A Parallel Software-Platform for Solving
Problems of Partial Differential Equations
using Unstructured Grids and Adaptive
Multigrid Methods

Peter Bastian, Klaus Birken, Klaus Johannsen, Stefan Lang, Volker
Reichenberger, Christian Wieners, Gabriel Wittum, and Christian Wrobel

Universitdt Stuttgart, Institut fiir Computeranwendungen III,
Pfaffenwaldring 27, D-70569 Stuttgart, Germany

Abstract. The goal of this work is the development of a parallel software-platform
for solving partial differential equation problems. State-of-the-art numerical meth-
ods have been developed and implemented for the efficient and comfortable solution
of real-world application problems. Emphasis is laid on the following topics: dis-
tributed unstructured grids, adaptive grid refinement, derefinement /coarsening, ro-
bust parallel multigrid methods, various FE and FV discretizations, dynamic load
balancing, mapping and grid partitioning. Some important application examples
will be presented including structural mechanics, two-phase flow in porous media,
Navier-Stokes problems (CFD) and density-driven groundwater flow.

1 Introduction

Over the past two decades, very efficient techniques for the numerical solution
of partial differential equations have been developed. Most notably these are:

— use of unstructured meshes for the approximation of complex geometries;

— adaptive local grid refinement in order to minimize the number of degrees
of freedom required for a certain accuracy;

— robust multigrid methods for the fast solution of systems of linear equa-
tions;

— parallelization of these algorithms on MIMD type machines.

Up to now, these innovative techniques have been implemented mostly in
university research codes [2,3,8,13] and only very few commercial codes use
them, e.g. [14]. The reason for this is twofold. First, the construction of fast
and robust iterative solvers is still a problem. Multigrid methods have been
applied very successfully in the field of computational fluid dynamics [10,12,
16] but the application to problems from nonlinear structural mechanics or
multiphase—flow in porous media is still in its infancy.

The second reason is that the integration of all the above-mentioned
techniques in a single code requires a major coding effort of the order of sev-
eral tens of man—years. Moreover, the structure of existing codes is often not

2 Bastian et al.

suited to incorporate all these methods since they require a strong interaction
between mesh generator, error estimator, solver and load balancer.

The software package UG (shorthand for Unstructured Grids) has been
designed to overcome these problems by providing reusable software tools
that simplify the implementation of parallel adaptive multigrid methods on
unstructured meshes for complex engineering applications. The heart of UG is
its unstructured grid data structure. It allows one to create meshes consisting
of triangular, quadrilateral, tetrahedral, pyramidal, hexahedral and prism
elements in two and three space dimensions. The mesh data structure is
hierarchical and elements can be refined and removed locally.

The geometric data structure is complemented by the algebraic data struc-
ture used to represent sparse matrices and vectors. The degrees of freedom
can be associated with nodes, edges, faces and elements of the mesh, thus
also allowing the implementation of nonconforming, mixed or higher—order
finite element discretizations. A large number of linear algebra subroutines,
iterative kernels and multigrid components is available. For standard situa-
tions, like conforming finite elements, the user does not have to write a single
line of code in order to use the multigrid method (even for systems of partial
differential equations). The implementation of discretization schemes is sim-
plified by a large collection of routines providing shape functions and their
derivatives, quadrature formulas, finite volume constructions etc.

UG is intended primarily to be a tool to explore new discretization
schemes, solvers and error estimators. A powerful graphical user interface
can help to reduce development time significantly. UG has a built—in shell
with command interpreter and allows the user to open any number of win-
dows on his screen. Meshes, contour lines, color plots and vector plots can be
displayed in two and three dimensions. Hidden line removal in 3D efficiently
uses the hierarchical data representation.

A further great advantage of UG is its support for parallelism. The ex-
periences from a first parallel version described in [3] have led to a new
programming model DDD that can be used for the parallelization of appli-
cations with graph-like data structures as described in [6]. DDD is the basis
of the parallel UG version but can also be used independently of it. UG will
allow a very smooth transition from sequential to parallel computation.

The computational and networking infrastructure at HLRS in Stuttgart
has been used for two major goals in the course of the corresponding project:

— During the final development phase of the parallel UG software pack-
age it was necessary to test functionality and performance of the parallel
code on real-world configurations. Especially the Cray T3E with 512 pro-
cessors at HLRS/Stuttgart provided valuable testing scenarios with high
processor numbers and large main memory.

— Due to the hierarchical approach of UG’s software design, it was possible
to develop and test a variety of applications on a small number of proces-
sors of a smaller (and cheaper!) parallel platform (e.g., the Intel Paragon

A Parallel Software-Platform for Solving PDE Problems 3

at RUS/Stuttgart) or even on a single workstation using the sequential
build of the code. After that phase, performance tests and — most impor-
tant — real-world application problems require powerful high-performance
platforms, as those provided by HLRS.

The remainder of this paper is organized as follows. The next section
gives a rough overview of the parallel software platform developed in the
corresponding project. In the third section exemplary applications are pre-
sented in order to show the power of this approach. Quality and efficiency of
the parallel applications are demonstrated by performance figures. The paper
ends with a short conclusion.

2 Parallel Software Architecture

A large software system like UG is usually described at a number of different
levels of abstraction. In this section, we move through this hierarchy from
top to bottom. UG knows three design levels which are called architectural
design, subsystem design and component design.

At least on the architecture and subsystem level, UG is a modular design
and the information hiding principle is used extensively. All state informa-
tion is distributed among the subsystems. UG is implemented mostly in the
ANSI C programming language, some parts have been implemented in C++.

2.1 Architecture Design

The highest level of abstraction in UG is the architecture design level. Its
decomposition is motivated as follows:

UG LIBRARY
The UG library is completely independent of the partial differential equa-
tion to be solved. It provides the geometric and algebraic data structures
and a huge number of mesh manipulation options, numerical algorithms,
visualization techniques and the user interface.

PROBLEM CLASS LIBRARIES
This part provides discretization, error estimator and, if required, non—
standard solvers for a particular set of partial differential equations.

APPLICATIONS
The application finally provides the domain description, boundary con-
ditions and coefficient functions in order to complete the problem de-
scription. A simulation run is typically controlled by a script file that is
interpreted by UG’s user interface.

4 Bastian et al.

2.2 UG Library Subsystem Design

Each of the building blocks of the architectural design is decomposed into
several subsystems. We now give an informal specification of the services
provided by each subsystem.

USER INTERFACE
The user interface provides the user with a “shell-like” command lan-
guage. All operations of the UG library can usually be executed either
via a command typed into the shell or by calling a C function within the
code. A scripting language is available to control complex simulation runs.
Multiple graphics windows can be opened to visualize simulation results.
In two space dimensions the mesh can be manipulated interactively. The
user interface is based on the portable device interface described below.

GRAPHICS
The graphics subsystem provides some elementary visualization methods
like mesh plots, contour plots, color plots or vector fields. In three di-
mensions planar cuts and hidden line removal have been implemented.
The advantages of an integrated graphics package are that no interme-
diate data files have to be written and also that information like matrix
structure and entries can be displayed easily.

NUMERICS
The numerics subsystem provides numerical algorithms in a modular form
ranging from basic linear algebra (level 1 and 2) up to methods for the
solution of nonlinear time—dependent partial differential equations. In ad-
dition, it provides support for the discretization process, e.g., quadrature
rules.

DoMAIN MANAGER
The purpose of the domain manager is to provide functionality for the
description of general two— and three—dimensional domains as well as
functions on the surface (boundary conditions) and the interior (coeffi-
cients) of a domain. The general approach is that a d—dimensional domain
{2 is described by its boundary 92 which is a d—1-dimensional hypersur-
face. This is very natural in the context of partial differential equations
since boundary conditions have to be provided anyway. The standard
way of describing the boundary is through local maps f; : R4 — R?
with i = 1...n and n the number of patches. Another approach consists
of decomposing the boundary in a number of patches where each patch
is given by a simplicial surface mesh. In that case, no easy mapping f;
exists for a patch. The domain interface is also used to access CAD data.

GRID MANAGER
The grid manager subsystem provides the unstructured mesh and sparse
matrix data structures together with functionality for their manipulation.

A Parallel Software-Platform for Solving PDE Problems 5

This includes the generation of two— and three—dimensional simplicial
triangulations. The complete grid manager functionality has been paral-
lelized based on the DDD library described below. Complicated multigrid
structures can reside in a distributed manner in the memories of a parallel
supercomputer platform and can be redistributed efficiently.

DEVICE MANAGER
The device manager provides a default device called “screen” that allows
at least basic character input/output. Optionally, the screen device also
has interactive graphics capabilities. The screen device has been imple-
mented for the standard C library, X11, remote X11 (uses socket commu-
nication and an X11 capable daemon on a remote machine), and Apple
Macintosh. Write-only graphical output is available in postscript and a
portable binary format (“metafile”).

Low
This subsystem provides some basic functionality like memory manage-
ment, a simple database tool and portable file input/output. Further-
more, some debugging tools are included.

LoAD BALANCER
The load balancer subsystem is intended to solve graph partitioning and
scheduling problems that arise when topological and numerical data must
be mapped to processors in a parallel environment. The current imple-
mentation uses CHACO [9,11] for that purpose.

Dy~Namic DISTRIBUTED DaTA (DDD)
The DDD subsystem implements an innovative parallel programming
model that is especially suited for managing distributed, graph—like data
structures. Distributed data objects can be created, deleted and trans-
ferred between processes easily. Communication among distributed ob-
jects is supported in a flexible and efficient way.

PARALLEL PROCESSOR INTERFACE (PPIF)
PPIF is a portable message passing interface used by DDD. It has been
implemented for PVM, MPI, PARIX, NX and the T3D/T3E. PPIF has
very little overhead when used with fast native communication (e.g.,
shared memory get/put on the Cray T3E).

2.3 Hierarchical Structure and Component Design

The various subsystems are ordered in a hierarchical structure, e.g., the Grid
Manager subsystem relies on the DDD subsystem, which again relies on the
Parallel Processing Interface. Due to this hierarchy of implementation levels,
the resulting program code with about 360.000 lines is still suited for main-
tenance; further development is possible, sequential and parallel version use
the identical program code.

Each subsystem itself consists of a variety of components. A detailed
description of this component design level is skipped here due to space limi-
tations (refer to [4] for a detailed explanation).

6 Bastian et al.

3 Exemplary Applications

This section describes some exemplary UG applications, each accompagnied
by numerical and visualized results computed on HLRS platforms.

3.1 Finite Element Applications

For a wide range of applications it is necessary to choose an appropriate dis-
cretization for the given problem in order to represent the inherent character-
istics of the continuous problem in its approximation. Therefore, in UG a gen-
eral finite element library is realized. It supports various different discretiza-
tions, such as linear and quadratic conforming elements, Crouzieux-Raviart
elements, Raviart-Thomas elements, BDM-elements, Taylor-Hood elements
and Morley elements. For this purpose, degrees of freedom can be associated
to nodes, edges, faces and elements. Furthermore, in different parts of the
computational domain different models can be chosen, and for nonmatch-
ing grids they can be coupled by the introduction of additional Lagrange
multipliers via the Mortar finite element method.

The list of provided finite elements can be easily extended: essentially, the
assembling of the local stiffness matrices and a local interpolation for every
element must be implemented for every discretization, then all other tools
of the UG-library can be applied. The parallel linear algebra model analysed
in [15] guarantees that the parallel solvers provided by UG can be applied to
all finite elements.

Table 1. Parallel multigrid performance for Morley elements.

level 6 7 8 9
number of unknowns 66049 263169 1050625 4198401
number of inverse iterations 3 3 4 4
time for linear solver (sec.) 0.99 3.65 14.6 62.3
first eigenvalue 1068.18 1071.48 1072.35 1072.59

The parallel performance on the Cray T3E at HLRS/Stuttgart is demon-
strated by three examples. For the first example, we consider the eigenvalue
computation of a clamped plate. In our test case, we consider the unit square
2 = (0,1)? and the Poisson ratio v = 1/3. The problem is discretized with
Morley elements, where pointwise values of u are associated to the element
corners, and the normal derivative of u across the edges is associated to the
edge midpoints; locally this defines a piecewise quadratic function. The total
computation time for the first eigenvalue on the finest level was 7:28 min. on
128 processors, including the setup phase and the uniform mesh refinement,
see Table 1 for more details.

A Parallel Software-Platform for Solving PDE Problems 7

In the next example, the application to a rotating geometry is demon-
strated, where the coupling at the interface is realized by Mortar elements.
For the resulting saddle point problem, the multigrid method discussed in [7]
requires a local solution at the interface. Therefore, we use a load balancing
scheme where all elements at the interface are collected on one processor, cf.
Table 2.

Table 2. Parallel multigrid performance for Mortar finite elements on 128 proces-
sors (right) and load balancing on 32 processors (left).

/5
AVA"
SORNSRK
NNSEX
AVAYAVAV S8

\\ .
o\ level elements conv. rate time per V-cycle

A \\\\\
e
o4

st W 6 32768 0.22 5.0 sec.
7 131072 0.18 10.3 sec.
8 524288 0.18 21.1 sec.
9 2097152 0.18 57.2 sec.

Finally, we give an example for a simulation of Prandtl-Reuf3-plasticity
without hardening, realized via a return mapping function. Here, additional
data in the elements must be stored for the material history, and the eval-
uation of the material behaviour is a time consuming task within the total
algorithm. Due to the nonsmooth character of this physical model, in par-
ticular in 3D a fine resolution of the plastic zone is required for a correct
prediction of the resulting deformation after a complete loading cycle, cf.
Table 3.

3.2 Incompressible Flow and Navier-Stokes Equations

Computational Fluid Dynamics has long been recognized as one of the most
prominent examples for grand challenge problems. A problem class for the
simulation of incompressible flow modelled by the Navier-Stokes equations
has been implemented with UG and is a core part of the distribution. The
discretization scheme uses ’colocated’ variables based on dual finite volumes
which are implemented in a fully coupled manner. The discretization is con-
sistently stabilized by either a second or fourth order pressure term, both
entering the equation of continuity. An upwind discretization is realized by a
skewed upwind approach with an additional physical advection correction. In

8 Bastian et al.

Table 3. Parallel performance for Prandtl-Reufl-plasticity in 2D and 3D.

space dimension 2D 3D
elements 262144 202752
nb. of procs 256 96
unknowns 526338 692955
loading cycles 30 18

total time 15:35 min. 21:21 min.
Newton steps 161 55

nonlin. red. 0.000001 0.001
multigrid cycle 1757 223

contrast to many other accurate upwind schemes, this method does not need
information from neighbour elements during the element assembly procedure,
which is advantageous for unstructured grids and parallelization.

Table 4. Laminar flow around a cylinder: parallel execution times.

ProCessors elements tiin t/ityn, tiotal
4 6912 60.47 1.63 277
32 52296 102.07 1.76 386
256 442368 158.83 2.06 560

The nonlinear stationary system is solved by a fixed point iteration and
the linearized systems are solved either by a geometrical multigrid method or
by Krylov subspace methods like BICGSTAB or GMRES with the multigrid
method as a preconditioner. Different smoothers can be employed for the
multigrid method, like the incomplete LU factorization with 8 modification
in the example shown below.

Figure 1 shows pressure iso-surfaces and the velocity for the calculation
of a laminar flow around a cylinder at a Reynolds number of 20. Parallel
performance results can be found in Table 4. A BiCGSTAB solver with a
linear multi-grid preconditioner and an ILUg smoother was employed for the
solution of the linear systems within the quasi-Newton nonlinear solver, which
itself was used within a nested iteration scheme. t;;,, denotes the total time
spent for solving the linear problem, t/it;;, is the time for one multigrid cycle
and t;04q; the total solution time on all levels. Almost 1.8 million degrees of
freedom were used for the computation on 256 processors. As expected, the
multigrid solver scales very nicely and the total solution time only increased
by a factor of 2 for a problem with 64 times the size of the initial problem.

A Parallel Software-Platform for Solving PDE Problems

///

s

/////

=7

=

=

. ’
=)

5 \
S L
= A

= N .
= A

3

=

[

%{/////m

L

Fig. 1. Flow around a cylinder: Visualization of the result (bottom) and load bal-
ancing (top) for 32 processors.

3.3 Two—phase Flow in Porous Media

The flow of two immiscible fluids in a porous medium is described by two cou-
pled highly non-linear time—dependent partial differential equations, see [1]
for an introduction. These equations play an important role in oil reservoir
simulation, the development of effective in—situ remediation techniques and
the security assessment of underground waste repositories. Due to the hyper-
bolic/parabolic character of the equations, strong heterogeneities and high
non-linearity, they pose a challenging problem for multigrid solution.

A problem class has been developed that solves the two—phase flow equa-
tions in a fully implicit / fully-coupled manner using either phase pressure-
saturation or a global pressure—saturation formulation [5]. A finite volume
and a control-volume—finite—element discretization with first—order upwind-
ing have been implemented. Entry pressure effects at porous medium discon-

10 Bastian et al.

Fig. 2. 3D DNAPL infiltration into a heterogeneous porous medium. 10% satura-
tion isosurface after 800 s shown left and 38% saturation after 1000 s right.

tinuities are handled by incorporating appropriate interface conditions. Both
discretizations support all element types in two and three dimensions. Time
discretization is fully implicit, resulting in a large set of nonlinear algebraic
equations per time step. The nonlinear equations are then solved iteratively
by a Newton—-Multigrid technique. A line search method is used to achieve
global convergence. Several multigrid techniques have been implemented in
UG to handle coefficient jumps induced by saturation fronts and absolute
permeability variations. These jumps are in general not aligned with coarse
grid lines. In the simulations below, a multigrid method with truncated re-
striction, point—block ILU smoother and a V-cycle has been used.

Figure 2 shows saturation iso—surfaces for a three-dimensional DNAPL
(dense non—aqueous phase liquid, a fluid with density higher than water and
immiscible with it) infiltration into a heterogeneous porous medium. Two
blocks of low permeability have been inserted into the reservoir. Entry pres-
sure effects prevent the DNAPL from infiltrating the low permeability lenses.
The performance data for this problem is shown in Table 5. In the table,
MESH denotes the number of hexahedral elements (number of unknowns is
twice this number), EXECT the total execution time in seconds, NLIT the
number of Newton iterations for all time steps on the finest mesh, AVG the
average number of multigrid cycles (within BICGSTAB) per Newton itera-
tion and Tit is the time for one multigrid cycle. Nested iteration is used to
obtain good initial guesses on the fine mesh. The example shows that good
parallel and overall efficiencies are obtained for large scale problems.

A Parallel Software-Platform for Solving PDE Problems 11

Table 5. Parallel performance of the T3E for a 3D computation on a hexahedral
mesh with increasing number of elements and processors (scaled computation). 50
time steps of 20 [s] have been computed. A V—cycle multigrid algorithm with ILU
smoother with two pre and two post—-smoothing step is used as a preconditioner in
BiCGSTAB.

T3E MESH EXECT NLIT AVG Tit
1 5120 4187 218 1.6 2.10
4 40960 11589 243 2.5 4.69
32 327680 13214 264 3.5 4.76
256 2621440 14719 255 4.3 4.82

3.4 Density—driven Flow in Porous Media

In many cases, groundwater flow in porous media involves the transport of so-
lutes that affect liquid density. If density variations exceed 20%, which occurs
near salt domes or bedded salt formations, flow and transport are strongly
coupled. The primary coupling arises in the equations through the body—force
term of the fluid equation and the advection term of the transport equation.
A second coupling arises from the velocity—dependent hydrodynamic disper-
sion in the transport equation. These couplings cause nonlinearities in the
equations that preclude analytical solutions and are a challenge for numeri-
cal simulations.

Density—driven flow problems can be described by two nonlinear, coupled,
time—dependent differential equations, a continuity equation for the fluid and
a continuity equation for the solute transport. The fluid continuity equation
is written in terms of pressure, assuming that Darcy’s law is valid. Both
equations are discretized on vertex-centered finite volumes using different
constructions for the control volumes. In cases of dominant convection, an
aligned finite volume method, where the finite volumes are aligned to a given
velocity, is preferable to the standard finite volume method. Furthermore,
a consistent velocity approximation of terms involved in the fluid velocity
calculation is implemented. The transient equations are solved with a fully
implicit time-stepping scheme with time step control. The nonlinear equations
are solved in a fully coupled mode using an approximative Newton multigrid
method where the linearized system is solved with a linear multigrid method.

Figure 3 shows the flow around a saltdome (on the bottom of the do-
main), which consists of four layers with different permeabilities. The top
picture illustrates the grid and its distribution on 128 processors. The middle
and bottom pictures show the velocity and salt distribution at time ¢ = 10a,
respectively. The parallel performance of the computations carried out on
the Cray T3E is depicted in Table 6. The toplevel of the multigrid varies
between grid level 2 and 4 and is scaled to the number of processors used.
For performance reasons, the coarse grid is agglomerated on one dedicated
processor to avoid communications during the solution of the small coarse

12 Bastian et al.

Fig. 3. Density—driven flow around a saltdome. From top to bottom: the mesh and
its distribution on 128 processors, velocity field (¢ = 10a) and salt mass fraction
(t = 10a).

grid problem. Therefore, the performance measure Ep,, shows the relative
efficiency in comparison with the optimal balanced computation on 32 pro-
cessors. Towards both a lower or a higher processor count efficieny degrades
in the same amount. In the 4-processor case this is an effect of the coarse
grid agglomeration, while the performance loss on 256 processors is mainly
due to the degradation of the solver’s convergence rate.

Figure 4 shows a parallel adaptive computation of the same problem after
8 time steps with parallel grid adaption (refinement and coarsening) and load
balancing. The multigrid has 6 adaptive grid levels. The left upper picture
illustrates the grid adaption. Colored (yellow, green and red elements) exists
on the highest grid level, white elements reside on lower grid levels. The
load balancer was a cheap and simple coordinate based method (Recursive

A Parallel Software-Platform for Solving PDE Problems 13

Fig. 4. Parallel adaptive computation on 32 T3E processors: adapted multigrid (left
upper), load balancing (left lower) and velocity field of the solution (right picture).

Table 6. Density—driven flow around a saltdome: parallel performance on the Cray
T3E at HLRS/Stuttgart.

processors top-level tetrahedra nodes time-steps execution time[sec] Epqr

4 2 138944 26429 23 50534 0.77
32 3 1111552 198089 23 38728 1.00
256 4 8892416 1532881 23 50115 0.77

Inertial Bisection). The coloring of the left lower picture shows the multigrid
partitions on the different processors. Finally, on the right picture the velocity
field is shown.

4 Conclusions

This paper described the basic ideas and the software design structure of
the UG package. Several exemplary applications have been shown together
with numerical results on high-performance computing platforms at HLRS in
Stuttgart. The resulting performance shows that it is practical and for many
application problems even necessary to combine the computational power
and main memory sizes of parallel computers with state-of-the-art numerical
techniques for the solution of partial differential equations.

The layered, hierarchical approach of the UG software design leads to the
following advantages:

— The resulting software is portable on a wide range of platforms.

14 Bastian et al.

— For new applications based on UG there is only minimal effort for paral-
lelization.

— Using the UG approach, high-performance computing platforms can be
exploited efficiently for a wide spectrum of different application areas.

References

[y

. K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier, 1979.

. R. Bank, PLTMG Users Guide Version 7.0, SIAM, 1994.

P. Bastian, Parallele adaptive Mehrgitterverfahren, Teubner Skripten zur Nu-

merik, Teubner-Verlag, 1996.

4. P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert,
and C. Wieners. UG — a flexible software toolbox for solving partial differential
equations. Computation and Visualization in Science, (1), 1997.

5. P. Bastian and R. Helmig. Efficient Fully-Coupled Solution Techniques for Two-
Phase Flow in Porous Media. Advances in Water Resources Research, 1997
(submitted).

6. K. Birken. An efficient programming model for parallel and adaptive CFD-
algorithms. In Proceedings of Parallel CFD Conference 1994, Kyoto, Japan,
1995. Elsevier Science.

7. D. Braess, W. Dahmen, and C. Wieners, A multigrid algorithm for the mortar
finite element method. submitted.

8. P. Deuflhard, P. Leinen, and H. Yserentant, Concepts of an adaptive hierarchical
finite element code, IMPACT of Computing in Science and Engineering, 1 (1989),
pp- 3-35.

9. Hendrickson and R. Leland, The chaco user’s guide wversion 1.0, Tech. Rep.
SAND93-2339, Sandia National Laboratory, October 1993.

10. E. H. Hirschel, ed., Flow Simulation with High-Performance Computers II,
Vieweg Verlag, Braunschweig, 1996.

11. S. Lang, Lastverteilung fir paralle adaptive Mehrgitterberechnungen, Master’s
thesis, Universitat Erlangen-Niirnberg, IMMD III, 1994.

12. D. J. Mavripilis, Three—dimensional Multigrid Reynolds—averaged Navier—
Stokes solver for unstructured meshes, AIAA Journal, 33 (1995).

13. L. C. McInnes and B. Smith, PetSc2.0: A case study of using MPI to develop
numerical software libraries, in Proc. of the MPI Developers Conference, Notre
Dame, IN, 1995.

14. M. Raw, A coupled algebraic multigrid solver for the 3D Navier—Stokes equa-
tions, in Proc. of the 10" GAMM Seminar Kiel, Notes on Numerical Fluid
Mechanics, G. W. W. Hackbusch, ed., vol. 49, Vieweg—Verlag, 1995.

15. C. Wieners, Parallel linear algebra and the application to multigrid methods, in
NNFM, vol. 56, W. Hackbusch and G. Wittum, eds., Viewig Verlag, 1999. in
preparation.

16. G. Wittum, Multigrid methods for Stokes- and Navier-Stokes equations, Numer.

Math., 54 (1989), pp. 543-563.

w N

