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SUMMARY

The numerical solution of partial differential equations (PDEs) on unstructured grids
using parallel computers leads to an increase in software complexity of several orders
of magnitude when compared to a sequential, structured mesh code. Consequently, the
design of simulation software with respect to code reuse over problem domains is of great
importance.

In this paper we review the steps of the PDE solution process with respect to parallel
computing and discuss the modular structure of the UG software toolbox. The high–level
object–oriented design of the numerical algorithms is shown in some detail to give the
reader an impression how new components can be incorporated into the UG framework.

INTRODUCTION

The numerical solution of partial differential equations involves a sequence of related
steps starting with geometric modeling and ending with the visualization of the results
as shown in Fig. 1. Arrows in the figure indicate the flow of control, links in gray are
optional. Although the steps are the same for structured and unstructured grids as well
as sequential and parallel computation, programming effort can vary from almost nothing
to man–years, as e. g. in mesh generation.

In the following we comment each of the basic building blocks from Fig. 1:

Geometric Modeling. Holds a representation of the (three–dimensional) body in which the
PDE is to be solved. Access methods include ways to find points in the interior, on
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Figure 1: Basic building blocks of the PDE solution process.

(internal and external) surfaces and on manifolds where two or more surfaces intersect.
In a parallel environment the geometric model might be duplicated on each processor
if it is small enough, otherwise it has to be distributed together with the mesh data.

(Initial) Mesh Generation. Constructs a volume mesh approximating the domain given
by the geometric model. Small details, e. g. a well or a tiny region of highly conductive
material, must be resolved by the mesh if they are critical for the solution of the PDE.
Other parameters to be controlled are mesh quality (angle condition), mesh size and
anisotropy. In the parallel case load balancing/domain decomposition is notoriously
difficult.

Mesh Modification. Given a mesh, construct a new mesh that is finer in some regions and
possibly coarser in other regions of the domain without doing a complete remesh. The
regions are indicated by the error estimator step. A very effective way to do this is
the hierarchical approach where individual elements of the given mesh are subdivided
according to certain rules. Coarsening is achieved by recombination of previously
subdivided elements. This results in local operations and an efficient data–parallel
implementation is possible, see [2], [11] or [9]. Mesh modification requires dynamic
load redistribution in order to balance the load after the refinement step.

Discretization. Sets up a finite–dimensional approximation of the differential equation.
Operations are typically trivially parallel on element level. Difficulties in load balance
arise if amount of work is variable per element.

(Non-)Linear System Solution. Large systems in 3D are typically solved with iterative
solvers. It is important to maintain a low iteration count independent of the size of the



mesh and the number of processors (and possibly other parameters). Multilevel and
domain decomposition methods (often) have this property, see [15] for an introduction.

Error Estimation/Refinement Strategy. Determine how accurately the discrete solution
approximates the differential equation. Provide information where the mesh has to be
refined or coarsened. Operations are typically parallel on element level requiring at
most access to data in neighboring elements.

Output of Results. Store geometry/mesh/solution information to a disk file for subsequent
restart or visualization. Huge amounts of data are produced by parallel computations
necessitating the use of clever file formats (suppress redundant information) and par-
allel file I/O.

Visualization. Although sequential visualization software can be improved to handle fairly
large data sets (e. g. about five million nodes in GRAPE on a workstation with 1 GB
of memory [13]), ultimately also the rendering process will have to be parallelized.

In order to avoid sequential bottlenecks all components that handle large amounts
of data have to be parallelized. Furthermore, all components must work on the same
distributed data structures (geometric model, unstructured mesh, matrices and vectors).
At full scale this requires the incorporation of all components into an integrated environ-
ment. The interaction of the components and reuse of code for the different distributed
data structures is simplified by providing a “parallel infrastructure” which is drawn as a
vertical box in Fig. 1 since it is intended to support all components.

In the rest of this paper we will review the design of the UG (shorthand for
Unstructures Grids) software which intends to provide such an integrated environment.
The next section describes the modular structure, then we look at the parallel infrastruc-
ture part (DDD) and at the unstructured mesh data structure. Finally, we discuss the
high–level object oriented interface to the numerical algorithms and give some conclusions.

UG MODULE STRUCTURE

The UG software is structured into several layers shown in Fig. 2. We will browse
through the layers from bottom to top.

The Dynamic Distributed Data (DDD) layer provides the parallel infrastructure for
creating and maintaining the distributed unstructured mesh data structure. It uses the
Parallel Processor Interface (PPIF) for portability to many platforms. DDD is described
in more detail below.

The next layer provides basic sequential functionality. The domain manager offers an
abstract geometry interface to the grid manager. Two different implementations of this
interface are available. The output devices module offers a portable graphics interface
which is implemented for X11, postscript and other formats. The inter–module database
is used by modules to exchange data with each other in a standardized way. Finally,
the graph partitioner CHACO, see [8], has been included for use in the load balancing
routines.

The grid manager module is responsible for creation and modification of the unstruc-
tured mesh data structure. Creation of initial meshes is done sequentially by 2D/3D
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Figure 2: Modular structure of UG.
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Figure 3: PDE problems and discretizations currently implemented in the UG toolbox.

advancing front mesh generators. The 3D mesh generator has been contributed by
J. Schöberl, Linz, and is described in [14]. UG supports six different element types: Tri-
angles, quadrilaterals, tetrahedra, pyramids, prisms and hexahedra. Degrees of freedom
can be placed in vertices, edges, faces and elements of the mesh.

On top of the grid manager we have the graphics module enabling 2D and 3D visu-
alization of meshes and solutions on planar cuts. Parallel 3D hidden surface removal is
included, see [10]. Graphical output can be sent to any output device. The linear al-
gebra module provides kernels for sparse matrix–vector operations and iterative solvers.
Numerics support includes useful functionality for many finite volume and finite element
discretizations.

The numerical algorithms module consists of a large variety of numerical methods
such as linear and nonlinear solvers, time–stepping schemes. From the point of view of
the application programmer UG provides a framework for building specialized simulator
applications. The numerical algorithms are implemented in a set of classes which can
be used directly or from which the application programmer can inherit in order to add
new components or to replace existing ones. In the implementation of his new classes the
programmer can use functionality offered by other UG modules (e. g. numerics support)
in the traditional form of subroutine libraries. The object oriented design of the numerical
algorithms is described in more detail below.

A large number of PDE problems have been solved using the UG framework. A partial
list is given in Fig. 3. UG has been implemented in the C programming language. Most
of its design follows the modular programming style, except for the numerical algorithms
which have been designed with object oriented methods.



DYNAMIC DISTRIBUTED DATA

The DDD layer provides the parallel infrastructure to create and maintain the dis-
tributed unstructured mesh data structure as well as the distributed sparse matrices and
vectors. The underlying idea of DDD is that an arbitrary data structure consisting of
user defined data types referencing each other can be mapped to a directed graph where
each node corresponds to an object (e. g. a vertex or an element) and each edge in the
graph corresponds to a reference (pointer) from one object to another.

For the purpose of parallel processing we want to assign parts of the graph to different
processors. Since we aim at distributed memory architectures an edge can only be stored
by a processor if is also assigned the two corresponding nodes (no pointers to objects
in another processor’s memory are possible). In order for each edge to be stored in at
least one processor some nodes have to be stored in several processors, resulting in an
overlapping decomposition of the graph. Different forms of overlap are possible and are
determined by the needs of the application. Nodes of the abstract graph that are stored
on more than one processor are called “distributed objects” in DDD notation.

DDD allows the application to compose distributed objects from objects created seper-
ately on each processor (a process called identification, used e. g. in mesh refinement) and
it provides abstractions for efficient communication among the copies of a distributed ob-
ject. The most powerful feature of DDD is its ability to dynamically migrate object copies
from one processor to another while automatically updating the references to neighboring
objects and the corresponding communication data structures.

DDD objects correspond to individual vertices or elements of the mesh data structure.
All operations are designed to handle hundreds of thousands of objects per processor
efficiently. Memory overhead is 12 bytes in each object and an additional 12 bytes for
each remote copy of an object. DDD only stores information about local objects and copies
of these local objects on other processors, no component of DDD has global information
about all objects.

For more information about DDD we refer to the thesis of Klaus Birken [6].

HIERARCHICAL MESH DATA STRUCTURE

The central idea of the UG’s approach to scalability is the use of a hierarchical mesh
data structure. It is assumed that the geometry is simple enough to be duplicated on each
processor and that a reasonable initial mesh can be constructed that is much coarser than
the final mesh that is used to compute the solution of the differential equation. Thus it
is possible to generate an initial mesh sequentially which is then distributed to (a subset
of) the processors for (adaptive) refinement in parallel.

The mesh refinement procedure is an extension of the algorithms of [1] (2D, triangles)
and [5] (3D, tetrahedra) to multiple element types. An efficient data–parallel implemen-
tation is enabled through a level–wise formulation (only elements of one grid level at a
time are modified) and the use of a complete set of rules (there is a refinement rule for
any possible refinement of edges and faces of an element), see [2] and [11].
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Figure 4: UG unstructured mesh data structure.

Besides in mesh generation, the hierarchical mesh structure is also of central impor-
tance to other steps of the PDE solution process: It is used to define a hierarchy of finite
element spaces to be used in the multigrid solver, it can be used to obtain good initial
guesses in the nonlinear solver (nested iteration) and it is useful for reduction of the com-
plexity of the load balancing problem, see [3]. Furthermore, the hierarchical structure
allows for tremendous savings in the size of output files, see [7], and can be used for an
efficient parallel solution of the 3D hidden surface problem, see [10].

We will now briefly consider the data structure used to represent the hierarchical
mesh (it is covered in more detail in [4]). The MULTIGRID data type represents a complete
hierarchical unstructured mesh consisting of several grid levels. Each grid level is accessible
via the GRID data type holding elements (the ELEMENT data type), vertices (NODE and
VERTEX data types) and edges (LINK and EDGE data type).

References between objects are shown in Fig. 4. Elements have access to their nodes
and neighboring elements (part (a)), nodes have access to neighboring nodes via the edge
list (part (b)). The hierarchical relationships of elements and nodes are shown in parts
(c) and (d) of the figure.

Typical operations on the data structure include browsing, tagging elements for re-
finement/coarsening and mesh modification.



SPARSE MATRIX–VECTOR DATA STRUCTURE

In finite element or finite volume methods the solution of a PDE problem is approx-
imated in a finite–dimensional function space equipped with a local basis. This means
that any function in that space is determined locally on each element by degrees freedom
related to that element and its faces, edges or vertices. Two elements share degrees of
freedom at common vertices, edges and faces.

Typically, the whole solution process requires several solutions and/or right hand sides
to be stored. Therefore the grid manager allows a variable number of floating point values
to be associated with each geometric location (node, edge, face, element) at run–time.
Note that degrees of freedom forming for example the solution vector are not stored in
one big array but rather all floating point values related to a geometric location are stored
in a small block. This prevents the use of efficient, array–based matrix–vector operations
but on the other hand enables easy addition/deletion of degrees of freedom as the mesh
is refined/coarsened. Furthermore it allows the direct use of DDD for the parallelization
of matrix–vector operations.

Matrix entries are collected in blocks that couple all degrees of freedom in a geometric
location with those in another geometric location. Each location stores a list of all matrix
blocks coupling this location with other locations (i. e. a block compressed row storage
scheme). Matrix blocks are allowed to be sparse as well, see [12].

OBJECT–ORIENTED DESIGN OF NUMERICAL ALGORITHMS

The solution of nonlinear, time–dependent problems involves several cooperating nu-
merical algorithms. An implicit time discretization requires the solution of a system of
nonlinear algebraic equations per time step. Solving that by Newton’s method requires
the solution of a system of linear equations per iteration. As a linear solver one might
consider a Krylov subspace method which requires a preconditioner, e. g. multigrid. A
multigrid iteration needs a smoothing iteration, grid transfer operators and a coarse grid
solver which in turn might be another preconditioned Krylov method or an algebraic
multigrid scheme if the coarse grid is not small enough to solve the equations exactly.
The Newton scheme may also require an interpolation scheme to transfer an initial guess
from coarse to fine grid. In the adaptive case an error estimator is required. Even more
complex scenarios can be imagined when using decoupled solution strategies for systems
of PDEs.

The “numerical procedures” in UG have been designed to support this kind of flexible
composition of solver components. In particular we wanted the design to possess the
following properties:

• Components should be reusable across problem domains. E. g. the time–stepping
code should be the same regardless of the PDE to be solved.



• Components should not use outside knowledge. E. g. the nonlinear solver should
not know whether it solves a nonlinear problem within a time–step or a stationary
problem.

• The components should be configurable from script file to be able to quickly test
different configurations.

In order to achieve these goals the numerical algorithms have been realized as a class
hierarchy. Part of the class diagram related to discretization and time–stepping schemes
is shown in Fig. 5. Classes are denoted by rectangular boxes having the class name at the
top. Classes with names in italics denote abstract classes, a class name in regular text
denotes concrete classes. An arrow with a triangle denotes class inheritance, a regular
arrow denotes usage (reference) of a class.

A few words about implementation may be in order here since UG is written in C,
not in C++. Classes are implemented as structs containing function pointers. Every
member function receives a pointer to the object as first parameter (the this pointer).
All function pointers are included in every instance of a class. A virtual function table
has been omitted since memory requirements are not critical. Inheritance is implemented
by including the “base class” in the “derived class”.

The class design is illustrated by showing the interaction of the implicit time–stepping
scheme and the nonlinear solver in more detail.

Let us consider the solution of a system of ordinary differential equations (ODEs) in
the form

d (m(y(t)))

dt
= f(t, y(t)), y : R → R

N , y(t0) = y0. (1)

Solving (1) with an implicit Euler scheme leads to the following nonlinear algebraic system
to be solved per time step:

FIE(yn+1) = m(yn+1) − ∆tf(tn+1, yn+1) − m(yn) = 0. (2)

We assume that the general form of the nonlinear system occurring in an implicit solution
of (1) is

F (yn+1) =

1∑

k=k0

[αn,km(yn+k) + βn,kf(tn+k, yn+k)] = 0 (3)

with αn,1 normalized to 1.0. Abstract class NP_T_ASSEMBLE (see Fig. 5) defines the
interface to the discretization scheme based on this general form. The two main functions
are TAssembleDefect() which does one step of (3),

d = d + αm(y) + βf(t, y) (4)

(given α, β, t and y) and TAssembleMatrix() which is required to provide some lin-
earization J ∈ R

N×N of (3), e. g. the full linearization

(J)
ij

=
∂mi

∂yj

− βn,1

∂fi(t, y)

∂yj

(5)

This interface is general enough to support a wide variety time discretization schemes in-
cluding one step–θ, fractional step–θ, backward difference formulas and diagonally implicit
Runge–Kutta schemes.
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The discretization interface for stationary nonlinear problems of the form

F (y) = 0 (6)

is given by the virtual class NP_NL_ASSEMBLE. It is very similar to the time–dependent case
with NLAssembleDefect() computing d = F (y) and NLAssembleMatrix() providing a
linearization. A nonlinear solver from class NP_NL_SOLVER (not shown in the figure)
expects an object of type NP_NL_ASSEMBLE as an argument to its Solver() member
function:

NP_NL_SOLVER::Solver(...,NP_NL_ASSEMBLE *problem,...);

The time–stepping scheme interface is defined by class NP_T_SOLVER. It is derived
from NP_NL_ASSEMBLE and uses an object of type NP_T_ASSEMBLE to implement the
NP_NL_ASSEMBLE interface for the nonlinear problem to be solved in a time step. When
the time–stepping scheme calls the nonlinear solver it passes itself as the problem param-
eter. When the nonlinear solver then executes a member function of the problem object,
control will return to the time–stepping scheme which has all the information available in
order to compute the defect and linearization correctly. Hence, the nonlinear solver does
not need to know whether it solves a nonlinear problem within a time step.

All nonlinear, time–dependent problems listed in Fig. 3 have been implemented con-
forming to the NP_T_ASSEMBLE interface and therefore share the same time–stepping code
as well as linear and nonlinear solvers.

CONCLUSIONS

Due to lack of man–power and expertise probably no single group of researchers will
ever have the fully–integrated parallel adaptive PDE software package. It is therefore
mandatory to define standardized interfaces for the PDE software components such that
each group can contribute modules from its area of expertise and use the modules of
other groups in the remaining areas. Module interfaces should be general enough to allow
competing implementations concentrating on different aspects such as speed, memory
requirements or generality. Algorithms and data structures should be decoupled wherever
possible.

The biggest challenges in the construction of these interfaces are “design for change”
and the “combination of flexibility and efficiency”. As new (numerical) algorithms are
developed it should be able to incorporate them into the framework. This requires a lot
of experience in the design of the interfaces. Flexibility and efficiency can be achieved by
combining a high–level object–oriented design with optimized low–level kernels.
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alization of large–scale data on hierarchical meshes”, In W. Lefer and M. Grave (Eds.),
Visualization in Scientific Computing ’97. Springer, 1997
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