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R. Kornhuber4 M. Ohlberger3 O. Sander4

1Institut für Parallele und Verteilte Systeme, Universität Stuttgart, Germany
2Abteilung für Angewandte Mathematik, Universität Freiburg, Germany

3Institut für Numerische und Angewandte Mathematik, Universität Münster, Germany
4Institut für Mathematik, Freie Universität Berlin,

DFG Research Center Matheon, Berlin, Germany

Abstract

In a companion paper [5] we introduced an abstract definition of a parallel and adaptive hierarchical
grid for scientific computing. Based on this definition we derive an efficient interface specification as a
set of C++ classes. This interface separates the applications from the grid data structures. Thus, user
implementations become independent of the underlying grid implementation. Modern C++ template
techniques are used to provide an interface implementation without big performance losses. The imple-
mentation is realized as part of the software environment DUNE [10]. Numerical tests demonstrate the
flexibility and the efficiency of our approach.
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1 Introduction

Partial Differential Equations (PDEs) are abundant in science and engineering. There is a large body of
methods to numerically solve PDEs, such as the finite element, finite volume, and finite difference method as
well as various gridless methods. For each of these methods, many implementations in computer codes exist,
see e. g. the list provided by [29]. Each of these codes has been designed with a particular set of features in
mind. Extending a code beyond this set of features is usually hard and time-consuming, because each code
is based on a particular data structure.

In a companion paper [5] to this article we introduced and formally defined a generic grid interface for
parallel scientific computing. Here, we will describe its implementation as a software system [10] written in
C++ and present example applications which illustrate the main design principles.

The first section will give an overview of the underlying design decisions of the grid interface. Next we
present the programming interface as it results from the application of the design principles in Section 2 to
the abstract definitions in [5]. We then provide several example applications to give an idea of the current
possibilities of the DUNE system. These examples will emphasize our design goals.

DUNE is organized as a modular system. Release 1.0 includes the core modules dune-common (foundation
classes), dune-grid (grid interface and implementations), and dune-istl (iterative solver template library),
[6, 7]. The supplementary module dune-grid-howto serves as an introduction to the grid interface. There
are also several application modules built upon the DUNE libraries like groundwater flow, multiphase flow
in porous media, inviscid fluid flow, and linear elasticity. The implementation of the grid interface, as it is
described in this paper, is publicly available as part of the 1.0 release of DUNE in the dune-grid module.
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2 Design principles

The implementation of the abstract definitions in [5] is based on several design goals. They lead to the
design principles described in this section.

Flexibility: Users should be able to write general components, which can run on any grid implementing
the DUNE grid interface (Section 3).

Efficiency: Scientific computing has an unlimited demand for computing power. Users will not accept a
big performance loss as the price for a clean interface.

Legacy Code: Users must be able to incorporate existing code and libraries into their new applications.

Existing frameworks are often based on a particular data model; this limits their flexibility. The main
design idea for the DUNE grid interface is the separation of data structures and algorithms by abstract
interfaces. This separation offers flexibility for codes based on DUNE. It ensures maintainability and ex-
tendibility of the framework and allows the reuse of existing finite element packages with a large body of
functionality.

The grid interface is restricted to be slim and offers little more than what is absolutely necessary. There-
fore, more grid implementations can be used in this interface. Extended methods and algorithms can be built
on this slim interface and hence work on every grid. Furthermore, generic programming techniques allow
optimized implementations of these extended methods or algorithms for a certain grid, while still offering a
compatible interface. This specialized implementation can then benefit from grid features beyond the slim
interface. Not all features of the interface are required, some features are optional and do not have to be
implemented by every grid. Their presence can be queried at compile time using a traits class.

Dune features dimension-independent programming, using templates [2]. Dimension-independent pro-
gramming reduces code bloat and improves maintainability, both of DUNE and the applications.

The container classes which can be found in DUNE follow a view concept modelled after [20, 25]. Data
can be accessed via different views, which cannot alter the underlying container or the data. Each view offers
access to a distinct subset of the container. The strict separation of read-only views and read-write access
facilitates a clear design. Read-only views allow the compiler to apply various optimization strategies. Also
read-only views allow to generate objects on the fly. This can dramatically reduce memory consumption and
speed up execution time if certain information is only used rarely.

High-level interfaces allow to create applications without knowledge of the underlying implementation.
These additional layers of abstraction usually add an overhead, leading to a performance penalty. An
efficient implementation of the interface is obtained using generic programming techniques, such as static
polymorphism and traits [23].

The use of generic programming techniques for the efficient separation of data structures and algorithms
has been pioneered by the Standard Template Library (STL) [16], which later became part of the C++
standard library. The most important aspect of generic programming with respect to performance is that
dynamic polymorphism, realized with virtual functions in C++, is replaced by static (or compile-time)
polymorphism. This allows the compiler to inline interface implementation methods and to apply its full
range of optimization techniques. As a consequence the abstract interface is effectively eliminated at compile
time and “small” methods (consisting of only a few machine instructions) do not imply a performance
penalty. This means that interfaces may be defined on any level of program design, e. g., even for the access
to individual elements of a vector.

Generic programming is realized with templates in the C++ programming language. Many of the tech-
niques used in DUNE, such as static polymorphism, traits, or template metaprogramming are, e. g., explained
in the book by Vandevoorde and Josuttis [23]. Template programming techniques in scientific computing
have been promoted in the Blitz++ library [24] for multidimensional arrays and for linear algebra in the
Matrix Template Library [21]. Pflaum [17] concentrates on the use of expression templates (one particular
template programming technique) in the numerics of PDEs. The same techniques are used in the Iterative
Solver Template Library [6], which is also part of DUNE.
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3 Interface realization

The grid interface in DUNE is realized by a direct translation of the abstract definition of a grid given in
[5] using the interface design principles discussed in Sec. 2. Here we will present a few of the main classes.
A complete up-to-date documentation can be found at [10]. In this section, text in typewriter font denotes
actual class or method names.

3.1 The grid and grid entities

A Grid class is a container for the set E|p of entities that are processed on processor p. Implementations of
this class may be parameterized statically. Frequently these parameters are the grid dimension or the world
dimension [5, Def. 13].

The grid class provides various iterators for the access to its entities. These iterators provide read-only
access. The only way to modify the grid is through methods of the grid class itself (see the paragraph on
the view concept in Sec. 2). This avoids problems related to the const-ness of C++ types. Grids can be
changed by grid refinement (Sec. 3.3), or, if the grid implementation supports parallel processing, by load
balancing (Sec. 3.5). The iterators follow the conventions of STL iterators [16]. For a given codimension c
and a grid hierarchy level l an iterator of the class LevelIterator iterates over the sets Ec

l of entities on

this level. Iterators of the class LeafIterator iterate over the sets L̃c of entities on the leaf grid. In parallel
computations, they can be restricted to a certain processor p and partitionType π which is one of following
five types: interior, border, overlap, front, or ghost [5, Def. 22].

Unlike many existing grid managers, DUNE does not store the data needed for computations in the grid
itself. The mechanism used to associate external data with entities of the grid is explained in Sec. 3.2.

The interface separates the topological from the geometrical aspects of a grid hierarchy. All topological
information about an entity e ∈ Ec of codimension c is encapsulated by the class Entity〈c〉. All objects of
type Entity know their reference element R(e) (i.e., simplex, cube, etc.), their level in the grid hierarchy,
and their affiliation to one of the previously mentioned partition types.

The class Entity is specialized for entities of codimension 0 (elements). This specialization contains
several methods which are only available for elements. The HierarchicIterator iterates over all descendant
entities of a given entity e ∈ E0. A LevelIntersectionIterator is provided, which traverses the set Ie of
intersections with elements on the same level (see [5, Section 4]). If the element is part of the leaf grid, then
there is also a LeafIntersectionIterator which iterates over the set Ĩ[e] of intersections with elements
on the leaf grid. The methods wasRefined() and mightBeCoarsened() determine whether an entity was
refined or might be removed during the grid adaptation step.

The geometrical information (geometric realization, [5, Def. 10]) of grid entities is provided by the class
Geometry. The geometry object corresponding to a given object of type Entity is available using the
member method geometry(). The Geometry class provides the geometric realization map me from the
reference element onto the entity as described in [5, Def. 10] along with its inverse. It also provides ∇(m−1

e )T

for the assembly of finite element stiffness matrices and det
√

|(∇me)T∇me| which is needed for numerical
quadrature. For convenience and efficiency reasons the Geometry class provides additional methods for the
volume of the entity and the number and positions of the entity corners.

The set of reference elements R exists once for all grid implementations. Each reference ele-
ment is implemented as a singleton [12] and can be accessed via its dimension and type through the
ReferenceElementContainer.

3.2 Attaching data to a grid

The formal grid specification describes three index maps as the means to attach data to the grid [5, Sec. 6].
For fast access to data on a fixed grid there are the level index map κc,r

j |p : Ec,r
j |p → N0 and the leaf index

map λc,r|p : Lc,r|p → N0 for given level j, codimension c, reference element type r, and process p. Both
map their respective domains injectively onto a consecutive range of natural numbers which starts with zero.
Hence the image of these maps can be used to access standard arrays with constant-time access.

The level and leaf index maps are implemented as the classes LevelIndexSet and LeafIndexSet, respec-
tively. These two classes implement the DUNE IndexSet interface. Given an entity e, the method index(e)

evaluates the index map, while method subIndex<codim>(e,i) yields the index of the i-th subentity of
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codimension codim for a given entity e with codimension 0. Furthermore, index maps implementing the
IndexSet interface have to provide a method size().

To keep data while a grid is changing the specification contains the persistent index map µc : Ec → I. It
maps entities onto a general index set I, which needs to be totally ordered. µc is persistent in the sense that
indices for an entity do not change if this entity is not changed during a grid modification (see [5, Def. 26]
for details). In DUNE this functionality is described by the IdSet interface. Each grid implementation
provides an implementation of this interface which is called GlobalIdSet. The set I can be any C++ type
for which the operator “<” exists. Hence, in general the indices returned by the GlobalIdSet cannot be
used to address regular arrays, and associative arrays must be used instead. In analogy to the IndexSet

classes the GlobalIdSet provides methods id(e) and subId<codim>(e,i), which evaluate the persistent
index map for a given entity e or one of its subentities. Furthermore, such a persistent index map allows to
create arbitrary new index maps, for example a periodic index map.

Since indices which are unique across all processes may be very costly to obtain for specific grid imple-
mentations, the DUNE interface also provides a class LocalIdSet. The indices returned by this class are
only unique within each process, but can in general be created more efficiently.

3.3 Grid adaptation

According to [5, Definition 23] adaptive mesh refinement can be used to enhance accuracy and reduce cost
of the simulation. The grid interface provides several methods that allow the modification of the grid via
refinement and coarsening procedures, if provided by the grid implementation.

The method mark(ref, e) is used to mark an entity e for refinement (ref = 1) or coarsening (ref =

-1). Once entities of a grid are marked, the adaptation is done in the following way:

1. Call the grid’s method preAdapt(). This method prepares the grid for adaptation. It returns true if
at least one entity was marked for coarsening.

2. If preAdapt() returned true, any data associated with entities that might be coarsened (see
mightBeCoarsened(), Sec. 3.1) during the following adaptation cycle has to be projected to the
father entities.

3. Call adapt(). The grid is modified according to the refinement marks.

4. If adapt() returned true, new entities were created. Existing data must be prolonged to newly created
entities (see wasRefined(), Sec. 3.1).

5. Call postAdapt() to clean up refinement markers.

As the data management is the user’s responsibility, he or she has to take care of restriction and prolon-
gation of data attached to the grid. This is possible using the persistent index maps (see [5, Section 6]), i. e.,
LocalIdSet and GlobalIdSet.

3.4 Parallel communication

According to [5, Remark 4], the Grid interface method communicate() is introduced to organize data
exchange between entity sets Σp and ∆q on the processes p and q respectively. communicate(dataHandle,
interface, direction, j) exchanges data attached to the parallel grid for all entities on level j, i.e. Ej |p,
communicate(dataHandle, interface, direction) does the same for all leaf entities L|p. A pair (Σp, ∆q)
is called communication interface and may be specified via the parameter interface. Σp and ∆q describe
which partitionTypes are involved on the sender side and the destination side, respectively.

The direction of an interfaces is either ForwardCommunication (communicate as given), or
BackwardCommunication (reverse communication direction). If communicate(dataHandle, interface,

direction, j) is called for a given communication interface (interface, direction), and grid level j,
then all data attached to grid entities e ∈ Σp,q = Σp ∩ ∆q should be sent to the message buffer, and all
data attached to entities e ∈ ∆p,q = ∆p ∩ Σq should be received and unpacked from the message buffer. In
order to select the data associated to the entities in Σp,q, ∆p,q and to prescribe the packing and unpacking
mechanisms, a DataHandle object has to be provided by the user.
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The DataHandle class provides the methods gather(buffer, e) and scatter(buffer, e, size) to
pack and unpack data to and from a message buffer. On invocation of communicate(), gather(buffer,
e) is called for each e ∈ Σp,q and the data is stored in the message buffer. On the target process
scatter(buffer, e, size) is called for all e ∈ ∆p,q to retrieve data from the message buffer.

Apart from parallel communication via communicate(), additional parallel operations are necessary for
the implementation of numerical methods. For example, it may be necessary to set barriers to synchronize
the processes, or to implement some kind of master-slave communication. For such tasks DUNE offers the
CollectiveCommunication class, an abstraction to the basic methods of parallel communication, follow-
ing the message-passing paradigm. CollectiveCommunication provides status informations, e.g. size(),
the number of processes, and rank(), the rank of the process. It offers basic communication methods,
e.g. barrier() and broadcast(data, length, root) and gather(inData, outData, length, root) for
distribution and collection of data. Also advanced communication methods, like sum(data), prod(data),
min(data), and max(data) are available. These methods perform certain mathematical operations on global
data structures, using local operations.

A reference to an instance of CollectiveCommunication is returned by the Grid interface method
comm(). It is important to note that the collective communication on a grid does only involve the process
set of the grid object which may be a subset of all available processes. Thus it is possible to have several
grid objects in one application assigned to different (possibly overlapping) sets of processes.

3.5 Load balancing

When local grid adaptation is used in parallel computations it may be necessary to redistribute the grid in
order to keep the load balanced that each processor has to handle. The grid interface provides two methods
to activate this process: loadBalance() and loadBalance(dataHandle) calculate the load of the grid E|p
and repartition the parallel grid, if necessary. When a DataHandle object is passed, also the data associated
with the object is redistributed. The gather() method is called to pack user data before an entity is sent
to an other process and scatter() unpacks the data on the destination process.

3.6 Existing implementations of the DUNE grid interface

At the present state of development, the dune-grid module contains six implementations of the DUNE grid
interface. Three of them, YaspGrid, OneDGrid, and SGrid are full grid implementations, while the others
are wrappers for legacy code which has to be obtained and installed separately.

AlbertaGrid: The grid manager of the ALBERTA toolbox [18]. ALBERTA supports simplicial grids in
one, two, and three space dimensions with bisection refinement.

ALUGrid: A parallel 2d and 3d hexahedral and tetrahedral grid with nonconforming refinement, and dynamic
load balancing [1, 8].

OneDGrid: A 1d grid with local mesh refinement.

UGGrid: The grid manager of the UG toolbox [3]. UG provides a parallel grid manager in two and three
space dimensions that supports hybrid meshes with red–green or nonconforming refinement.

YaspGrid: A structured parallel grid in n space dimensions.

DUNE release 1.0 includes a prototype implementation of the Grid Interface. Unlike all other grids currently
available it implements all optional methods of the sequential grid interface. It is not tuned for efficiency
and should be used for debugging and educational purposes only.

SGrid: Prototype implementation of an n-dimensional structured grid in an m-dimensional world.

The effort needed to implement legacy code wrappers varies depending on how far the internal structure
of the legacy grid manager matches the abstract grid interface. Due to a high resemblance, the UGGrid

wrapper is comparatively simple. It consists of approximately 4000 source lines of code. A lot of these are
class and method declarations, and many methods simply delegate the work to a corresponding method
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within UG. Also, a few minor patches for UG itself were necessary. These were mainly bugfixes and the
addition of extra data members to store all DUNE indices within the UG data structures. The entire UG
code was put into a C++ namespace in order to avoid name-clashes with other codes.

Wrapping ALBERTA was more difficult. Internally it is less like the abstract DUNE grid definition.
For example, element geometry information is not actually stored. Instead it is recreated on-the-fly from
the coarsest father element and refinement information each time an element is accessed. This makes
implementing iterators over all elements of a given level nontrivial. As a consequence, the AlbertaGrid

wrapper code has more than twice the size of the UGGrid wrapper.

4 Applications

In this section we will present three DUNE applications. Each of them acts as an example for one of the
three design goals.

The first example will show a grid-independent discretization, which runs on all grids available in the
dune-gridmodule. The discretization can take advantage of certain grid features, like local mesh refinement,
if available. This allows to directly compare the speed and accuracy of different grid managers.

The second example examines the overhead introduced by the abstract interface. It compares a finite
volume scheme implemented on the DUNE grid interface with an implementation based directly on the
underlying grid. We have chosen an explicit time-integration scheme because there calls to the grid manager
are predominant. It should therefore suffer a lot from additional overhead. The example will show that even
in this very challenging case the performance loss is within an acceptable range, compared to the benefits
one can gain from the abstract interface.

In the last example we will show a second use of legacy code through the abstract interface. In fact, not
only does the interface separate the grid implementation from the application, but it also cleanly separates
the different grid implementations from each other. This way it is possible to combine several legacy grid
managers and newly-implemented DUNE grids in a single application. This opens new possibilities, for
example, for multi-physics and domain-decomposition applications.

4.1 Grid independent programming – Generic discretization of an elliptic PDE

We consider the second order elliptic model problem

−∆u = f in Ω = (−1/2, 1/2)× (0, 1) × (0, 1), (1a)

−∇u · n = 0 on ΓN = {(x, 0, z) | − 1/2 < x < 0, 0 < z < 1}, (1b)

u = g on ΓD = ∂Ω \ ΓN (1c)

where the right hand side f and Dirichlet boundary conditions g have been chosen such that the solution u
is

u(r, ϕ, z) = r
1

2 sin
(ϕ

2

)

4z(1 − z)

in cylindrical coordinates. The solution is depicted graphically in Figure 1. It has a singularity along the
line (1/2, 0, z).

Eqs. (1a)-(1c) are solved numerically using standard conforming P1 finite elements on adaptively refined
grids using a residual-based error estimator ‖u − uh‖1 ≤ C

√
∑

e∈L0 η2
e with the local estimators

ηe = he‖f‖0,e +
1

2
h1/2

e ‖[∇u · n]‖0,∂e\ΓD
.

The generic implementation of the adaptive finite element method works on grids of all element types and
space dimensions, as well as with conforming and nonconforming refinement (hanging nodes). Figure 1 shows
two such grids. One is a simplicial grid with bisection refinement (generated with AlbertaGrid), the other
is a grid consisting of hexahedra, pyramids and tetrahedra with red/green type refinement (generated with
UGGrid).

Figure 2 shows the L2 norm of the discretization error with respect to the number of degrees of freedom
using various types of grid refinement. The refinement strategy refines a fraction 0 < α ≤ 1 of the elements
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Figure 1: Interpolated analytical solution for the elliptic model problem and adaptively refined grids gener-
ated with AlbertaGrid and UGGrid.

Figure 2: Comparison of error versus number of degrees of freedom and CPU time for various grids in three
space dimensions.

with largest local indicators ηe. In the computations we have chosen α = 0.14 for the grids subdividing one
element into eight elements and α′ = (1 + 7α)1/3− 1 for the bisection grid (this results in approximately the
same number of elements after three bisection steps).

The generic implementation now allows for a comparison of different grid refinement techniques. The
graph in Fig. 2 shows that all adaptive grids provide the same asymptotic convergence order (as indicated by
the slope in the log-log plot) but the constants are different. Uniform mesh refinement (YaspGrid) is clearly
asymptotically worse. The best results are obtained with simplices and bisection refinement (generated by
AlbertaGrid) followed by simplicial and cube grids with conforming closure (generated with UGGrid). Last
are the simplicial and cube grids with hanging nodes (generated with ALUGrid).

Table 1 shows timings for different parts of the adaptive algorithm on the different grids. All times are
given in seconds and have been measured on a Laptop-PC with an Intel T2500 Core Duo processor with 2.0
GHz, 667 MHz FSB and 2 MB L2 cache using the GNU C++ compiler in version 4.0 and -O3 optimization.
For solving the linear system a conjugate gradients solver preconditioned with symmetric Gauß-Seidel was
used (residual norm reduction 10−3). The following things can be observed:

• Simplicial grids with bisection refinement (AlbertaGrid) are fastest in terms of error versus number
of unknowns. Note, however, that three times as much adaptation steps are necessary unless bisection
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Table 1: Wall-time and time per degree of freedom for different grid implementations, the number of degrees
of freedom (N), relative time for various components of the adaptive algorithm and the L2 error. Meaning
of the abbreviations: MAT: construction of the sparsity pattern, ASS: the matrix assembly, SLV: the linear
solver (CG with Gauß-Seidel), EST: the error estimator, ADP: the adaptation (consisting of grid refinement
REF and vector reorganization but excluding error estimation), REF: the grid refinement.

Grid N T [s] T

N
[µs] Relative Times [%] Error

MAT ASS SLV EST ADP REF

s, Alberta 496304 117.8 237 11 14 4.8 39 32 7.9 7.7 · 10−5

s, UG 493030 175.3 356 11 17 6.1 29 37 33 8.3 · 10−5

s, ALUGrid 537515 134.8 251 24 24 6.2 28 18 3.9 12.7 · 10−5

c, UG 365891 59.6 163 14 25 8.4 26 26 22 13.3 · 10−5

c, ALUGrid 360118 42.2 117 26 30 10 22 12 2.4 14.7 · 10−5

c, YaspGrid 274625 19.7 72 22 34 14 25 5.1 0.0 59.0 · 10−5

is applied multiple times without intermediate computation. Therefore, the cube grids are typically
more efficient in terms of error versus CPU time (see Fig. 2).

• For the accuracy 10−4 ALUGrid with cubes is fastest followed by UGGrid with cubes and AlbertaGrid

with simplicial bisection refinement.

• Evaluation of the residual-based error estimator is more costly on the simplicial meshes as compared
to the cube meshes due to the larger number of faces relative to vertices.

• In the implementations based on ALBERTA and ALUGrid refinement of the grid is cheap and most of
the time for grid adaptation is spent in the reorganization of the vector of unknowns. For UGGrid it is
exactly the opposite.

• The structured grid is about three times faster than the unstructured AlbertaGrid for the same
number of unknowns. Memory requirements are about four times lower for the structured grid (the
memory required is the memory for the sparse matrix).

4.2 Efficiency of the grid interface – Forward facing step

In this example we examine the efficiency of the grid interface. We will measure the performance loss caused
by the DUNE interface layer. An implementation of the model problem using the DUNE interface will be
compared with one using the underlying grid manager directly.

The governing equations are the compressible Euler equations of gas dynamics (see [15, Section 5.1]).
The forward-facing step benchmark problem [28] for a perfect gas law with γ = 1.4 is used. The domain is
shown in Figure 3. The initial data is U0

i = (ρ0, (ρu)0, 0, 0, e0) with the initial density ρ0 = 1.4, the initial
product of density and velocity (ρu)0 = 4.2, and the initial energy e0 = 8.8. The Dirichlet inflow boundary
condition, described by the initial value, remains constant over time. This leads to a Mach three flow.

The numerical scheme is a time-explicit Riemann-solver-based locally adaptive finite volume scheme,
described in [9, 19]. Note that the implementation of the flux functions describing this Riemann solver is
the same for both implementations as we want to study only the performance loss introduced by the grid
interface.

For each time step the algorithm consists of five parts:

Communication of the Solution: Distribute the old solution among all processes.

Flux Evaluation: For each leaf entity evaluate the flux from the neighboring leaf entities. During this step
the maximal admissible local time step size is computed.

Communication of Global Time Step: Calculate the global time step from the local time steps com-
puted during the flux evaluation.

Evolution: Compute the conservative quantities at the next time step by evolving the current ones according
to the flux.
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Figure 3: Setting for the forward-facing step problem.

Figure 4: Density distribution and corresponding grid at computational time T = 3 on 16 processors using
ALUGrid.

Adaptation and Load Balancing: Refinement and coarsening of the grid as well as re-partitioning is
done. A detailed description can be found in [19].

Flux evaluation, evolution, adaptation and load balancing strongly involve grid operations. For compar-
ison the run-times for these three steps will be measured.

The described algorithm was implemented once using ALUGrid only via the DUNE interface and again
using the ALUGrid legacy methods and data structures directly. The simulations were performed on the HP
XC6000 Linux Cluster at the SSC Karlsruhe using P = 4, 8, 16, and 32 processors. In Figure 4 one can see
the density distribution for the 16 processor run with ALUGrid in three space dimensions.

Figure 5 shows the average total run-time per time step as well as the run-times for the computation of
the fluxes, the evolution step, and the grid adaptation per time step averaged in the time interval [1.5, 2.0].
The results from the start of the simulation were excluded since at that stage the grid is too coarse to reach
meaningful conclusions on 32 processors. Our results demonstrate that the DUNE interface hardly reduces
the efficiency of the numerical scheme, which confirms the observations from [4].

Table 2 shows the relative contribution to the performance gap from the grid-related parts of the al-
gorithm. Although the explicit finite volume scheme is very challenging for a general grid interface, the
difference between the original code and the DUNE code in the overall run-time is small (about 9% – 12%).
While the DUNE code is inferior especially in the adaptation and flux computation it is more efficient than
the legacy code when evolving the quantities to the next time step.

The major difference between the implementation of the scheme in DUNE compared to using ALUGrid

directly concerns the storage of the data. In the ALUGrid implementation, the data is stored directly in the
objects representing the grid entities. As during the flux computation and the grid adaptation phase the
data is accessed along with the grid entities and their geometric information the data access is very efficient
since it is already loaded into the cache. This is true for other time explicit schemes, too. Furthermore the
reorganization of the grid during the adaptation process is very efficient since storage space for the data is
automatically allocated together with the geometric information for the new entities. Since grid adaptation
is performed in each time step, the time needed for the grid modification is comparable to the cost of the
numerical scheme (about 20% of the overall time for both implementations).

When updating the current solution to the new time step, data storage in a consecutive vector separate
from the grid in DUNE becomes a significant advantage. The legacy ALUGrid implementation is forced to do
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Figure 5: Total run-time and run-time for selected parts of the algorithm. Computations are done for
P = 4, 8, 16, 32 processors.

Relative performance loss [%]
P flux evolve adapt. total
4 7.8 -5.0 9.3 12
8 7,5 -5.0 9.2 12
16 6.9 -5.0 9.2 11
32 4.9 -5.0 9.1 9

Table 2: Performance loss due to the DUNE grid interface. Total loss and loss within selected parts of the
algorithm with respect to the total run-time of the DUNE implementation are shown.

a grid traversal, which reduces the bandwidth available for the vector update. The DUNE implementation
mainly accesses a vector and can fully utilize the memory bandwidth. Here DUNE can compensate a part
of the performance loss. On 32 processors the loss in flux step and the benefit in the update step cancel
each other. Note that for implicit schemes this cache efficiency advantage will be even bigger in the linear
algebra used.

Performance tests show that for this problem both codes have a parallel efficiency which is close to
optimal. In addition we also demonstrate the parallel efficiency of the code using the definitions of speedup
S4→P (speedup from 4 to P processes) and E4→P (efficiency from 4 to P processes) from [8]. Since we study
a fixed size problem, the parallel overhead increases with the number of processors while the cost of the
numerics decreases. Hence we cannot expect optimal efficiency in this case.

The corresponding values for the original code and the DUNE code are shown in Table 3 (left) and
Table 3 (right), respectively. We observe that the efficiency is quite high (around 90%) and that the values
are approximately the same for both implementations of the algorithm.

original code
P T [s] S4→P E4→P

4 0.0089
8 0.0046 1.93 0.97

16 0.0024 3.72 0.93
32 0.0013 7.01 0.88

DUNE
P T [s] S4→P E4→P

4 0.0101
8 0.0052 1.95 0.97

16 0.0027 3.78 0.94
32 0.0014 7.26 0.91

Table 3: Speedup and efficiency of the original code and the DUNE implementation, measured with respect
to a run with four processors using a fixed-size problem.
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Figure 6: Two-body contact problem. Left: coarse grids, right: schematic view.

4.3 Coupling different grid implementations – A contact problem

In this last example we will show the use of more than one grid manager in a single application. We use
a two-body contact problem from linear elasticity. It models the mechanical behavior of two elastic bodies
which undergo small deformations and possibly come into contact with each other. More formally, consider
two disjoint domains Ω1, Ω2 in R

d, d ∈ {2, 3}. The boundary Γi = ∂Ωi, i ∈ {1, 2}, of each domain is
decomposed in three disjoint parts Γi = Γi,D ∪ Γi,N ∪ Γi,C . Let fi ∈ (L2(Ωi))

d be body force density fields,
hi ∈ (H1/2(Γi,D))d be prescribed boundary displacements, and ti ∈ (H−1/2(Γi,N ))d be fields of surface
tractions. Then we look for functions ui ∈ (H1(Ωi))

d which fulfill

− div σ(ui) = fi (2a)

ui = hi on Γi,D, (2b)

σ(ui)n = ti on Γi,N , (2c)

where n is the outward unit normal, the stress tensor σ is defined as σ(u) = E
1+ν (ǫ + ν

1−2ν tr ǫI), and

ǫ(u) = 1
2 (∇u+∇uT ) is the linear strain tensor. In addition, the following contact condition is stated. When

modelling contact in linear elasticity it is usually assumed that the areas where contact occurs will be subsets
of parts of the boundary Γ1,C , Γ2,C , chosen a priori. These two contact boundaries are then identified using a
homeomorphism Ψ : Γ1,C → Γ2,C . With this identification it is possible to define an initial distance function
g : Γ1,C → R, g(x) = ‖Ψ(x) − x‖. The contact condition then states that the relative normal displacement
of any two points x, Ψ(x) should not exceed this normal distance, in formulas

u1|Γ1,C
· n1 + (u2 ◦ Ψ)|Γ2,C

· n2 ≤ g. (3)

This condition can be derived as a linearization of the actual nonpenetration condition and is reasonable to
use in the context of linear elasticity [11].

For the discretization of the problem we use first order Lagrangian elements. In order to retain optimal
error bounds even in the presence of the contact condition, we use mortar elements for its discretization.
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Figure 7: Two-body contact problem. Left: close-up view of the deformed solution, right: vertical cut
through the von-Mises stress field.

That is, (3) is discretized not by its node-wise equivalent but in a weak form requiring

∫

Γ1,C

[

u1|Γ1,C
· n1 + (u2 ◦ Ψ)|Γ2,C

· n2

]

θ ds ≤

∫

Γ1,C

gθ ds (4)

for all θ from a suitable cone of mortar test functions defined on Γ1,C [27]. The resulting discrete obstacle
problem is solved with a monotone multigrid method as described by Kornhuber et al. [13].

As the geometry of our problem we choose the distal part of a human femur being pressed onto a block-
shaped foundation. The femur geometry is taken from the Visible Human data set [26] and a tetrahedral
grid is generated using the Amira mesh generator [22]. As the grid implementation we chose UGGrid for its
high geometry flexibility. In addition to being able to handle arbitrary grids with several element types it
allows to use automatically parameterized boundaries as described in [14].

For the obstacle we choose the SGrid implementation, which is the prototypical implementation of a
uniform hexahedral grid. The C++ methods that assemble Equations (2) and (4) take the data types of the
grids as template parameters and instantiate with no problem even when two different grid implementations
are used. Besides the construction of the multigrid transfer operators, which also depend on the grids via
template parameters, the monotone multigrid solver is a purely algebraic algorithm and therefore independent
of the grid types.

The coarse grids consist of 3787 tetrahedra for the bone and 2000 hexahedra for the obstacle. Material
parameters are E = 17GPa, ν = 0.3 for the bone and softer E = 250MPa, ν = 0.3 for the obstacle. The
latter is clamped at its base, whereas a uniform displacement of 3 mm downward is prescribed on the top
section of the bone (see Fig. 6). The bone serves as the nonmortar domain. During computation the bone
grid is refined twice using a Zienkiewicz-Zhu error estimator [30]. Accordingly, the obstacle grid is twice
refined uniformly. The resulting grids have 104305 and 128000 elements, respectively, and the resulting linear
system contains 472683 variables. The result can be seen in Fig. 7, where the left shows a close-up of the
refined grid in the contact region and the right a vertical cut through the von-Mises stress field.

12



5 Conclusions and future work

We have shown that it is possible to provide an abstract template-based representation for parallel grids
used in scientific computing. The basic feature of our approach is the clear separation of the underlying data
structures and the algorithms via a slim grid interface.

By writing code adhering to the presented interface the programmer has the flexibility to use the same
code on grids supporting different features, e. g., unstructured and structured grids. This allows the reuse of
existing algorithms on new (specialized) grids. It is possible to write simulation codes although a specialized
grid implementation needed for production code is not yet fully available. We have shown that it is easily
possible to evaluate different (adaptive) grid implementations for a problem allowing the user to choose the
most efficient solution for his or her current problem and algorithm.

By using the presented generic programming approach in C++ it is possible to get this kind of flexibility
without sacrificing the run-time efficiency of the code. This allows combining the efficiency of the programmer
with efficiency of the program. We showed this by comparing a well established parallel production code
with a (partial) reimplementation using the same grid via our new grid interface.

The flexibility achieved by the presented approach allows coupling of existing legacy codes working on
different grids. We showed that it is possible to compute coupled problems on different grids by combining
different implementations.

The presented generic grid interface is far more powerful and flexible than shown with the currently
available grid managers. Further grid managers for other special application scenarios, e.g. spherical grids,
are easily implemented.

So far, unified interfaces exist only for the grid managers and the linear algebra. For the future it is
important to design and implement a discretization module linking the two crucial parts. This task is
currently being worked on.
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