequential solution of such a large problem
would have taken months.

Instead, a weak scaling test variant was used. The domain size was increased
together with the number of processors, and the scalability S was calculated as

S(p1, p2) =
t1
t2
, (6.2)

where we implicitly assume that the number of DOFs grows with a factor of p2p1
and the number of unknowns is the same on all processors, although this is not
exactly the case.
Results obtained in this manner for a fixed simulation time length tend are,

however, not comparable. Because the AP velocity is significantly higher com-
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6.2 Simulation Setup

pared to the unmyelinated case, the action potential wave has already left the
computational domain on the right boundary before it has exhibited a full
depolarization–repolarization–hyperpolarization cycle at the left boundary, for
small domain sizes. Only the largest simulation provides a sufficiently long axon
of 48mm to represent one full spatial wave length of the AP.

For smaller domain sizes, the AP rushes through the small extent of the axon
in a fraction of the total simulated time; the longer the axon gets, the more
time is spent by the traveling action potential within the computational domain.
Consequently, the fraction of the simulation time that the axonal membrane is at
rest is getting smaller, and the membrane is active for a larger fraction of time.

Of course, the active parts provide a much more difficult task for the numerical
solution, as the system is more dynamic due to the large membrane currents, such
that the solver needs more iterations and the total computation time increases.
This is reflected in the initial defect (i.e., the norm of the residual ‖r0‖ at the
beginning of each time step) in fig. 6.7, which shows an increase with the number
of processors.
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Figure 6.7: Initial defect for different domain sizes. The initial defect at
the beginning of each time step is growing with processor count (and
thus with domain size), since the AP wave spends a larger fraction of
time within a longer axon.

Instead we consider, for each different p, only the time interval where the
rightmost membrane element has a membrane potential of at least 60mV. With
this, we can calculate the average solver statistics only for the AP depolarization
phase, shown in table 6.2. This evaluation presents a normalization excluding
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6 Model of a Myelinated Axon

the effects of different proportions of high or low system dynamics, as it only
considers the time intervals of highest activity.

Table 6.2: Solver statistics per time step for the parallel solution using
different processor counts p. All values are averages over all time
steps. The total time includes matrix and residual assembly as well as
the actual solution time by Newton’s method. The solver time includes
both preconditioner setup and LS time, the LS time only the actual
GMRes solve. The number of Newton iterations as well as the number
of linear solver iterations per Newton iteration increase with problem
size.

p total
time

S assembler
time [s]

solver
time [s]

LS time
[s]

LS it. LS time
/ it. [s]

Newton
it.

1 139.1566 119.2886 3.6972 1.134798 6.467105 0.186419 2.6746
2 147.3648 0.94 115.6824 15.4106 4.185112 21.094705 0.206684 2.7416
4 160.3079 0.87 119.7298 23.6005 5.913261 23.816343 0.252483 3.0371
8 265.5756 0.52 132.6605 113.0225 28.407855 64.485612 0.412704 3.502
10 246.884 0.56 128.8954 99.4551 27.090431 69.478478 0.368952 3.4438
48 199.0493 0.70 85.2555 99.7457 31.620872 90.697419 0.332404 3.111

Notable anomalies are the cases p = 8 and p = 10, which show inferior
performance to the case p = 48. An inspection of the diagnostic output reveals
that the time step size oscillates for these cases during the initiation of the AP,
caused by a series of non-converging Newton iterations.

The overall solver timings normalized to the depolarization time interval show
acceptable scaling properties, particularly for the case p = 48, which will be used
to generate the simulation results considered in the following section.

6.3 Simulation Results

As before, equilibrium states and transient dynamics are considered separately.
Most of the following results were obtained from the largest simulation with
parameters according to table 6.1, but some plots were also obtained from a
smaller, coarser setup with xmax = 10mm and hmax

x = 100 µm when looking
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6.3 Simulation Results

at point-data over time. In these cases, the domain extent did not make any
difference, and deviations due to the x-resolution were negligible1.

6.3.1 Some Notes on the Separate Visualization of Myelin and
Node Values

Because of the comb-shaped permittivity profiles – as shown in fig. 6.5 – it is
difficult to visualize the extracellular concentration and potential dynamics close
to the membrane, as – to stay in the picture of a comb – the variation of these
variables within “shaft” or “tooth” segments is much smaller than the difference
of values across those two groups. This makes it impossible to see the variations
within each group when plotting the complete domain.

Therefore, the vector of x-coordinates was partitioned into three disjoint sets:
the set X(node) of all node of Ranvier coordinates, the set X(tran) containing
the coordinates at transition intervals between myelin and nodes (specified by
the maximum distance of dT towards the nearest node coordinate), and the set
X(myel) containing the remaining x-coordinates of myelinated membrane cells,
such that x = X(myel) ∪X(node) ∪X(tran) holds. Note that this partition is done
regardless of the y-coordinate, so the domain is cut into stripes parallel to the
y-axis by this process.
With this partition of the x-axis, it is possible to visualize the values close

to myelin and node of Ranvier parts separately by only using the data at x-
coordinates given by X(myel) or X(node), respectively. We will use this later on to
compare our results with the LSA model, for myelin and node stripes separately,
and we will also take a close look at the highly dynamic transition interval
between any of those two regions. The partition into three disjoint subsets is also
important for the calculation of the equilibrium state from two different, small
equilibrium simulations, as will be explained in the following.

6.3.2 Equilibrium States

As in the unmyelinated case, the equilibration simulations are performed on
a grid with only one element in x-direction to speed up the procedure. Since
we now have different membrane permittivities, the equilibrium concentration

1The reason for using the smaller dataset when possible is a purely technical one: the size of
the large dataset is about 419GB on disk. In order to visualize this data, each variable has
to be loaded separately for a domain subset and time subinterval of interest, as otherwise
the data would not fit into the 8GB of RAM on the author’s workstation. This results in
tedious cycles of loading and clearing data for generating one single graph, which was much
more comfortable with the smaller dataset of only 44GB.
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6 Model of a Myelinated Axon

and potential profiles are quite different between myelin and nodes of Ranvier.
Therefore, we need to carry out two different equilibration simulations, one for
the myelin parts and one for nodes of Ranvier. At the beginning of the actual
AP simulations, the values of both simulations are transferred to the fine grid, to
the respective x-intervals of the domain associated with either myelin (X(myel))
or a node of Ranvier (X(node)). At transition intervals x ∈ X(tran), the values of
both equilibrium states are linearly interpolated with respect to the (smoothed)
membrane permittivity at the current x-coordinate, calculated as described in
section 6.2.2. This yields a smooth equilibrium state that is valid with respect
to the membrane permittivity distribution on the fine grid. The system is then
allowed to settle for a small number (< 20) of time steps before the stimulation
electrode is switched on.

The equilibrium concentrations obtained hereby follow a distinct, comb-shaped
distribution due to the variations of electrical permittivities along the axonal
membrane, as depicted in fig. 6.8. The charge density largely follows the per-
mittivity profile from fig. 6.5. The application of the smoothing operator to the
permittivities turns out to be successful, as concentrations exhibit no oscillations,
in contrast to the non-smoothed case (not shown).
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(a) Extracellular membrane charge density profile
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(b) Zoom into one node of Ranvier

Figure 6.8: Equilibrium charge density profile. The scaled charge densities∑
i zini at equilibrium follow a distinct, comb-shaped distribution

along the membrane (left). On the right, a zoom into one node of
Ranvier reveals the jump in equilibrium concentrations due to different
membrane permittivities at myelin and nodes of Ranvier.
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6.3 Simulation Results

6.3.3 Action Potential

As in the previous chapter, the stimulation electrode was mimicked by injecting
a sodium rectangle pulse into the cell. The stimulation site was placed at the
starting coordinate of the first node of Ranvier at xstim = (500 µm, 0 µm). This
time, a drastically reduced stimulation current of about 10 pA over a duration of
3ms was enough to elicit an action potential, as the isolation by myelin reduced
the current leak over the membrane.

6.3.3.1 Intracellular Potential

In fig. 6.9, the generated action potential at different positions along the axon
is shown on the right, yielding an impressive speedup of about a factor of 5.
Another subtle difference is that the last curve shows a slightly higher amplitude
than the other APs because the potential can not freely exit at the rear end of the
axon (Neumann boundary for concentrations). Interestingly, this does not have
an effect in the unmyelinated example, probably because the AP moves much
slower, such that the excess in concentrations can drain off through membrane
channels. In the myelinated example, the propagation is so fast that a swell
of ions forms, showing a significant effect in the intracellular potential close to
the right cell boundary. While this phenomenon clearly has to be regarded as
a boundary artifact in this case, an accumulation of charge can be expected at
axonal “dead ends” like synaptic boutons following an arriving action potential
wave.

6.3.3.2 Membrane Flux

The ionic fluxes at a node of Ranvier in fig. 6.10a show the same shape as in
the unmyelinated example from fig. 5.5 on page 80. This was expected, since
the channel kinetics did not change. However, due to the factor of 10 in the
channel densities, the amplitude is about a factor of 10 higher as well. This also
explains why the capacitive flux is small against the others, resulting in a total
membrane flux that is dominated by the ionic currents. A different picture shows
at myelin parts, where no ion channels are present, resulting in zero ionic flux in
fig. 6.10b. This causes the total membrane flux to be equal to the capacitive flux,
which is smaller than at nodes of Ranvier due to the smaller permittivity (and
therefore capacitance). The result is a markedly reduced amplitude of the flux in
comparison with nodes of Ranvier.
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Figure 6.9: Intracellular action potential propagation. The action poten-
tial of the current setup (right, axon length 48mm) is compared to
the AP of unmyelinated axon from the previous chapter (left, length
10mm). Please note the difference in spacings between measurement
points. The increase in propagation speed is especially obvious, which
is about a factor of 5 here.
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(a) Node of Ranvier
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(b) Myelin

Figure 6.10: Membrane flux at node of Ranvier and myelin. The total
membrane flux at a node of Ranvier (left) shows differences to that
in the unmyelinated axon in fig. 5.5, as the capacitive component is
very small. In contrast, at myelin parts (right), there are no ionic
fluxes, so the capacitive flux dominates, although it has a markedly
reduced amplitude in comparison to the node of Ranvier flux.
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6.3 Simulation Results

6.3.3.3 Debye Layer Concentrations

The extracellular concentration time courses in the Debye layer are shown in
fig. 6.11. The delay in the activation of voltage-gated potassium (KV ) channels
can be seen nicely in fig. 6.11b, showing first a negative deflection due to the
arriving AP and then a larger positive peak as KV channels open.
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(d) Charge density

Figure 6.11: Debye layer concentration time courses at node of Ranvier.
When compared with the concentration snapshots of the unmyeli-
nated axon (cf. fig. 5.16), the shapes are quite similar. Sodium
concentrations dominate the charge density and result in a chlo-
ride concentration with flipped sign. The potassium concentration
shows a negative peak due to the arriving AP and a delayed positive
response due to the activating voltage-gated KV channels.
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6 Model of a Myelinated Axon

6.3.3.4 Debye Layer Extracellular Potential

The most interesting part for the myelinated axon certainly is the extracellular
potential. One of the main questions is whether the AP echo observed in the EAP
of the unmyelinated axon will be damped out by the introduction of a myelin
insulation.
The Debye layer extracellular potential at nodes of Ranvier clearly shows the

same shape as the intracellular potential in fig. 6.12, thereby not displaying a
different behavior than in the unmyelinated case (cf fig. 5.11 on page 86). They
even show the same amplitude, which is not too surprising – the membrane has
the same thickness and permittivity at nodes of Ranvier as in the unmyelinated
case, and the intracellular potential amplitude has a comparable size as well, so
a comparable extracellular potential according to eq. (5.5) on page 85 could be
expected.
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(a) Debye layer extracellular potential
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Figure 6.12: Debye layer potential time course at node of Ranvier. The
Debye layer potential directly at the extracellular membrane interface
(left) can be seen to directly correspond to the intracellular potential
on the opposite membrane interface (right), the only difference being
the amplitude, which was significantly reduced by the membrane.

This does, of course, not hold for the myelin parts of the membrane, where the
electric properties of the membrane have changed significantly. The result can be
seen in fig. 6.13, where the effects of the lower myelin permittivity can be seen in
the greatly reduced amplitude compared to the node of Ranvier in fig. 6.12a.
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Figure 6.13: Debye layer potential time course at myelin. The effects of
the lower membrane permittivity are clearly visible, as the potential
amplitude is greatly reduced compared to the one in front of a node
of Ranvier in fig. 6.12a

6.3.3.5 Near- and Farfield Extracellular Potential

To get a better idea of how the extracellular potential looks like outside the Debye
layer, the potential time courses at various positions were plotted in fig. 6.14.
The arrangements of plots corresponds to the computational domain, i.e. plots in
the same row have the same y-coordinate, and plots within the same column have
identical x-coordinates. The second column has its x-value at a node of Ranvier,
while the first and third columns are located at the center of the neighboring
internode (myelin) segments. The difference in the EAP curves close to the
membrane is striking (bottom row), while at more distant locations (middle rows)
the time courses at myelin and node positions become more and more alike. At a
distance of a few hundred micrometers from the membrane (top row), the signals
look the same for each x-coordinate.
The interpretation is straightforward: close to the membrane, the potential

mostly “sees” what is happening in the membrane compartments close-by and
is therefore dominated by its activity. This explains why nearfield potentials at
myelin and nodes show such distinct shapes: at nodes, membrane currents are
strongest and dominate the potential. Conversely, at myelin compartments, there
are no membrane currents at all, so the potential just shows the damped AP echo
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6 Model of a Myelinated Axon

– albeit with a greatly reduced amplitude, which can be read from the scale of the
y-axis between e.g. the bottom-left and bottom-middle plot.

The further away from the membrane, the more important become contributions
from other membrane parts, resulting in a harmonization of potential curves
at different x positions. Interestingly, the sheer distance dependence of the
Poisson equation makes for a “democratization” of the membrane contributions.
The strong contributions of the small-extent nodes of Ranvier and the small
contributions of the much longer myelin parts become equally important in the
distant extracellular field.

This also means that even in the myelinated case, the AP echo and the resulting
capacitive currents represent an important contribution to the EAP, which was
not intuitively clear from the beginning.

6.4 Comparison with LSA

Following up on the comparison of EAPs at different distances from the membrane
in section 5.3.1, we now do the same for the myelinated axon. The interesting
question now is if we can find the same qualitative results, i.e. a good agreement
at larger distances and significant deviations close to the membrane. Since now
the axon is not homogeneous, we have to compare the potential time courses
not only at different y distances, but also at different x-coordinates. For the
total membrane current in eq. (5.6) on page 93, this also involves replacing the
previously constant membrane capacitance by a position-dependent capacitance
C(x), because now A(x), l(x) and εmemb = εmemb(x) vary with x in eqs. (5.2)
and (5.3). For the only free parameter in the LSA eq. (2.40), the same value as
before was chosen for the resistivity ρ = 72 Ω cm.

In fig. 6.15, the time courses of the extracellular potentials are shown in a grid
representation, where the position of each subplot roughly gives its position in
the actual computational grid, as before in fig. 6.14. Again, points close to the
membrane are found in the lower rows, points with larger distances in the upper
rows. The arrangement of columns and the positions of the individual subplots
are the same as in fig. 6.14.

For larger distances as in fig. 6.15, the overall agreement between electrodiffusion
and LSA models is generally good, albeit in contrast to the unmyelinated case,
notable differences can also be found in the farfield, e.g. at peak P1 or between
peaks N1 and P3. Another comparison for the nearfield can be found in fig. 6.16,
which shows a zoom into the transition interval (x ∈ X(tran), middle columns)
between myelin parts (x ∈ X(myel), left columns) and one node of Ranvier
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Figure 6.14: Extracellular potential time courses at various positions.
Plots in the same row share a common y-coordinate and in the same
column a common x-coordinate. They are arranged by ascending x-
coordinates to the right and by ascending y-coordinates in the upward
direction. Columns 1 and 3 correspond to myelin segments, column
2 to a node of Ranvier. While potential shapes are distinct close to
the membrane in the lower rows, they become more and more similar
in the upper rows, showing the distance dependence of contributions
from different membrane compartments to the extracellular field.
The different features of the characteristic triphasic shape are labeled
as in the previous chapter, shown only for the upper left subplot.
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Figure 6.15: Comparison with LSA at various farfield positions. The
same potential time courses as in fig. 6.14 (solid lines) are compared
with the LSA potential (dashed lines). Additionally, the difference
between both curves is shown (dash-dotted lines). The agreement
between both models generally is very good and shows notable
deviations only between peaks N1 and P3.
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6.5 Summary

(x ∈ X(node), rightmost column). Here, some interesting details can be made out.
Firstly, large parts of the plots at myelin coordinates show very good agreement,
even for distances smaller than 5 µm. At distances < 1 µm and especially in
the Debye layer (bottom row), however, the differences are large. On the other
hand, the node of Ranvier column (right) shows stronger deviations, even up
to distances of 5 µm. This is consistent with our previous observation from
section 5.3.1.1, where the ionic contributions accounted for the greatest deviations
between electrodiffusion and LSA models. Following this reasoning, it is clear
that the nodes of Ranvier with their large ionic currents and comparably small
capacitive currents will show stronger deviations than myelin parts, which only
contribute a single capacitive EAP component.
Figures 6.15 and 6.16 actually give insights into the “big picture” of the EAP

generation. It shows the distinct shapes due to the domination of either ionic
membrane currents (nodes of Ranvier) or capacitive effects (myelin). Furthermore,
it shows how those two shapes merge at greater distances from the membrane to
constitute the characteristic triphasic “up-down-up” shape of the farfield LFP.

6.5 Summary

The introduction of myelin required some fundamental changes in the model. By
recognizing that the transmembrane potential is essentially a linear function, we
could avoid explicitly representing compartments with varying membrane thick-
ness in the mesh. Instead, myelin could be represented implicitly through adapted
effective dielectric constants. With this, we maintained the tensor grid struc-
ture in the spatial discretization, which is very beneficial for the computational
efficiency.
The problem of jumping material coefficients between myelin and nodes of

Ranvier was tackled in two stages: by resolving the transitions in x-direction
geometrically in the grid, and by applying an additional smoothing operator to the
discontinuity in permittivities. We take the view that smoothing the permittivities
is actually more realistic, since in real neurons (cf. again the illustration in fig. 2.1
on page 25), the internodes do not show an abrupt increase in membrane thickness,
but rather a gradual one, accompanied by a corresponding smoother change in
the dielectric constant.

The presented changes in model and numerical methods allowed us to simulate
a myelinated axon of length 4.8 cm with 48 nodes of Ranvier. The results
show the expected AP velocity increase and two different forms of extracellular
potentials: one that is dominated by membrane currents at nodes of Ranvier,
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Figure 6.16: Comparison with LSA: zoom into myelin-node transition
and nearfield. A closer look at the transition between myelin (left)
and node of Ranvier (right) membrane parts in y-direction, plotted
here for nearfield distances up to about 5 µm, reveals significant
deviations (dash-dotted line) between ED (solid lines) and LSA
(dashed lines) especially at nodes of Ranvier. Columns in between
mark coordinates in the transition interval between myelin and node
of Ranvier. Myelin coordinates show strong deviations only up to a
distance of about 1 µm.
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6.5 Summary

and one that is purely capacitive at internodes. Interestingly, these two different
EAP shapes merge at larger distances and show the same triphasic shape as an
unmyelinated axon. This can be explained by the interplay of EAP amplitude,
which is considerably higher at nodes, and of the contributing membrane area,
which is significantly higher for internodes. At sufficiently large distances, the
weighting of these two components balances and both components – nodal ionic
and internodal capacitive – become equally important.
A comparison with the LSA model as before showed deviations especially at

small membrane distances, which could again to a large degree be attributed to
the ionic components of the EAP and their influence within the intermediate
diffusion layer. The extracellular potential dominated by capacitive currents at
internodes generally shows a very good agreement. As before, an exception is the
Debye layer, which exhibits fundamental differences in comparisons with LSA.
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7 Ephaptic Interaction Between
Multiple Axon Fibers

If you’re going through hell, keep going.

(Winston Churchill)

Now that the basic models for unmyelinated and myelinated nerve fibers have been
derived, simulated, and validated, we would like to study interactions between
nerve fibers. Of particular interest is the phenomenon of ephaptic coupling, which
describes the influence of one neuron on the other in the absence of chemical or
electrical synapses (gap junctions). Such a coupling is possible either directly
through the electric field or indirectly by exchange of ions. In either case, the
neurons have to be very close to each other to yield a notable effect, which
is reflected in the adjective ephaptic (from Greek εφαπτω, “to touch”) and the
associated site ephapse, the “location of close contact or vicinity” [6], in distinction
to a synapse.

7.1 Previous Work

While both chemical and electric synapses are traditionally believed to be the
only possible source for eliciting an action potential, there is a surprisingly large
body of studies on the ephaptic effects between two neighboring fibers, starting in
the 1940s [62] and continuing until today, also involving the LFP of a population
of neurons as a possible source for AP synchronization [5]. An excellent overview
on the existing literature with slightly different emphases is given in [40] and
[59]. A newer review is [103], which focuses more on the electric fields of neuronal
populations and their functional effects.

A special case in this context is the heart muscle, in particular cardiomyocytes
(cardiac muscle cells), which are considered to be excited via gap junctions [3,
48]. In [91], a modeling study was able to show that gap junctions are not
necessary, since ephaptic coupling may serve to conduct the AP from cell to cell
over the cleft between cells. In an experimental study using mice with suppressed
expression of myocardial gap junctions [47], the animals were found to develop
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7.2 Unmyelinated Axon Surrounded by an Axon Bundle

cardiac arrhythmia and eventually died by sudden cardiac arrest at about two
months of age. Until then, however, they showed normal heart development and
function, indicating that the basic conduction functionality was maintained in
the absence of gap junctions.
A number of modeling studies have addressed the topic of ephaptic coupling.

Holt [56] found the influence of the extracellular electric field of one axon onto
the other to be a fraction of a millivolt, which he considered too small to elicit an
AP in a cell which is not already very close to threshold. He used the LSA model
for this, neglecting concentration effects. Mori [73], on the other hand, used a
reduced version of the electrodiffusion equations (the “electroneutral model”) and
studied ephaptic conduction in the setting of myocardiac fibers mentioned above.
He was able to demonstrate that ephaptic coupling indeed can supplement or
replace gap junction conduction [75]. However, the cleft width had to be at most
5nm in order for the conduction to be successful.
Holt [56, chapter 2.3.1] also mentions a number of studies that address the

interaction between neighboring axons with respect to phase-locking. Essentially,
APs running in two parallel axons will tend to synchronize: if they are aligned,
the extracellular current sources and sinks are also aligned, and each axon will
try to hyperpolarize the other, resulting in a slowed-down AP conduction. In
staggered APs on the other hand, the outward currents of the leading axon will
align with the inward currents of the following axon, which will enhance the
following axon’s AP conduction. As a consequence, staggered, phase-locked APs
are stable and faster, while aligned AP will slow each other down.

In the following chapter, we will use the electrodiffusion model developed over
the course of the previous chapters to study ephaptic coupling between parallel
axons in a relatively simple setting.

7.2 Unmyelinated Axon Surrounded by an Axon
Bundle

7.2.1 Geometry

Due to the cylinder symmetry, we are limited in the choice of our geometry, since
the angular direction was eliminated from the equations. This means we can not
model two single axons next to each other, which is best exemplified in a picture,
see fig. 7.1.

It is clear that, when adding a second axon, this can not be modeled with one
single membrane anymore, as we can only use the symmetry axis once. Two
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Figure 7.1: Computational domain for multiple axons. The two-
dimensional computational domain (left) was modified in order to
include two additional membranes M2 and M3, enclosing a second
cytosol domain. On the right, the equivalent cylinder cross section
for this setup is shown, revealing a central axon that is surrounded by
an interstitial space and an axon bundle, which is again surrounded
by an extracellular space.
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7.2 Unmyelinated Axon Surrounded by an Axon Bundle

additional membranes are needed to obtain an additional cytosol subdomain Ω
(2)
CY

next to the obligatory Ω
(1)
CY, as well as an additional subdomain Ω

(2)
ES, as shown in

fig. 7.1a. Ω
(1)
ES is now bounded by two membranes M1 and M2. In the cylinder

geometry, however, this does not correspond to two adjacent axons, but rather to
one cylindrical axon surrounded by a shallow cylinder axon (see the cross section
in fig. 7.1b).
We can think of this as an axon bundle around a single axon. It is clear that

this situation is not realistic, since in real tissue the axon bundle would not
consist of a single intracellular domain, but of multiple cylindrical axons with a
certain spacing in between them. We should keep this in mind when interpreting
the results generated by this model and consider them as (at least partially)
speculative. For a basic phenomenological study, however, this setup shall prove
useful.
A similar geometry is used in core conductor models [85]. When an axon is

surrounded by a resistive sheath, as is often the case in peripheral nerves, e.g. by
an epineurium or perineurium, the extracellular space can be regarded to be
one-dimensional, in analogy to the cable equation [29]. This approximation,
however, only holds for small distances between axon and sheath. Moreover, here
we are not only interested in the extracellular field due to a restricted extracellular
volume, but also on its impact on adjacent nerve fibers.

A crucial parameter is the distance between axon and bundle, d. Holt [56]
considered the case of an axon bundle and estimated the spacing d based on
different arrangements of axons, shown as cross-sections in fig. 7.2. In a rectangular
assembly, as in fig. 7.2a, the packing is non-optimal. The volume fraction

α =
VES

Vtotal
(7.1)

between extracellular volume VES and the total volume Vtotal can be calculated as

αr =
(2r + 2d)2 − πr2

πr2
=

4r2 + 8rd+ 4d2 − πr2

πr2
.

Even for touching axons with d = 0, this gives a value of αr = 4−π
π ≈ 0.2146,

which is larger than the observed average volume fraction of α = 0.2 [94]. When
using a hexagonal packing as in fig. 7.2b, which Gauß proved to be optimal (see
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[92]), the volume fraction reads

αh =
a2 3

2

√
3− 3πr2

a2 3
2

√
3

=
(2r + d)2 3

2

√
3− 3πr2

(2r + d)2 3
2

√
3

with the hexagon side length a = 2r + d. For d = 0, this results in the densest
possible packing with an extracellular volume ratio of αh = 2

√
3−π

2
√

3
≈ 0.0931. In

the present case of an axon radius of r = 500 nm, a volume ratio of 0.2 would
be obtained for a spacing of d ≈ 65 nm, which is already on the upper bound
of the estimated average extracellular width of 38 nm–64 nm [94]. This average
membrane-to-membrane distance is remarkably small, and – considering the
results of the preceding chapters – concentration effects may be assumed to play
an important role within this regime, which is only one order of magnitude larger
than the Debye length γD, and definitely within the diffusion layer regime of
order √γD (cf. [73]).

d

r

(a) rectangular array

r

d

(b) hexagonal array

Figure 7.2: Illustration of axonal packing in different geometric arrange-
ments. A regular rectangular packing (left) leads to a non-optimal
packing ratio. The optimal packing can be achieved in a hexagonal
array (right).

7.2.2 Action Potential

In an attempt to quantify the influence of one axon onto the surrounding bundle,
an action potential was elicited in the central (unmyelinated) axon as before,
while the axon bundle was not stimulated. We largely used the same parameter
set as in chapter 5, as listed in table 5.1 on page 70, with the exception of an
adjusted mesh according to the changed geometry. As in the previous setups,
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7.2 Unmyelinated Axon Surrounded by an Axon Bundle

the Debye layers of all three membranes were fully resolved, and coarsening
strategies were employed for the regions in between to minimize the total number
of unknowns.

Simulations were carried out for various inter-fiber distances d = 1 µm, 500 nm,
100 nm and 50 nm. Distances were deliberately chosen larger in tendency than
the average ES width of 38 nm–64 nm in order to obtain an estimated upper
bound on d for which ephaptic interactions are possible.
The diameter of the axon bundle db was chosen in two different ways: in the

first set of simulations, it was fixed at db = 500 nm, which means that for larger
inter-fiber distances d, the volume of the axon bundle will be larger than for small
distances due to the cylinder geometry. Therefore, we also implemented a second
version in which the bundle volume was kept constant (and equal to the source
axon volume) by varying db dependent on d, which is called the “volume-corrected”
setup. We will later on see the reason why the cell volumes and their relationship
to the extracellular ones are of significance. Figure 7.3 shows the fraction of the
three volumes of interest, i.e. those of the interstitial region Ω

(1)
ES, and of the two

intracellular domains Ω
(1)
CY and Ω

(2)
CY, for the two different variants.
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Figure 7.3: Ratios of intra- and extracellular volumes for different axon-
bundle distances. In the fixed case (left), the bundle volumes
are growing with inter-fiber distance, thereby also changing relative
volume fractions. In the volume-corrected case (right), the bundle
volume is kept fixed and equal to the central axon volume, such that
only the interstitial volume in between is changing with d.
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7.2.2.1 Fixed bundle diameter db

Table 7.1 shows the computation times1 for each of the different choices of d,
obtained from a parallel run with p = 10 processors. The overall performance
is reasonable – the smaller the distance, the more interaction between fibers,
increasing the difficulty of the numerical problem.

Table 7.1: Simulation timings for the axon bundle setup using different
inter-fiber distances d and a fixed bundle diameter db. For
each distance d, the number of unknowns, total computation time, the
needed number of time steps, and the average solution time per time
step (full Newton iteration) are shown.

d [nm] # DOFs Total comp.
time [s]

# time
steps

avg. time /
time step [s]

1000 116352 156071 2026 77.034
500 114332 164591 2026 81.24
100 114332 181175 2026 89.425
50 114332 184747 2026 91.188

Figure 7.4 shows the membrane potential at each of the three membranes, for
different distances d. At a larger distance of 1 µm, the effect on the axon bundle
is small. Already at a distance of 500 nm, however, the axon bundle spikes in
response to the source axon’s AP. Interestingly, the outer membrane M3 fires
with a notable delay towards the inner membrane M2.

In a real geometry, the outer axons would, of course, not have two distinct
membranes, but outer and inner membrane would be a single connected structure.
By this direct coupling, the axonal membrane would probably fire as a whole
instead of having a time delay between inner and outer parts of the membrane,
consistent with the “all-or-none” principle of action potential generation.
As axon and bundle come even closer in fig. 7.4c and fig. 7.4d, the picture

changes. Membrane M2 fires earlier, but membrane M3 does not fire anymore.
Instead, membranes M1 and M2 generate an additional AP of reduced amplitude,
which is even smaller for the case d = 50 nm.

These results are quite remarkable. How can they be explained? For this, we

1Note that the absolute computation times are rather high in comparison to chapter 5.
Accidentally, these simulations have been run using an executable that was compiled
completely without optimizations, significantly impairing the performance. In table A.1 on
page 159, the effect of using compiler optimizations can be clearly seen.
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Figure 7.4: Membrane potentials for different axon distances d and fixed
bundle diameter db. For decreasing distances d, the ephaptic
interactions of axon and bundle changes. For d = 1000 nm, only
sub-threshold potentials are induced. For smaller distances, an AP
is elicited in the two bundle membranes. For d ≤ 100 nm, this even
leads to an oscillation between axon and bundle. For d = 50 nm,
the membrane potential drifts away from resting potential, as the
extracellular concentration balance is disturbed.
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look at the intra- and extracellular potential and charge density time courses
directly adjacent to the three membranes.

For d = 1 µm, the intracellular potential in fig. 7.5c takes on the expected form
of an action potential, albeit with a reduced amplitude in comparison to the
isolated unmyelinated axon from fig. 5.4 on page 78. A different picture shows for
the extracellular potential in fig. 7.5d, which is not determined by the AP echo, as
in the case of an unrestricted extracellular space (cf. fig. 5.11 on page 86). Instead,
it reaches an amplitude of several millivolt. It is clear that the relatively large
extracellular potential contributes significantly to the total membrane potential in
fig. 7.5a. Previously, the membrane potential was almost exclusively determined
by the intracellular potential. Now, the intracellular potential still contributes
most of the membrane potential amplitude, but notable −5mV are provided by
the extracellular potential.

We note that it is the membrane potential difference JφK = φin − φout which is
“seen” by the ion channels, such that a depolarization of the cell can be reached
by either an increase in the intracellular potential φin or by a decrease in the
extracellular potential φout.
How much of the membrane potential is contributed by the intracellular or

extracellular regime here depends to a large degree on the ratio of intra- and
extracellular volumes, see fig. 7.3. We see that the volume of Ω

(1)
ES is larger, but

within the same order of magnitude as those of the two intracellular domains
Ω

(1)
CY and Ω

(2)
CY. In smaller volumes, the same amount of charge results in a larger

average charge density, i.e. the right-hand side of the Poisson eq. (2.43), and will
therefore cause a larger potential.
We once again acknowledge that the electric potential inherently is a relative

measure, such that a certain membrane potential difference, as generated by the
HH system, will be distributed differently onto the intra- and extracellular spaces
depending on the respective volumes. In chapter 5, the intracellular volume was
negligible in comparison with the extracellular one, so the membrane potential
was approximately equal to the intracellular potential. Now, the ratio between
intra- and extracellular volumes is not negligible, and consequently part of the
membrane potential is shifted to the extracellular potential.
We emphasize that this reasoning only applies to our very special geometry

with a severely confined extracellular space, greatly reducing the extracellular
conductivity. In realistic geometries, the ES is generally not isolated, but highly
connected, such that the extracellular conductivity is not reduced proportionally
with volume.

The influence of this large extracellular potential on the adjacent bundle can be
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7.2 Unmyelinated Axon Surrounded by an Axon Bundle

seen in fig. 7.5a already at this relatively large distance. The bundle’s membrane
potential at membrane M2 responds with an initial hyperpolarization, followed
by a depolarization of about the same size. This pattern of a hyperpolarization
followed by a depolarization in ephaptic interactions has been reported before
using a different model [9]. It is the consequence of the extracellular potential
with its initial rise and the following trough, as visible in fig. 7.5d.
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Figure 7.5: Potential and charge density time courses for d = 1 µm.

This becomes even more obvious if d gets smaller, as the ratio between intra-
and extracellular volumes further increases, as can be seen in fig. 7.6. The
amplitude of the intracellular potential of the central axon is further reduced,
and the EAP amplitude next to membrane M1 is increased to about −10mV for
now. The extracellular potential at membrane M2 is the same, since it is not
significantly reduced over the small range of d = 500 nm. This large EAP first
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causes a hyperpolarization of membrane M2, and then a depolarization, which is
strong enough to elicit an action potential, as visible in fig. 7.6a. At membrane
M2, the ratio of intra- to extracellular potentials now is completely reversed, in
accordance with the volume ratio: the extracellular volume is tiny compared to
the intracellular volume of the axon bundle.
As a result, the depolarization of membrane M2 is mainly not achieved by

an increase of the intracellular potential, but through a huge “inverse spike” in
the extracellular potential with an amplitude of about −100mV. However, the
small intracellular response is enough to trigger an action potential also on the
opposite membrane M3, which fires in the normal mode, by an increase in the
intracellular potential. The giant EAP generated by the second AP is also visible
in the intracellular potential of the central axon as a large hyperpolarization.
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Figure 7.6: Potential and charge density time courses for d = 500 nm.
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At an even smaller distance of d = 100 nm, the extracellular volume is now
significantly smaller than the central axon’s volume, such that the AP is completely
generated by a large inverse spike in the extracellular space in fig. 7.7, as before
at membrane M2. Consequently, an AP is elicited also at membrane M2 through
the large EAP, after an initial hyperpolarization.
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Figure 7.7: Potential and charge density time courses for d = 100 nm.

Since the volume ratio between Ω
(1)
ES and Ω

(2)
CY is now highly in favor of the axon

bundle, the intracellular response to the AP is even smaller. This response is not
sufficient to depolarize membrane M3 enough to trigger an AP there. But another
interesting effect can be observed: the effect of the “hyperpolarization phase” in
the inverse extracellular spike is large enough to depolarize both membranes M1
and M2 and let them fire once again, albeit with a smaller amplitude.
For the case d = 50 nm, basically the same qualitative situation as for d =
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100 nm can be observed. However, the extracellular volume is now so small that
an undersupply of concentrations is formed. As a result, the membrane potentials
at M1 and M2 do not fully return to their resting potential in fig. 7.8a. Two
spikelets are generated afterwards, and the membrane potential then further
drifts away from its resting potential. The concentration balance is now disrupted
completely.
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Figure 7.8: Potential and charge density time courses for d = 50 nm.

7.2.2.2 Volume-corrected bundle diameter db

The results for the volume-corrected axon bundle in fig. 7.9 basically show the
same picture as the previously shown findings for varying axon bundle volumes.
Some minor differences can be made out, e.g. the reduced delay between membrane
M2 and M3 for the case d = 500 nm due to the smaller distance db.
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7.2 Unmyelinated Axon Surrounded by an Axon Bundle
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Figure 7.9: Membrane potentials for different axon distances d and ad-
justed bundle diameters db (volume-corrected).
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7 Ephaptic Interaction Between Multiple Axon Fibers

According to the elaboration above, the ratio of volumes influences the distribu-
tion of membrane potential onto the intracellular and the extracellular potential
contribution. Indeed, the intra- and extracellular potential time courses look
completely different than those for the fixed db, although the membrane potential
shows a similar behavior. We refrain from showing the detailed results here and
defer this to appendix A on page 159, see figs. A.1 to A.3.

7.3 Summary

In this chapter, we used a somewhat artificial setting to study ephaptic effects of
one axon on a surrounding axon bundle through an extremely isolated extracellular
space. Quite remarkably, the emerging extracellular potentials are large – even
larger than the intracellular ones – due to the small extracellular volume fraction
and the resulting high resistivity. An action potential traveling along the central
axon was able to elicit another AP in the surrounding bundle already at a
distance of 500 nm, a multiple of the actual average cell-to-cell distance in the
brain. In a more realistic representation, the extracellular space would, of course,
be connected and the resistivity would therefore be lower. Accordingly, the
maximum distance for inducing an AP in another cell by ephaptic coupling would
probably be much lower.
Nevertheless, some interesting effects can be seen in the above results. In

some configurations, an oscillation between the two fibers can be seen, and the
bulk concentrations in the extracellular volumes are thrown out of balance for
small distances. The following discussion will try to put these results into the
experimental context and estimate its physiological relevance.
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8 Summary and Discussion

Ich habe mich vertan.

(Helge Schneider)

In this work we have set up the mathematical model of axon fibers embedded in
extracellular space based on the PNP equations of electrodiffusion. A suitable
method for the numerical simulation of this nonlinearly coupled system of PDEs
has been presented. It is designed to properly represent the crucial physical
properties of the underlying equations in the numerical scheme. The key steps to
yield a stable and efficient algorithm were:

• The grid had to resolve the Debye layer close to the membrane in the normal
direction. For the x-direction, a much coarser mesh size was sufficient.

• The PNP system had to be solved in a fully-coupled fashion, as an operator-
splitting approach dramatically reduced the time step size needed for
computing a non-oscillatory solution.

• The choice of an implicit time-stepping scheme took advantage of higher
stable time step values and accounted for the diffusion-dominance in the
Nernst-Planck equation, which we observed for parameters in the physio-
logical range.

• The system had to be carefully equilibrated before setting a stimulus, as
the concentration profile towards the membrane had to reach steady-state
in order to get meaningful reversal potentials for each ion channel.

• The application of a threshold volume scaling was crucial to compensate the
large differences of residual magnitudes introduced by the strongly varying
cell volumes in this cylinder geometry. With this, the Newton iteration was
able to converge even for large domain sizes with an only slightly lower
average time step size compared to the 2D problem.

• The blocking of unknowns into dense 4x4 matrices at each grid vertex
turned out to be mandatory for large numbers of DOFs, since it enabled
the exact inversion of diagonal blocks by the ILU preconditioner.
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8 Summary and Discussion

• A suitable choice of linear solvers and matching preconditioners was critical
for the convergence and efficiency of the algorithm, especially in the parallel
case. The application of state-of-the-art iterative solvers was a necessary
requirement to cope with the grid anisotropy and to enable parallelization
on larger processor counts.

We emphasize that, when taking into account the above measures, the PNP could
be solved numerically with standard methods, i.e. with conforming linear finite
elements for the spatial and an implicit Euler method for the time discretization,
despite the multi-scale character of the underlying model.

For the representation of myelin, effective permittivities were introduced. The
permittivities were scaled to correct for the increased myelin thickness of myelin
sheaths. The benefit is that the same tensorial grid structure as for the unmyeli-
nated axon can be used. The grid in y-direction did not have to be changed at
all. The x-direction, of course, had to be adapted to represent nodes of Ranvier
in correct physical dimensions. Furthermore, permittivities were smoothed at
transitions between myelin and nodes of Ranvier. This not only suppressed
numerical oscillations at these transition zones due to a permittivity jump, it
also represents the actual geometry of myelin sheaths, which smoothly increase
in width near nodes of Ranvier instead of showing an abrupt change of thickness.
By means of this numerical solution strategy, we were able to simulate an

action potential traveling along an active axonal membrane and its effects on
the electric field and ion redistribution in the extracellular space. In an effort
to represent all relevant scales of the PNP model, the Debye layer was explicitly
resolved by the computational grid.

To our knowledge, this is the first application of a 3D electrodiffusion model in
the context of neuronal excitation with an explicitly resolved Debye layer, which
could be shown to be of capital importance for accurately modeling the LFP.

We do not claim that our model is complete or fully realistic from the biological
point of view. Instead, it should be regarded as a first attempt to model the
dynamics of neural systems on this detailed scale. Model refinement concerning
the detailed structure and properties of the active membrane (channel types and
densities, membrane surface charges) will have to be done when comparing the
results with experimental data, as here we largely used classical data from the
squid giant axon with only two types of voltage-gated ion channels.
Moreover, a complete model of a neuron with a dendritic tree seems highly

desirable, as this would also allow to quantify the influence of synaptic currents,
which are thought to be the main contributors of EEG and LFP signals [26, 79]. In
future models, also the representation of a realistic extracellular geometry – either
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explicitly or as a homogenized model – should be considered. Particularly, the
idealized setup of a single axon fiber in an extracellular space used in chapters 5
and 6 consisting exclusively of a homogeneous fluid will rarely occur in reality.
In our approach, the main limitation is the cylinder symmetry, which imposes a
serious constraint on the geometry. The setup for neighboring axons in chapter 7 is
somewhat artificial, but it is nevertheless useful to estimate the impact of ephaptic
coupling between nerve fibers in a setting of a severely confined extracellular
space. For complex extracellular geometries, a full 3D model would be needed.
This would also allow to use reconstructed geometries by e.g. electron microscopy
imaging techniques. However, the computational demand of such setups would
be much higher than in the present case, and will probably require the use
of massively-parallel simulations on supercomputers. This will require some
considerations about tailor-made linear solvers and preconditioners to obtain an
optimal scalability of the problem.
Alternatively, using the approximation in [73, 75] on a 3D grid promises to

be better tractable. The authors used a special boundary to include Debye
layer effects without having to explicitly resolve it in the discretization, also
eliminating the concentration variables from the equations. Nevertheless, a full
3D electrodiffusion simulation seems desirable, if only to validate the accuracy of
this approximation under physiological conditions.

However, one of Mori’s main results, the postulation of an intermediate diffusion
layer between Debye layer and bulk solution on the order of √γD, could already
be confirmed by our simulations. We found prominent deviations from volume
conductor models for distances of at least 5 µm from the membrane. These are a
consequence of violations of the electroneutrality assumption in volume conductor
models in the Debye layer, which shaped the extracellular electric field to a large
degree also in the adjacent diffusion layer. This has been demonstrated for the
unmyelinated case in chapter 5 as well as for the myelinated one in chapter 6. Both
cases, unmyelinated and myelinated axon, share a common property: the Debye
layer shows an extracellular potential that resembles the membrane potential, only
reduced in amplitude, where the reduction is depending on different membrane
and electrolyte material parameters. We called this the AP echo.

Interestingly, the existence of this echo is also observed in experiments. Several
experimentalists from Andreas Draguhn’s lab in Heidelberg have confirmed
that they see a sudden switch in potential shape when pushing the recording
electrode against the neuronal membrane like it is done in juxtacellular recordings
(Martin Both, Florian Bähner, Christian Thome, personal communication). This
phenomenon can now be explained by the Debye layer dynamics present in our
model.
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8 Summary and Discussion

At large distances, results were in good agreement with volume conductor
models, consistent with an experimental validation [45]. The fact that the LSA
model is not a good representation at closer membrane distances has been reported
before [45, 57] with a critical distance of about 1 µm.
Considering the typical dimensions of extracellular space (volume fraction

α = 0.2, width 38 nm–64 nm [94]), one has to conclude that each point of interest
will necessarily always be very close to another cell membrane under physiological
conditions. Therefore, in reality Debye and diffusion layer effects will not be
negligible. Instead, the effects of ion concentrations have to be taken into account.
This indicates that representing the ES as a homogeneous medium by a single
scalar resistivity ρ is not an accurate description.
Several previous models have dealt with this issue; in [20, 18], the authors

used an inhomogeneous conductivity in the ES to account for the frequency
filtering properties of extracellular space observed in experimental recordings.
This approach might also be used to find an effective conductivity distribution
that implicitly incorporates the concentration effects. However, it is unclear how
to find the correct conductivities as a function of space. Even if the matching
conductivities can be found, the question remains if such an approach will be
successful in reproducing the full electrodiffusion dynamics and which spatial
resolution will be required. The closest approximation to the electrodiffusion
equations without explicitly resolving the Debye layer and including concentration
effects only implicitly is described in [73]. A comparison to the full electrodiffusion
model in a 3D setting would be of great interest.

In chapter 7, we made an attempt to quantify ephaptic effects between an axon
fiber and a surrounding bundle of fibers. Due to the restrictions of the cylinder
symmetry, this model does not represent the typical geometry of extracellular
space, which is highly connected and tortuous, while it is rather isolated in our
model. It is, however, not completely unrealistic either, as there is some evidence
for regions with a very isolated ES or even “dead ends” in the extracellular matrix
[94, e.g. Fig. 1]. In any case, the restricted volume and connectivity of the
interstitial space in our model corresponds to a strongly reduced conductivity in
terms of volume conductor theory. Such an increase in electric resistivity favors
the development of large extracellular potentials. The simulation results show
that already at relatively large inter-fiber distances of 500 nm, one axon can elicit
an action potential in the surrounding fiber bundle purely by electrical coupling.
We also showed the effect of different intra- and extracellular volume ratios:

while the membrane potential did not change appreciably, the relative distribution
of potential contributions by the intra- or extracellular side changed to a large
degree. This revealed another firing mode in which a large negative extracellular
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potential could depolarize the cell, without a large change in the intracellular
potential, as in the classical firing mode. This is plausible, since the ion channels
only see the membrane potential difference JφK = φin − φout, therefore a depo-
larization can be reached by either increasing φin or by decreasing φout. This
mode of firing is interestingly not an artifact of our model geometry: it has, in
fact, been reported before in in vitro recordings of rat hippocampus CA1 cells
(cf. section V.C in [40]) and the squid giant axon (originally in [86], and reviewed
in [59, Fig. 1]).
Our model shows large extracellular potentials ranging up to 100mV, e.g. in

fig. 7.8d. The emerging extracellular potentials are sometimes even larger than the
intracellular ones, due to the severely restricted volume. We also conducted some
research on the experimental evidence for the large LFP magnitudes we found in
chapter 7. To our surprise, comparable magnitudes have indeed been found in
some cases. In [9], a number of references are given for in vivo measurements of
large extracellular potentials with magnitudes larger than 50mV.

It is clear that such large LFP magnitudes will suffice to elicit action potentials
in neighboring cells, which is also the case in our model. When bringing the
fibers closer together, we could even observe a “ping-pong effect”: the induced
AP in the axon bundle in return produced a large extracellular response that was
enough to elicit a second spike in the source axon. Again, we found evidence for
such a phenomenon, mentioned in [9].
The authors also give a reason why such large potentials have only been

measured in a few cases so far: they arise in areas where cells are most packed,
i.e. where the conductivity is very low. These tightly packed areas are least
accessible to electrodes, and any penetration by the electrode will inevitably
increase the conductivity by destroying surrounding tissue, thereby diminishing
the packing density and exposing the measurement site to regions with a higher
extracellular volume. In [59], again the rodent CA1 region is mentioned in this
context – together with a multitude of studies that assess the effect of electric
fields within this area – since it has an extremely high resistivity (more than
twice the intracellular one), presumably due to the very dense packing with an
unusually low extracellular volume ratio of α = 0.12.

One more word on the experimental point of view: if the (invasive) measurement
of large LFPs is prevented by the measurement itself, this could mean that
large extracellular potentials are a ubiquitous phenomenon that remains largely
undetected with today’s experimental methods. If we take this thought further,
one might also argue that many action potentials would not be identified as such in
patch-clamp measurements, as only the intracellular potential φin with reference
to a distant grounding electrode is observed. In extreme cases, action potentials
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8 Summary and Discussion

elicited by the second firing mode, i.e. triggered by a large negative extracellular
potential φout without any large changes in the intracellular potential, would
not be recognized. These “extracellularly-induced spikes” could only be seen by
measuring both φin and φout, in order to obtain the true membrane potential JφK.

From a different perspective, the extracellular potentials generated by our model
might also be of interest for another application. In [4], the authors mention
the context of parameter estimation for neuron models, particularly estimating
spatially distributed channel conductances from intracellular measurements made
only at a small number of points – in the extreme case, from only one patch-clamp
electrode. This problem is known to be an underdetermined optimization problem,
given the fact that many different parameter sets can produce the same voltage
response, as is shown in a plethora of different studies [1, 36, 37, 21, 95, 64, 101,
100, 99, 8].

The fact that there exist many local minima renders the application of classical,
gradient-based methods extremely difficult, which is also the reason why many
of the aforementioned studies utilized novel global optimization techniques like
genetic algorithms or simulated annealing to overcome this problem – although
there is also recent progress when using classical methods, as long as the range
of stimuli given to the model is sufficiently diverse to tickle out the influence of
every single parameter in this model [98, 66].

Given these difficulties in obtaining a meaningful and realistic parameter set for
a given model, the authors in [4] suggest to include extracellular measurements
next to the commonly used intracellular ones and report a markedly decreased
variability in the obtained parameter sets. We note that using the presented
electrodiffusion approach, extracellular signals may be used at any point in the
ES, while volume conductor models are restricted to certain minimum distances
from the membrane, because they fail to reproduce the correct potentials close
to the membrane. Of course, using electrodiffusion models for such parameter
estimation procedures will increase the computational complexity to a large
degree, but it might further increase the performance of the optimization strategy,
as sharply varying (and therefore informative) juxtacellular signals may be used
instead of the smoothed-out, less informative farfield signals.

In summary, we have shown that electrodiffusion models have proven useful in
the context of neuroscience, especially when assessing the influence of variable
concentration distributions on the extracellular electric potential. We hope that
this thesis will be useful for readers who want to employ electrodiffusion models
in comparable or related contexts.
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The reader should keep in mind that the work presented here is just a first
modeling attempt on this scale of detail, and the results open a number of further
unanswered questions. Ongoing interdisciplinary research on this topic is needed
to answer those. If this thesis helps stimulate follow-up investigations at the
interface between scientific computing and neuroscience, our main objective has
been achieved.
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A Results of the Volume-Corrected
Axon Bundle Simulations

The detailed results of the volume-corrected axon bundle simulations are shown
in figs. A.1 to A.4. Table A.1 shows the statistics for different inter-fiber distances
d. Note that only the setup d = 50 nm was compiled with full optimizations, the
other cases were accidentally computed without compiler optimizations, resulting
in a factor of 6-7 in the total computation time.

Table A.1: Simulation timings for the axon bundle setup using differ-
ent inter-fiber distances d and a volume-corrected bundle
diameter db. For each distance d, the number of unknowns, total
computation time, the needed number of time steps and the average
solution time per time step (full Newton iteration) is shown.

d [nm] # DOFs Total comp.
time [s]

# time steps avg. time /
time step

1000 116352 157710 2027 77.8
500 114332 173738 2027 85.71
100 114332 183747 2027 90.65
50 114332 26027.7 2026 12.85
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Figure A.1: Potential and charge density time courses for d = 1 µm
(volume-corrected).
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Figure A.2: Potential and charge density time courses for d = 500 nm
(volume-corrected).
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Figure A.3: Potential and charge density time courses for d = 100 nm
(volume-corrected).
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Figure A.4: Potential and charge density time courses for d = 50 nm
(volume-corrected).
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Acronyms

AMG algebraic multigrid. 52, 67, 109

AP action potential. 3, 24, 36, 47, 51, 71, 74, 75, 78, 79, 83, 87, 88, 91, 94, 96,
104, 108, 110–112, 114–120, 123, 126, 127, 132–134, 136, 137, 140, 143, 145

BiCGStab stabilized biconjugate gradient. 52, 67, 72, 73, 109

cG continuous Galerkin. 19

dG discontinuous Galerkin. 19

DOF degree of freedom. 4, 5, 66, 67, 70–72, 103, 107, 110, 132, 141, 159

EAP extracellular action potential. 36, 80, 82–84, 87, 90, 94, 96–98, 101, 118–120,
123, 125, 135–137

ED electrodiffusion. 94–97, 100, 124

EDL electric double layer. 26–28, 97

EEG electroencephalography. 3, 142

ES extracellular space. 24, 41, 131, 134, 144, 146

FEM finite element method. 9, 11, 15, 18, 22, 23, 48

GHK Goldman-Hodgkin-Katz. 30

GMRes generalized minimal residual. 52, 67, 109, 112

HH Hodgkin-Huxley. 34–36, 40, 41, 46, 47, 51, 52, 61, 69, 79, 80, 101, 134

HPC high performance computing. 4, 72

ILU inexact LU. 52, 67, 72, 73, 109, 141
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Acronyms

IO input/output. 5

ISTL iterative solver template library. 59, 67

LFP local field potential. 3, 8, 36, 123, 126, 142, 145

LS linear solver. 72, 73, 112

LSA line source approximation. 8, 38, 46, 93–99, 101, 113, 120, 122–125, 127

ODE ordinary differential equation. 11, 15, 23, 34, 51

PCM parallel conductance model. 31, 46, 47, 75, 77

PDE partial differential equation. 5, 6, 11–17, 19, 20, 22–24, 35, 39, 58, 98, 141

PNP Poisson-Nernst-Planck. 8, 9, 14, 39, 41, 44, 47, 48, 52, 53, 68, 73, 79, 91,
97, 98, 101, 141, 142

TMP template meta program. 63, 68

VC volume conductor. 7, 9, 10, 98, 100
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