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Summary

 

In the present paper, we describe and classify the numerous variants such as BPX,
hierachical basis, HBMG, local multi-grid etc. in the framework of multi-grid. We
compare additive and multiplicative multi-grid and investigate in particular the
different behaviour with respect to smoothing. Theoretical as well as numerical results
clearly show the superiority of multiplicative multi-grid over the additive variants.

 

1. Introduction

 

In recent years, multi-grid methods have become powerful tools for solving problems
from many scientiÞc and technical applications. As methods of optimal complexity,
they contribute substantially to solving very large problems on supercomputers as
well as medium-scale problems on workstations. In practical problems, features like
robustness are crucial for the actual performance of the method. There are two main
components of the multi-grid method, smoothing and coarse-grid correction.
Particularly in view of robustness, smoothing plays a very important r�le.

In combination with adaptive grid reÞnement, many multi-grid variants have been
developed. In the present paper, we describe and classify these numerous variants
such as BPX, hierarchical basis, HBMG, local multi-grid etc. in the classical multi-grid
framework. We compare additive and multiplicative multi-grid and investigate in
particular their different behaviour with respect to smoothing. Theoretical as well as
numerical results clearly show the superiority of multiplicative multi-grid over the
additive variants.

In ¤ 2, we introduce multi-grid methods and describe and classify different multi-grid
variants like additive and multiplicative ones, local mg, BPX, hierarchical basis and
HBMG. ¤3 introduces the notion of robustness and leads to the problem that
improvement of the smoother has different effects on the different multi-grid variants.
This question is discussed in the following sections. In ¤4, the behaviour of additive
and multiplicative multi-grid for an increasing number of smoothing steps is
analyzed. ¤5 gives experimental results in accordance with the analytic ones.
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2. ClassiÞcation of Multi-Grid Methods

 

Let the linear boundary value problem
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. Let (2.1) be discretized by some local discretization scheme on a
hierarchy of admissible grids (cf. [11])
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We use nested grids only for ease of presentation. Most of the methods discussed
below can readily be applied to general loosely coupled grids violating (2.4). The
discretized equations on 
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 are denoted by 
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 with finite dimension. We assume
that the discretized equations are sparse. Further, let some ÒsmootherÓ 
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be given. 

Multi-grid methods are fast solvers for problem (2.5). The multi-grid idea can be
explained as follows. Let an 
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 in this basis, we
obtain
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In the case of a Fourier basis, which makes sense for certain model problems (cf. [10]),
these basis functions can be distinguished into rough and smooth ones. The basic
multi-grid idea is to remove error components on grids where they are rough, i.e. the
wavelength is of the order of the gridsize, which can be done easily by an averaging
process like a linear iterative scheme. Correspondingly, we have to use a scale of grids
and to combine the problems on the single grids appropriately. There are two basic
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strategies for cycling through this grid hierarchy, additive and multiplicative multi-
grid. The multiplicative method is the well-known classical multi-grid (cf. [10]) as
given in Algorithm 2.1.

 

Algorithm 2.1

 

: Multiplicative multi-grid method
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The additive multi-grid method is given by the following algorithm.
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The standard approach uses

 

(2.11)
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The structure of both algorithms can be seen from Fig. 2.1. The main difference
between these two variants is that in the multiplicative method, smoothing and
restriction of the defect to the next coarser level are performed on one level after the
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other sequentially, while in the additive method smoothing on the different levels can
be performed in parallel. Restriction and prolongation, however, are sequential in the
additive method, too. Thus, on a parallel machine, the additive method also has a
logarithmic complexity. 

 

Remark 2.3: 

 

On a serial computer the work count of both methods is equal.

 

Usually, the additive methods are applied as preconditioners, since acceleration
methods like conjugate gradient pick an optimal damping parameter directly, the
multiplicative methods are used as solvers. According to [22], these methods can be
formulated as additive Schwarz methods.

 

Fig. 2.1:

 

  Outline of multiplicative multi-grid algorithm 

 

mmgm

 

 (V-cycle) above and of
the  additive multi-grid algorithm 

 

amgm  

 

below. Symbols used:

Applying multi-grid methods to problems on locally reÞned grids one has to think
about the basic question of how to associate grid-points with levels in the multi-grid
hierarchy. Consider the hierarchy of grids {
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} from (2.3). Early multi-grid
approaches smooth all points in 

 

ã

 

l

 

. This may cause a non-optimal amount of work and

smoothing coarse-grid solution

restriction prolongation
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memory of  
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 log
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) per multi-grid step. This problem was the starting point for
Yserentant, [23], and Bank-Dupont-Yserentant, [1], to develop the method of
hierarchical bases (HB) and the hierarchical basis multi-grid method (HBMG).  These
were the Þrst multi-grid methods with optimal amount of work per step for locally
reÞned grids. This is due to the fact that on level

 

 l ,  

 

only the unknowns belonging to
points in 

 

ã

 

l

 

\
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 are treated by the smoother. However, the convergence rate
deteriorates with 

 

log

 

 

 

n

 

. This problem was solved by the introduction of the additive
method by Bramble, Pasciak and Xu, [6], (BPX). There, on level 
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 the smoother treats
all the points in 
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l

 

\
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Ð1

 

 and their direct neighbours, i.e. in all points within the reÞned
region. The theory from [22], however, does not say anything about an improvement
of the convergence with a better smoothing e.g. by performing more than one
smoothing step or applying robust smoothers.

 

Table 2.2

 

: Multi-grid methods for locally reÞned grids.

Table 2.2 gives an overview of the multi-grid methods used for the treatment of locally
reÞned grids. The methods mentioned above differ in the smoothing pattern, i. e. the
choice of grid points treated by the smoother. The methods in the Þrst two lines are of
optimal complexity for such problems. The amount of work for one step is
proportional to the number of unknowns on the Þnest grid. However, only the
methods in the second line, BPX and local multi-grid, converge independently of 

 

h

 

 for
scalar elliptic problems. The basic advantage of the multiplicative methods is that they
do not need cg-acceleration and can thus be applied directly to unsymmetric
problems; further, they show a better convergence rate and, on a serial computer, the
additive process does not have any advantage. The local multi-grid scheme is the
natural generalisation of the classical multi-grid method to locally reÞned grids, since,
in the case of global reÞnement, it is identical with the standard classical multi-grid
method.

The local multi-grid method was Þrst introduced by Rivara in 1984, [16] recognized
again and analyzed in 1991 by Bramble, Pasciak, Wang and Xu, [7]. They considered it

additive multiplicative

new points only hierarchical basis, [23] hierarchical basis multi-
grid, [1]

whole reÞned region BPX, [6] local multi-grid, [16], [7], 
[2]

all points mgmp, [9] standard mg

 

basic structure

smoothing pattern
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a multiplicative variant of their so-called BPX-method, [6]. Without knowledge of this,
one of the authors developed this method as a variant of standard multi-grid based on
the idea of robustness (cf. [2]). The main advantage of this approach is that the
application to unsymmetric and non-linear problems is straightforward (cf. [2]).

Robustness for singularly perturbed problems is achieved by combining local multi-
grid with robust smoothers, as explained in the next section.

 

3. Robust Multi-Grid

 

When we apply standard multi-grid to singularly perturbed problems, the
convergence depends on the perturbation parameter; in particular, it deteriorates
strongly when the parameter approaches the type change of the discrete equation. To
overcome this problem, Wesseling suggested the Þrst robust multi-grid method for
singularly perturbed problems discretized on structured grids [18]. The main idea is
to apply a smoother which solves the limit case exactly. This is possible, for example,
for a convection-diffusion equation using a Gau§-Seidel smoother and numbering the
unknowns in convection direction, cf [5]. Often, it is preferable to use an incomplete
LU-smoother, since this handles the convection-dominated case as well as the
anisotropic diffusion (cf. [3], [4], [19]). 
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In this terminology, robustness requires
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Under this condition, the method will be fast even in the limit case 
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outer multi-grid algorithm does not spoil the accuracy. To this end, we investigate to
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what extent an improvement of the smoother affects the overall convergence of all
multi-grid variants. This is the key to robustness. In ¤4, we consider improving the
smoother by increasing the number of smoothing steps, which has a similar effect to
(3.5).

In the case of the hierarchical basis methods (HB, HBMG), we can directly see that the
smoothing pattern is too poor to allow robust smoothing. Thus, those methods do not
beneÞt from improving the smoother in the sense of (3.5).

 

Remark 3.1:

 

  In the hierarchical basis method and the hierarchical basis multi-grid method,

only a part of the grid points on the Þnest grid is treated by the smoother. Thus, (3.5) is not

satisÞed and these methods do not allow robust smoothing. This holds for uniformly as well as

for locally reÞned grids.

 

Based on this observation, we extend the smoothing pattern, incorporating all points
in the reÞned region. With the usual reÞnement strategies, this is equivalent to
extending the smoothing to all neighbours of points in 

 

W

 

l

 

/

 

W

 

l

 

-1

 

. This allows the
smoother to solve the limit case exactly, provided the grid reÞnement is appropriate.
This is conÞrmed by numerical evidence given in Chapter 5.

Up to now, some theory is contained in [19], [20], [21] for uniformly reÞned grids. This
theory shows that the basic requirement for using a smoother which is an exact solver
in the limit case is not sufÞcient to obtain robustness. Additionally, it must be
guaranteed that the spectrum of the smoother is contained in [Ð

 

J

 

, 1] for 0 

 

£

 

 

 

J

 

 < 1. This
can be achieved by modiÞcation (cf. [19], [21]). 

There are also other ways of improving the coarse-grid correction for singularly
perturbed problems which are applied in practice, e.g. algebraic multi-grid like [17].
In [14], however, Neu§ showed that there are problems which cannot be reasonably
approximated on coarse grids, even with algebraic multi-grid algorithms. Thus,
robust smoothing is essential to construct parameter-independent multi-grid
methods. An overview of robust multi-grid can be found in [3], [4].

In the following chapter, we investigate the effect of increasing the number of
smoothing steps on the convergence of the multi-grid variant.

 

4. Convergence Depending on the Number of Smoothing Steps

 

In the following, we investigate the dependence of the convergence of the different
multi-grid variants on the number 

 

~

 

 of smoothing steps performed. There, additive
and multiplicative methods behave quite differently.
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4.1 Iteration Matrices

 

The iteration matrix of the smoothing iteration  involved in
Algorithms 2.1 and 2.2 is

(4.1a) .

The 
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smoothing leads to with the iteration matrix

(4.1b)  with . 

Simple examples of smoothing iterations are the Jacobi iteration damped by 1/2, 

(4.2a)  (
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or the Cimmino iteration
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In the following, we investigate the two-grid method corresponding to Algorithms 2.1
and 2.2 with 
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ãmtgmÒ and ãatgmÒ abbreviate the multiplicative and additive two-grid method. The
iteration matrices of both two-grid versions are
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(4.3b) .

 

4.2 Analysis of Smoothing and Convergence in the Multiplicative Case

 

The convergence analysis of the multiplicative variant is able to explain that, with
increasing , the smoothing effect becomes stronger and that the convergence
improves. This is expressed by the 
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For a generalisation including divergent smoothing iterations, compare [10] and [12].
A classiÞcation of the smoothing property in the symmetric case can be found in [20]
and estimates w.r.t. other norms in [15], [13] and [8] .
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(4.5) .

Because of (4.4b), it is plain that convergence improves with increasing number  of
smoothing steps. In the positive deÞnite case, the analysis can even show that all 
lead to convergence, i.e. ,  (cf. [12], ¤ 10.7).

The standard behaviour of is 
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as we shall conÞrm below. Concerning the optimal choice of , one has to minimize
the effective costs as discussed in [10],¤4.3. We recall that usually  or  are
more effective than :

(4.7) The choice  is not optimal for 
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steps are necessary to ensure . 

We add that the standard analysis of the additive Schwarz method does not discuss
different choices of  (cf. [12],¤11.3).

 

4.4. The Model Problem

 

To obtain a precise statement about the dependence of the convergence rate on , we
consider the simplest possible system. The one-dimensional Poisson equation
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For a proof, compare [10] or [12], ¤10.3. In total, the iteration matrix  has a
spectral radius , where
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4.5 Multiplicative Case

 

The maxima in (4.13) can easily be determined numerically. As predicted in (4.5 - 6),
the values of  shown in Table 4.1 behave like const/ . Since the additive
variants will be used with optimal damping, it might be fair to compare these results
with the optimally damped multiplicative version as well. The iteration matrix of the
damped version is

(4.14) ,

where  is deÞned in (2.3a). This gives rise to 2x2 blocks . The
optimal 

 

h

 

-independent convergence rate equals 

(4.15) .

Solving these min-max problems numerically, we obtain the values in the right part of
Table 4.1. Asymptotically,  holds. The optimal values of

 

Ã

 

, which are also shown in the table, behave like . 

 

Table 4.1.

 

 Convergence rates of the multiplicative two-grid iteration 

 

mtgm

 

We add the remark that the convergence rates do not depend on whether we apply
only pre-smoothing, only post-smoothing or a combination of  pre- and  post-
smoothing steps, provided .

 

Ã

 

1 0.500 1.333 0.333

 

2 0.250 1.143 0.143

3 0.125 1.067 0.0667

4 0.0833 1.043 0.0435

5 0.0671 1.035 0.0347

6 0.0567 1.029 0.0292

7 0.0491 1.025 0.0252

8 0.0433 1.022 0.0221

9 0.0387 1.020 0.0198

10 0.0228 1.018 0.0178

20 0.0179 1.009 0.00905

100 0.00366 1.002 0.00181

 

r n

 

( )

 

1

 

n

 

+

 

( )

 

M

 

l

 

mtgm

 

n J

 

,

 

( )

 

1

 

J

 

Ð

 

( )

 

I

 

J

 

M

 

l

 

mtgm

 

n

 

( )

 

+=

 

M

 

l

 

mtgm

 

n

 

( )

 

M

 

l

 

m

 

x n J

 

, ,

 

( )

 

r

 

damped
mtgm

 

n

 

( )

 

: min max

 

r

 

M

 

l

 

m

 

(

 

x n J

 

, ,

 

( ) )

 

:0

 

x

 

1 2

 

¤£ £{ }

 

:

 

J

 

R�

 

Î{ }

 

=

 

r

 

damped
mtgm

 

n

 

( )

 

r

 

mtgm

 

n

 

( )»

 

2

 

¤

 

J

 

1

 

r

 

mtgm

 

n

 

( )

 

2

 

¤

 

+

 

»

 

n

 

r

 

mtgm

 

n

 

( )

 

r

 

damped
mtgm

 

n

 

1

 

n

 

2

 

n

 

1

 

n

 

2

 

+

 

n

 

=



 

12

 

Additive and Multiplicative Multi-Grid

 

4.6 Additive Case

 

The iteration matrix of 

 

atgm 

 

can be computed in the same way. The sine transform ( see
¤4.4) lead us to the 2x2 blocks 

 

M

 

l

 

add

 

(

 

~

 

,

 

Ã

 

1

 

,

 

Ã

 

2

 

) = 

with 

 

c

 

2

 

= 1 Ð 

 

s

 

2

 

, 

 

s

 

2

 

= 

 

sin

 

2

 

(

 

mp

 

h

 

/2), involving the damping parameters 

 

Ã

 

1

 

, 

 

Ã

 

2

 

, from
Algorithm 2.1. Setting 

 

Ã

 

1

 

= 

 

Ã

 

2

 

 =

 

 

 

Ã

 

 as in (2.12) and 

 

s

 

2

 

 = 

 

Å

 

, 

 

c

 

2

 

 = 1 Ð 

 

Å

 

, we define

 

M

 

l
add

 

(

 

Å

 

,

 

~

 

,

 

Ã

 

). The arising min-max problem

 

(4.16)

 

r

 

atgm

 

(

 

n

 

) := 

 

min 

 

{

 

max 

 

{

 

r

 

(

 

M

 

l

 

add

 

(

 

Å

 

,

 

~

 

,

 

Ã

 

)) : 0

 

£

 

x

 

 

 

£

 

 1/2 } : 

 

Ã

 

ý 

 

R�

 

} 

is again solved numerically. Table 4.2 shows the optimal damping factors 

 

Ã

 

 and the
rates 

 

¨

 

atgm

 

(

 

~). Except for 

 

~ 

 

= 1, the rates remain between 0.4 and 0.33. Obviously, they
do not improve as in the multiplicative case. The reason for the exceptional behaviour
of 

 

~ 

 

= 1 is discussed below. 

 

Table 4.2.

 

 Additive two-grid variant (one damping factor (2.12))

 

~ Ã

 

¨

 

atgm 

 

(

 

~

 

)

 

1 1.000 0.500

2 0.800 0.400

3 0.739 0.386

4 0.714 0.384

5 0.701 0.380

6 0.693 0.376

7 0.689 0.372

8 0.686 0.369

9 0.684 0.366

10 0.682 0.364

20 0.675 0.350

100 0.668 0.336
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We try to improve the additive results by using two different damping parameters 

 

Ã

 

1

 

and 

 

Ã

 

2

 

 in 

 

amgm

 

. The corresponding optimal 

 

h

 

-independent rates are given in Table 4.3.
Obviously, they are almost the same for the whole range of 

 

~

 

 values. For larger 

 

~,

 

 they
coincide with those of Table 4.2. since the optimal values of 

 

Ã

 

1

 

 and 

 

Ã

 

2

 

 from Table 4.3
approach the same 

 

Ã

 

 from Table 4.2. Only for 

 

~

 

 ² 3 are the optimal damping factors
clearly different. This explains why the choice 

 

Ã

 

 = 1 in Table 4.2 yields a worse rate
than in Table 4.3.

 

Table 4.3.

 

 Additive two-grid method (two-parameter variant)

In ¤4.3, we mentioned that the two-parameter method becomes exact as , since

 

S

 

~

 

l 

 

   becomes an exact solver. This, however, is only true for a fixed step size 

 

h  

 

whereas
Table 4.3 contains 

 

h -

 

independent rates. The right column in Table 4.3 shows the
optimal results 

 

¨

 

atgm
1/64

 

(

 

~) (with possibly other 

 

Ã

 

1

 

, 

 

Ã

 

2

 

) for 

 

h =

 

1/64. Obviously, the
values for 

 

h =

 

1/64 do not differ from 

 

¨

 

atgm

 

(

 

~) e

 

ven for the completely impractically
high number 

 

~ = 

 

100

 

 

 

. The reason is that convergence of 

 

S

 

~

 

l 

 

 

 

 

 

 is not seen before 

 

O

 

(

 

h

 

Ð2

 

)
iteration steps are performed.

In practice, the additive multi-grid method is used within a gradient or conjugate
gradient acceleration. For completeness, we report the results for 

 

h =

 

1/64

 

. 

 

In Table 4.4,
the gradient method is applied to the multiplicative two-grid variant. In order to have

 

~ Ã

 

1

 

Ã

 

2

 

¨

 

atgm

 

(

 

~

 

) ¨

 

atgm
1/64

 

(

 

~

 

)

 

1 1.333 0.666 0.333 0.333

2 0.914 0.666 0.351 0.351

3 0.818 0.647 0.363 0.362

4 0.773 0.641 0.365 0.365

5 0.743 0.645 0.365 0.365

6 0.732 0.642 0.363 0.363

7 0.721 0.644 0.360 0.360

8 0.716 0.644 0.357 0.358

9 0.708 0.649 0.356 0.356

10 0.708 0.646 0.354 0.354

20 0.687 0.657 0.344 0.344

100 0.669 0.667 0.335 0.355

 

n

 

¥®
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a symmetric basic iteration, we apply 

 

~

 

/2

 

 

 

pre- and 

 

~

 

/2

 

 

 

post-smoothing steps.
Therefore, 

 

~

 

 must be an even number. Obviously, the results coincide with the 

 

h -

 

independent rates from Table 4.1. Replacing the gradient method by a conjugate
gradient method (cf. Table 4.5), we expect a halving of the average rate. This is
conÞrmed by the results in Table 4.5. Applying these accelerations to the additive
version 

 

atgm, 

 

we obtain the results of Table 4.6. Here, 

 

~

 

 

 

is not restricted to even
numbers. 

 

¨

 

ADD1

 

 and 

 

¨

 

ADD2

 

 are the averaged convergence rates observed for the one-
and two-parameter version. The cg-rate 

 

¨

 

CG

 

 can only be determined for the one-
parameter case (2.12). 

 

Table 4.4.

 

 Multiplicative two-grid variant 

 

tmgm

 

 combined with the gradient method
(averaged convergence factors for 

 

h = 

 

1/64) 

 

Table 4.5. 

 

Multiplicative two-grid variant 

 

tmgm

 

 combined with the 

 

conjugate

 

 gradient
method 

 

(h = 

 

1/64

 

)

 

Table 4.6.

 

 Rates for the one- and two-parameter gradient method (ADD1, ADD2) and
cg method (CG). (averaged convergence factors for 

 

h = 

 

1/64

 

)

 

~

 

2 4 6 8 10 20 100

 

¨

 

0.14 0.04 0.027 0.022 0.017 0.007 0.0018

 

~

 

2 4 6 8 10 20 100

 

¨

 

0.07 0.024 0.017 0.010 0.009 0.005 0.001

 

~

 

¨

 

ADD1

 

¨

 

ADD2

 

¨

 

CG

 

1 0.46 0.30 0.29

2 0.38 0.32 0.21

3 0.35 0.34 0.20

4 0.37 0.36 0.21

5 0.37 0.36 0.20

6 0.36 0.35 0.20

7 0.36 0.34 0.20

8 0.36 0.34 0.19

9 0.35 0.34 0.19
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The rates of the columns 

 

¨

 

ADD1

 

 and 

 

¨

 

ADD2

 

 correspond to those from Table 4.2 and 4.3. 
The cg rates approximate the halved ADD1 rates.

 

4.7 Cimmino Smoothing 

 

Not only the number of smoothing steps but also the kind of smoothing can be
changed. The (damped) Cimmino smoothing process is the Jacobi iteration applied to
the equation preconditioned with 

 

(h

 

4

 

/4

 

)K

 

l

 

, i.e. , 

 

S

 

l

 

 (

 

u , f ) =  u - ( h

 

4

 

/4

 

) K

 

l 

 

(

 

K

 

l 

 

u

 

Ðf

 

). It is
well known that the smoothing effect of this iteration is weaker. The asymptotic
behaviour is only 

 

=  (cf. (4.6)). But also the absolute values are worse
as confirmed in Table 4.7.

 

Table 4.7 

 

Multiplicative two-grid method with Cimmino smoothing

The additive two-grid method yields the values shown in Table 4.8 (one-parameter
version (2.12)) and Table 4.9 (two-parameter version). Obviously, the same tendency is

 

10 0.35 0.34 0.19

20 0.33 0.34 0.19

100 0.32 0.31 0.15

 

~

 

¨

 

mtgm

 

(

 

~)

 

Ã

 

1 0.7500 1.600 0.600

2 0.5625 1.391 0.391

3 0.4219 1.267 0.267

4 0.3164 1.188 0.188

5 0.2373 1.135 0.135

6 0.1840 1.101 0.101

7 0.1625 1.088 0.088

8 0.1502 1.081 0.081

9 0.1413 1.076 0.076

10 0.1340 1.072 0.072

20 0.0953 1.050 0.050

100 0.0428 1.022 0.022
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¨
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¨
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¨

 

CG
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illustrated. In particular, the rates obtained are only slightly worse than for the ãbetterÒ
Jacobi smoothing. 

 

Table 4.8 

 

Additive two-grid method with Cimmino smoothing (one-parameter case)

 

Table 4.9 

 

Additive two-grid method with Cimmino smoothing (two-parameter case)

 

~ Ã

 

¨

 

atgm

 

(

 

~

 

)

 

1 1.333 0.667

2 1.066 0.533

3 0.928 0.464

4 0.858 0.445

5 0.820 0.446

6 0.795 0.449

7 0.777 0.450

8 0.763 0.450

9 0.753 0.450

10 0.746 0.450

20 0.718 0.434

50 0.704 0.408

100 0.696 0.393

200 0.690 0.380

 

~ Ã

 

1

 

Ã

 

2

 

¨

 

atgm

 

(

 

~

 

)

 

1 1.600 0.534 0.600

2 1.317 0.763 0.432

3 1.123 0.758 0.410

4 1.012 0.729 0.420

5 0.941 0.712 0.430

6 0.893 0.702 0.436

7 0.859 0.695 0.439

8 0.836 0.689 0.441
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Since an increase of the number of smoothing steps does not improve the convergence
even for this simple problem, such an improvement also cannot be expected for more
involved boundary values problems. The rates for the additive methods for 

 

~

 

 = 1 are
similar or worse than for the multiplicative method. On the other hand, the
multiplicative method is not optimal for 

 

~

 

 = 1 (cf. (4.7)), i.e. the efficiency can be
increased by choosing a higher value of 

 

~

 

. Altogether, we conclude that the
multiplicative multi-grid method is more efficient than the additive version. In
contrast to the additive method, the multiplicative one benefits from increasing the
number of smoothing steps. In the next section, we discuss numerical results for
increasing 

 

~

 

 and with respect to robust smoothing.

 

5. Experimental Results

5.1 Model Problem

 

In order to conÞrm the theoretical results from the previous section, we present some
numerical results for the two-dimensional case. First, we investigate the model
problem

(5.1) , in  with Dirichlet boundary conditions.

The unit square is covered with a structured, triangular mesh, so that the standard
Galerkin method yields a Þve-point stencil.

Following a suggestion of R. E. Bank (personal communication), the additive multi-
grid method with different damping factors has been implemented as follows. On
each level, a correction 

 

v

 

i

 

 is computed as usual and then the Þnal correction 

(5.2)

 

9 0.821 0.683 0.442

10 0.807 0.680 0.442

20 0.763 0.668 0.429

50 0.734 0.670 0.404

100 0.712 0.678 0.390

200 0.707 0.671 0.378
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is determined such that

(5.3) , for all 

 

w

 

 in ,

where 

 

a

 

(.,.) and 

 

f

 

(.) are the bilinear form and right-hand side of the Þnite-element
problem. This method costs about one matrix-vector-product and some dot-products
per level in addition. The system of linear equations of dimension 

 

j+

 

1

 

,

 

 which has to be
solved in equation (5.3), may become singular when some of the corrections become
linearly dependent. In that case, the method reverts to the standard method and
chooses  for all 

 

k

 

.

Table 5.1 gives average convergence rates for a 10

 

-6

 

 reduction of the residual measured
in the Euclidian norm. Four methods are compared: multiplicative multi-grid (mmg),
multiplicative multi-grid as preconditioner in cg (cg+mmg), standard additive multi-
grid as preconditioner in cg (cg+amg) and the new method described above with
adaptively chosen damping factors (cg+damg), which is also used as preconditioner.
The mesh width is 

 

h

 

=1/64 and a damped Jacobi smoother is used in Table 5.1.

 

Table 5.1. 

 

Convergence rates for different methods applied to the model problem with

 

h

 

=1/64 and damped Jacobi smoother (

 

w

 

=1/2)

 

.

 

The values can be compared to those in Tables 4.1 - 4.3. Convergence rates for the
standard multiplicative cycle are worse than the theoretical values for the two-grid
cycle since we are using a V-cycle here. The values for the additive variant with level-

 

n=n

 

1

 

+n

 

2

 

mmg cg+mmg cg+amg cg+damg

1 0.75 - 0.49 0.50

2 0.56 0.21 0.44 0.43

3 0.44 - 0.41 0.40

4 0.35 0.11 0.40 0.37

5 0.30 - 0.39 0.35

6 0.26 0.075 0.38 0.33

7 0.23 - 0.38 0.32

8 0.21 0.058 0.37 0.31

9 0.19 - 0.37 0.30

10 0.18 0.047 0.37 0.30

20 0.099 0.025 0.35 0.25

100 0.023 0.0035 0.33 0.18
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independent damping correspond nicely to the theory.

 

5.2 Anisotropic Model Problem

 

In this section, we apply the methods to the anisotropic model equation

(5.4) , in  with Dirichlet boundary conditions.

The same discretization as above is used.

Tables 5.2 -5.4 show the results for

 

 e

 

=10

 

-2

 

, 10

 

-4

 

 and 10

 

-6

 

. The Jacobi smoother has been
replaced by an ILU

 

b

 

 scheme from [19] in order to have a smoother which is an exact
solver for the limit case. The additive method with adaptively chosen damping factors
is clearly superior to the standard additive method. When 

 

e

 

 becomes larger, fewer
smoothing steps are sufÞcient to take advantage of the adaptively chosen damping
factors.

 

Table 5.2. 

 

Anisotropic model equation with 

 

h

 

=1/64, 

 

e

 

=10

 

-2

 

, ILU

 

b 

 

(

 

b

 

=0.35)

 

.

 

n=n

 

1

 

+n

 

2

 

mmg cg+mmg cg+amg cg+damg

1 0.17 - 0.42 0.27

2 0.09 0.021 0.41 0.20

3 0.041 - 0.39 0.17

4 0.034 0.0049 0.37 0.13

5 0.023 - 0.34 0.12

6 0.019 0.0025 0.32 0.11

7 0.015 - 0.31 0.099

8 0.013 0.00099 0.30 0.095

9 0.010 - 0.30 0.086

10 0.0085 0.00066 0.29 0.078

20 0.0019 0.00014 0.30 0.15*

100 6e-7 4.3e-9 0.096 0.001
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Table 5.3.

 

 Anisotropic model equation with 

 

h

 

=1/64, 

 

e

 

=10

 

-4

 

, ILU

 

b 

 

(

 

b

 

=0.35

 

).

Table 5.4.

 

 Anisotropic model equation with 

 

h

 

=1/64, 

 

e

 

=10

 

-6

 

, ILU

 

b 

 

(

 

b

 

=0.35)

 

n=n

 

1

 

+n

 

2

 

mmg cg+mmg cg+amg cg+damg

1 0.031 - 0.32 0.21

2 0.0065 0.00093 0.27 0.095

3 0.00053 - 0.24 0.052

4 0.00026 7.1e-5 0.18 0.007

5 6.3e-7 - 0.16 6.3e-7

6 2.8e-7 2.5e-7 0.14 2.5e-7

7 1.4e-7 - 0.12 1.2e-7

8 6.7e-8 6e-8 0.10 6e-8

9 3.3e-8 - 0.092 2.9e-8

10 1.6e-8 1.4e-8 0.083 1.4e-8

20 1.3e-11 1.2e-11 0.051 1.2e-11

100 9e-16 7e-16 0.051 1.3e-15

 

n=n

 

1

 

+n

 

2

 

mmg cg+mmg cg+amg cg+damg

1 0.00021 - 0.27 0.059

2 6.3e-8 3.9e-8 0.26 6.8e-8

3 2.1e-8 - 0.24 1.9e-8

4 1e-8 9.4e-9 0.18 9.4e-9

5 5.1e-9 - 0.16 4.6e-9

6 2.5e-9 2.3e-9 0.14 2.3e-9

7 1.2e-9 - 0.12 1.1e-9

8 6.1e-10 5.5e-10 0.10 5.5e-10

9 3e-10 - 0.092 2.7e-10

10 1.5e-10 1.3e-10 0.083 1.3e-10

20 1.2e-13 1.1e-13 0.051 1.1e-13

100 7.3e-16 6.3e-16 0.051 2.5e-15
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5.3 Unstructured Mesh Example

 

In practice, it is often not realistic to have a smoother which is an exact solver for the
limit case. In order to investigate the inßuence of the quality of the smoother on the
convergence rate of the different methods, we solve equation (5.1) on the unstructured
mesh given in Figure 5.1. The mesh shown in Figure 5.1 has been reÞned twice.
Dirchlet and Neumann boundary conditions have been used.

Figure 5.1. Mesh used in the unstructured mesh example.

The mesh contains some long and thin triangles which give a similar effect to the
discretization of the anisotropic model equation. However, the ILU smoother is now
only a fairly good solver. Table 5.5 shows the results of multiplicative and additive
multi-grid (with and without adaptively chosen damping factors) and different mesh
sizes obtained by dividing each triangle in four similar triangles. All methods are used
as preconditioners in a cg-algorithm. It can be seen that multiplicative multi-grid also
works very well for a small number of smoothing steps. The effect of choosing the
damping factors adaptively in the additive method can be seen only for a large
number of smoothing steps, i.e. one must solve the problem very accurately. Since the
convergence rate of the ILU smoother is 

 

h

 

-dependent, the additive methods require a
larger number of smoothing steps as the grid is reÞned.
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Table 5.5. 

 

Convergence rates for the unstructured mesh example, ILU

 

b

 

(

 

b

 

=0.35).

 

h

 

n

 

 =

 

n

 

1

 

+

 

n

 

2

 

cg+mmg cg+amg cg+damg

2 grids,
493 
unknowns

1 - 0.29 0.29

2 0.045 0.25 0.24

4 0.022 0.2 0.2

6 0.015 0.2 0.17

10 0.0091 0.14 0.13

20 0.0025 0.085 0.043

100 1.4e-6 0.033 0.00022

3 grids,
1825
unknowns

1 - 0.37 0.36

2 0.058 0.33 0.31

4 0.03 0.31 0.27

6 0.021 0.29 0.25

10 0.013 0.27 0.22

20 0.006 0.23 0.18

100 0.00055 0.12 0.027

4 grids,
7009
unknowns

1 - 0.42 0.41

2 0.061 0.38 0.36

4 0.033 0.36 0.31

6 0.022 0.35 0.29

10 0.014 0.33 0.26

20 0.0069 0.3 0.21

100 0.00099 0.22 0.12

5 grids,
27457
unknowns

1 - 0.44 0.44

2 0.06 0.41 0.39

4 0.033 0.38 0.34

6 0.023 0.37 0.32

10 0.014 0.35 0.29

20 0.0072 0.33 0.24

100 0.0011 0.27 0.17
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5.4 Conclusions

 

The numerical results fully conÞrm the analysis from ¤4 showing that the
multiplicative method is superior to the additive one. In most cases, in particular for
the unstructured grid example which is the most realistic one of those considered here,
multiplicative multi-grid is faster by more than one order of magnitude than the
additive variants without needing additional work.
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