
Efficient Fully–Coupled Solution Techniques for

Two–Phase Flow in Porous Media

Parallel multigrid solution and large scale computations

Peter Bastian

Institut für Computeranwendungen III,

Universität Stuttgart

Pfaffenwaldring 27, 70569 Stuttgart,

email: peter@ica3.uni-stuttgart.de

Rainer Helmig

Institut für Angewandte Mechanik und Bauinformatik

FG für Numerische Methoden und Informationsverarbeitung

Technische Universität Braunschweig,

Pockelsstr. 3, D–38106 Braunschweig

email: r.helmig@tu-bs.de

Abstract

This paper is concerned with the fast resolution of nonlinear and

linear algebraic equations arising from a fully implicit finite volume dis-

cretization of two–phase flow in porous media. We employ a Newton–

multigrid algorithm on unstructured meshes in two and three space di-

mensions. The discretized operator is used for the coarse grid systems

in the multigrid method. Problems with discontinuous coefficients are

avoided with a novel truncated restriction operator and use of an outer

Krylov–space method.

We show experimentally an optimal order of convergence for a wide

range of two–phase flow problems including heterogeneous media and

vanishing capillary pressure. Furthermore, we also present a data par-

allel implementation of the algorithm with speedup results.

1

1 Introduction

This paper is concerned with the fast resolution of nonlinear algebraic equa-

tions arising from a fully implicit finite volume discretization of two–phase

flow in porous media and the presentation of large scale computations on

sequential and parallel computers.

Multigrid methods, [10, 21], are among the fastest methods to solve large

sparse systems of linear equations arising from the discretization of partial

differential equations. The most prominent feature of these methods is their

optimal order of convergence when applied to elliptic model problems, i. e.

the time required to solve a system of linear equations up to a certain accu-

racy is proportional to the number of unknowns.

Within a decoupled approach using the fractional flow formulation, [8],

the application of multigrid to two–phase flow problems is rather straight-

forward. It can be applied independently to the (scalar, linearized) pressure

equation and the saturation equation. Often multigrid is only applied to the

elliptic pressure equation, for this approach see e. g. [16].

The fully coupled solution method with a pressure–saturation formula-

tion leads to a set of nonlinear algebraic equations to be solved per time

step. The resolution of nonlinear equations by multigrid is possible with

two different approaches. In the first approach, a global linearization (e. g.

Newton’s method) is performed and the resulting linear equations are solved

with multigrid. The second approach is nonlinear multigrid where the lin-

earization is only done within the smoothing iteration and a nonlinear coarse

grid problem is set up. Molenaar, [15], has compared the two approaches

and found that Newton–multigrid is more efficient in terms of computer

time. In this paper we also follow the global linearization approach since

the reduction of computer time is of primary importance and also the robust

multigrid techniques are more developed within the linear framework.

The linear multigrid method offers several choices for its three basic

components: smoother, grid transfer and coarse grid operator. The suit-

able selection of components depends strongly on the problem to be solved.

Therefore, we take a closer look at the linearized two–phase equations whose

discretization is the Jacobian system. We will show that the linearized op-

erator displays solution–dependent, strong variations in the coefficients that

are not aligned with coarse grid element boundaries. Moreover, in the case

of vanishing capillary pressure, it contains a dominant convective term. All

2

these effects are complicated by the coupling of the system. In addition,

anisotropy may be introduced through the absolute permeability tensor or

the grid construction (however we will not concentrate on anisotropy effects

here).

Because of the varying coefficients, care must be taken in the construc-

tion of the coarse grid correction. The two options are either a Galerkin

approach or using the discretized operator on the coarser level. Due to the

character of the two–phase system, a standard Galerkin method may lead to

instability but an aggregation type approach has been used successfully by

Molenaar, [15]. See also [17, 6] for this kind of coarse grid operator. In this

paper, we will use the discretized (linearized) operator on the coarse grid.

The successful use of this approach is made possible by a novel truncated

restriction operator.

With the methods proposed in this paper, the computer time needed for

the resolution of the linear systems is (for a large class of problems) compa-

rable to the time needed for setting up the linear systems and independent

of the mesh size. However, a time–dependent, three–dimensional calcula-

tion still requires a substantial amount of computer time. Therefore, we

consider the parallelization of the multigrid algorithm via data partitioning

as described in [4]. The respective algorithms and constitutive relationships

are incorporated in the numerical simulator MUFTE–UG which is based on

the software toolbox UG [5].

The rest of this paper is organized as follows. In the next section we

shortly review the numerical model and the discretization scheme. Then we

describe the damped, inexact Newton–method that is used to solve the non-

linear systems. The following section then describes the multigrid method

and its components. After describing the parallelization strategy, the nu-

merical results are presented.

2 Numerical Model

2.1 Pressure–Saturation Formulation

Let Ω ∈ IRd, d = 2, 3 be an open domain and I = (0, T) the time interval of

interest. The equations for the flow of two immiscible fluid phases w (wet-

ting) and n (nonwetting) in a porous medium are given by the conservation

3

of mass (α = w, n)

∂(Φ%αSα)

∂t
+ ∇ · (%αvα) = %αqα, in Ω × I, (1)

and the generalized Darcy Law

vα = −
krα(x, Sα)

µα
K(∇pα − %αg) , (2)

where Φ is the porosity of the porous medium, %α is the density of phase α,

Sα is the unknown saturation of phase α, vα is the volumetric flux vector, qα

is the source/sink term, K is the absolute permeability tensor, krα(x, Sα) is

the relative permeability, µα is the dynamic viscosity of the fluid α, pα is the

unknown pressure of phase α and g is the vector of gravitational forces. The

model (and its implementation) also handles full compressibility of both

fluid phases [12]. In addition to these differential equations, we have the

algebraic relations

Sw(x, t) + Sn(x, t) = 1 (3)

pn(x, t) − pw(x, t) = pc(x, Sw(x, t)) . (4)

Inserting (2) into (1) for both phases and using the relations Sw = 1−Sn

and pn = pw + pc(1 − Sn), we obtain the pressure–saturation formulation

with pw and Sn as unknowns:

Lw(pw, Sn) = ∂(Φ%w(1−Sn))
∂t +

∇ ·
{

−%w
krw(1−Sn)

µw
K(∇pw − %wg)

}

−%wqw = 0

Ln(pw, Sn) = ∂(Φ%nSn)
∂t +

∇ ·
{

−%n
krn(Sn)

µn
K(∇pw + ∇pc(1 − Sn) − %ng)

}

−%nqn = 0

(5)

The system of two coupled nonlinear partial differential equations is

supplemented by the following boundary conditions

pw = gwd on Γwd, %wvw · ν = gwn on Γwn,

Sn = gnd on Γnd, %nvn · ν = gnn on Γnn,
(6)

and initial conditions

pw(x, 0) = gw0(x), Sn(x, 0) = gn0(x) . (7)

The Dirichlet boundary Γwd must have a positive measure and ν denotes

the outward unit normal.

4

2.2 Discrete Formulation

Eq. (5) is discretized on an unstructured mesh Th with mesh width h con-

sisting of triangles and quadrilaterals if d = 2 or tetrahedra, pyramids,

prisms and hexahedra if d = 3. Associated with Th, we have the space of

lowest order conforming finite element functions Vh and the space of test

functions Wh which are the characteristic functions of vertex centered finite

volumes. For pwh, Snh ∈ Vh, an implicit Euler discretization in time and the

abbreviation (u, v) =
∫

Ω uvdx, we get the discrete form of the equations

1
∆t

[(

Φ%w

(

1 − Sk+1
nh

)

, wh

)

−
(

Φ%w

(

1 − Sk
nh

)

, wh

)]

−
(

∇ ·
{

%wλk+1
wh K

(

∇pk+1
wh − %wg

)}

, wh

)

− (%wqw, wh) = 0

1
∆t

[(

Φ%nSk+1
nh , wh

)

−
(

Φ%nSk
nh, wh

)]

−
(

∇ ·
{

%nλk+1
nh K

(

∇pk+1
wh + ∇pk+1

ch − %ng
)}

, wh

)

− (%nqn, wh) = 0

(8)

∀wh ∈ Wh. Superscripts k and k + 1 denote time levels tk, tk+1 and ∆t =

tk+1 − tk. In addition, we used the mobilities defined as

λw =
krw(1 − Sn)

µw
, λn =

krn(Sn)

µn
. (9)

Instead of the implicit Euler scheme we can also use the Crank–Nicholson

or BDF(2) methods.

After inserting a basis function representation

pk
wh(x) =

nh
∑

i=1

p̂k
wh,iNi(x), Sk

nh(x) =
nh
∑

i=1

Ŝk
nh,iNi(x) (10)

of the unknown finite element functions (nh denotes the number of nodes in

mesh Th) and evaluation of all the integrals, we obtain a system of nonlinear

algebraic equations for the coefficients p̂wh,i and Ŝnh,i:

F (xk+1) = 0 . (11)

The nonlinear function F depends on the time levels tk and tk+1 as well

as xk. The vector xk+1 ∈ IR2nh contains all unknowns in the following order

xk+1 = (p̂k+1
wh,1, . . . , p̂

k+1
wh,nh

, Ŝk+1
nh,1, . . . , Ŝ

k+1
nh,nh

)T . (12)

5

3 Nonlinear Solution Method

3.1 Newton’s Method

The nonlinear system (11) is solved by a damped inexact Newton method

given in the following algorithm:

Choose xk+1,0; set m = 0;

while (‖F (xk+1,m)‖2/‖F (xk+1,0)‖2 > εnl)

{

Solve K(xk+1,m)u = −F (xk+1,m)

with accuracy εlin;

xk+1,m+1 = xk+1,m + ηu;

m = m + 1;

}

The double superscript k + 1,m denotes time step k + 1 and Newton

iteration m and ‖.‖2 is the euclidean norm of a vector. The damping factor

η = (1/2)q is chosen in each step such that

‖F (xk+1,m+1)‖2 ≤

[

1 −
1

4

(

1

2

)q]

‖F (xk+1,m)‖2 (13)

holds for the smallest possible q ∈ {0, 1, . . . , nls}. The number of line search

steps nls is between 4 and 6. If no such q can be found, the size of the time

step is reduced.

The Jacobian matrix K evaluated at xk+1,m is defined as

Kij(x
k+1,m) =

∂Fi

∂xj

∣

∣

∣

∣

∣

xk+1,m

, 1 ≤ i, j ≤ 2nh . (14)

As indicated in the algorithm, the Jacobian system need not be solved

exactly. We choose the linear reduction εlin as

εlin = min



εmin,

(

‖F (xk+1,m)‖2

‖F (xk+1,m−1)‖2

)2


 . (15)

This choice allows quadratic convergence of the Newton method in the fi-

nal steps. The minimal reduction εmin should not be too large since the

convergence of iterative methods may not be monotonic in the sense that

saturation is maintained between 0 and 1 (we typically chose εmin = 10−4

in the examples below).

6

3.2 Linearized Operator

By applying the linearization step already in Eq. (8) we can interpret the

Jacobian as the discretization of a linear differential operator. To that end,

we write the finite element functions corresponding to the Newton iterates

as follows:
pk+1,m+1

wh = pk+1,m
wh + δpwh

Sk+1,m+1
nh = Sk+1,m

nh + δSnh

. (16)

Linearising krw, krn and pc at Sk+1,m
nh and dropping all higher order cor-

rection terms yields the following linear equations for the corrections δpwh

and δSnh:

L′

w

(

pk+1,m
wh , Sk+1,m

nh ; δpwh, δSnh

)

=

−
(

∇ ·
{

%wλk+1,m
wh K∇δpwh

}

, wh

)

− 1
∆t (Φ%wδSnh, wh) −

(

∇ ·
{

~βwδSnh

}

, wh

)

= − 1
∆t

(

Φ%w

(

Sk
nh − Sk+1,m

nh

)

, wh

)

−
(

∇ ·
{

−%wλk+1,m
wh K

(

∇pk+1,m
wh − %wg

)}

, wh

)

+(%wqw, wh)

(17)

L′

n

(

pk+1,m
wh , Sk+1,m

nh ; δpwh, δSnh

)

=

−
(

∇ ·
{

%nλk+1,m
nh K∇δpwh

}

, wh

)

+ 1
∆t (Φ%nδSnh, wh) +

(

∇ ·
{

~βnδSnh

}

, wh

)

+
(

∇ ·
{

%nλk+1,m
nh p′ch

k+1,m
K∇δSnh

}

, wh

)

= − 1
∆t

[(

Φ%nSk+1,m
nh , wh

)

−
(

Φ%nSk
nh, wh

)]

−
(

∇ ·
{

−%nλk+1,m
nh K

(

∇pk+1,m
nh − %ng

)}

, wh

)

+(%nqn, wh)

(18)

∀wh ∈ Wh and the vectors ~βα being defined as

~βw = −%w λ′

w
k+1,m

K

(

∇pk+1,m
wh − %wg

)

(19)

and
~βn = %nλk+1,m

n K∇ (p′ch)k+1,m

−%n λ′
n

k+1,m
K

(

∇pk+1,m
nh − %ng

) (20)

(remember pn = pw + pc). Note that on the right hand side of Eqs. (17, 18)

we have −F (xk+1,m) as desired.

7

Figure 1: Regular refinement rules.

We will use the linearized operator defined in this section solely for the

purpose of getting some insight into the qualitative character of the Jacobian

matrix K. A discretization of Eqs. (17) and (18) is equivalent to the Jacobian

only up to discretization error. Therefore, the numerical computations will

always be done with the true Jacobian given by Eq. (14).

4 Multigrid Method

4.1 Basic Algorithm

For an introduction to multigrid methods, we refer the reader to [10, 21, 7].

The standard multigrid method uses a sequence of J +1 nested meshes with

increasing fineness

T0 ⊂ T1 ⊂ . . . ⊂ TJ = Th (21)

and corresponding finite element spaces

V0 ⊂ V1 ⊂ . . . ⊂ VJ = Vh . (22)

T0 is an intentionally coarse mesh and Tl, l > 0 is obtained by regular

subdivision of each element of Tl−1. See Fig. 1 for the refinement rules.

Local grid refinement is possible with our code but is not considered in this

paper.

The mesh hierarchy induces a Jacobian system

Klul = fl, l = 0, . . . , J, (23)

on each grid level l. KJ is obtained by (14), the construction of the coarse

grid matrices Kl, l < J , is discussed below.

8

Furthermore, we need the linear mappings

Rl : IR2nl → IR2nl−1 (Restriction),

Pl : IR2nl−1 → IR2nl (Prolongation),
(24)

where nl denotes the number of nodes in mesh Tl.

The multigrid iteration for the iterative improvement of a given vector

ul then reads as follows:

mgc (l, ul, fl)

{

if (l == 0) u0 = K−1
0 f0;

else {

Apply ν1 smoothing iterations to Klul = fl;

dl−1 = Rl(fl − Klul);

vl−1 = 0;

for (g = 1, . . . , γ) mgc (l − 1,vl−1,dl−1);

ul = ul + Plvl−1;

Apply ν2 smoothing iterations to Klul = fl;

}

}

The parameter γ determines the cycle form. Typical values are γ = 1

(V-cycle) and γ = 2 (W-cycle).

4.2 Smoothing Iteration

In order to decide on the smoothing iteration we need some knowledge about

the structure of the Jacobian system. For that purpose the Jacobian is

viewed as a discretization of the linear equations (17) and (18) as described

above.

The components of the vectors u and f are assumed to be in equation–

wise ordering, i. e. all pressure corrections are numbered before all saturation

corrections as in (12). This induces a 2 by 2 block structure on the Jacobian

matrix K (we omit the level index l):

K =

(

Kww Kwn

Knw Knn

)

(25)

9

where each block is of dimension nh × nh. A comparison with Eqs. (17,18)

shows that Kww comes from the discretization of an elliptic term, and Knn

comes from the discretization of a parabolic/hyperbolic term depending on

the magnitude of the derivative of the capillary pressure–saturation func-

tion. This corresponds directly to the characterization of the two–phase

flow equations from the fractional flow formulation.

The following observation shows that simple point–wise smoothing is not

applicable to the fully–coupled system. Assume a (pw, Sn) formulation, then

if Sw = 0 at a node we will also have that λw(Sw) = 0 and the whole row of

Kww corresponding to this node will have zero entries. If Sw = 0 initially

in the whole domain we find that Kww = 0 and K is indefinite. Fortunately

there is a simple remedy for this problem. One can see that the following

matrix

D =

(

diag(Kww) diag(Kwn)

diag(Knw) diag(Knn)

)

(26)

is always invertible (except if a Dirichlet boundary condition Sn = 1 and a

flux (Neumann) boundary condition for the w–phase is prescribed at a node,

obviously a contradiction) and that the transformed system D−1Ku = D−1f

is therefore amenable to point–wise smoothing.

The matrix D defined above becomes block–diagonal if the unknowns

are reordered in the point–block ordering where pressure and saturation at

each node are numbered consecutively. Equation– and point–wise orderings

are connected through a permutation of the indices, i. e.

ū = P T u (27)

with a permutation matrix P . Matrix D in point–block form is given by

D̄ = P T DP. (28)

The permuted Jacobian system is written as K̄ū = f̄ with K̄ = P T KP

and f̄ = P T f . K̄ has nh × nh blocks of size 2 × 2:

K̄ =









K̄11 . . . K̄1nh

...
...

K̄nh1 . . . K̄nhnh









. (29)

Application of standard iterative schemes like Jacobi, Gauß–Seidel or in-

complete decompositions (ILU) to the little 2 by 2 blocks instead of scalars

10

leads to the so–called point–block smoothers. Point–block smoothers pro-

vide more coupling than the corresponding equation–wise variant and are

therefore preferred. Moreover, point–block ILU is robust for certain cases

of anisotropic permeabilities in two space dimensions. As in the scalar case

discussed in [10] matrix K̄ becomes point–block tridiagonal provided the

mesh is structured, grid points are ordered lexicographically and anisotropy

is in the x or y direction only. Point–block tridiagonal systems are solved

exactly by the point–block ILU iteration. Therefore the smoother becomes

an exact solver in the limit case (large anisotropy). For the scalar case this

is discussed in detail in [22].

For these reasons, and because they are supported efficiently by our

sparse matrix data structure, we will use point–block ILU or Gauß–Seidel

smoothers in the examples below. As noted above, point–wise iterative

schemes may only be applied to the transformed system D−1K, e. g. in the

context of a left–transforming iteration [11, 8.1].

4.3 Coarse Grid Correction

This subsection is concerned with the construction of the grid transfer op-

erators Pl and Rl as well as the coarse grid matrices Kl, l < J . Basically,

there are two options for doing this. For given Pl and Rl, one can compute

Kl−1 recursively via the Galerkin approach Kl−1 = RlKlPl. Alternatively,

the coarse grid matrices can be set up using (14) on each grid level. We will

use the latter approach in this paper. In order to motivate this decision, we

will first discuss some properties of the Galerkin approach.

In the Galerkin approach, we need to specify only Pl and Rl. The canon-

ical choice for Pl on the grid hierarchy given by (21) is the standard finite

element interpolation (note that Vl−1 ⊂ Vl). For finite element or finite

volume discretizations, we then can set Rl = P T
l . Such an approach is

very well suited for a scalar diffusion equation with a smooth permeability

coefficient. If the diffusion coefficient varies strongly or dominating convec-

tion is present, Pl has to be chosen matrix–dependent, see [10, 10.3] or [1].

Very good results for various scalar problems are reported in [20]. Typically,

this approach is used with structured meshes; it is not clear how to define

a matrix–dependent Pl on an unstructured mesh such that stability (e. g.

M–matrix property) is preserved in the case of dominating convection and

upwind discretization. Application of the Galerkin approach to the fully

11

coupled system is also not straightforward. Consider the matrix K given

in (25). Presumably prolongation matrix Pl for the system would have the

following form:

Pl =

(

Pw
l 0

0 P n
l

)

, (30)

i. e. pressures are only interpolated from pressures and saturations from

saturations. In the case of matrix–dependent prolongations P w
l would be

chosen according to Kww
l and P n

l according to Knn
l . Note that in our case

here Kww
l is the discretization of a second order elliptic term and Knn

l that

of a possibly hyperbolic term. Assuming Rl = P T
l , the resulting Galerkin

coarse grid matrix then reads:

Kl−1 =

(

Rw
l Kww

l Pw
l Rw

l Kwn
l P n

l

Rn
l Knw

l Pw
l Rn

l Knn
l P n

l

)

. (31)

The wn and nw blocks in Kl−1 are multiplied with different prolongations

and restrictions from left and right. It is not clear wether the recursive

application of this process leads to reasonable coarse grid matrices. Some

tests of this procedure indicated that it is not the case.

The stability problem for the coarse grid operator in the case of fully–

coupled systems can be circumvented by an aggregation multigrid approach

[17, 6, 18, 15], i. e. piecewise constant prolongation. Very good results are

reported for a fully–coupled solution of the Navier–Stokes equations in [17].

Multigrid theory [10, Note 6.3.37] predicts that piecewise constant prolon-

gation and restriction is not optimal for second order problems. Braess, [6],

therefore uses an overrelaxation of the coarse grid correction which will fail,

however, if dominating convection is present in parts of the domain. Mole-

naar suggests in [15] to treat the convective and diffusive parts separately.

This is impossible, however, when the Jacobian is computed with numerical

differentiation. In addition, it introduces an unwanted dependence of the

multigrid solver on the discretization scheme.

For these reasons, we compute the Jacobian on each grid level and use

it as coarse grid matrix. The current solution xk+1,m needed on the coarse

grid for this computation is defined by injection, i. e. for all coarse grid

nodes we take the value in the corresponding fine grid node.

The use of the discretized operator on the coarse grid together with

canonical prolongation and restriction is known to fail for problems with

12

i

l

l-1

j

1/2
k = 1 k = ε

θ

kj+0.5kj-0.5

ki+0.5ki-0.5
2h

Figure 2: One–dimensional model situation for jumping coefficients.

jumps in the diffusion coefficient that are not aligned with coarse grid ele-

ment boundaries. To understand this (and remedy the situation), we con-

sider a simple one–dimensional model problem:

−
d

dx

(

k(x)
du

dx

)

= q in (0, 1), (32)

k(x) =

{

1 x < θ

ε � 1 else,
(33)

and boundary conditions u(0) = 0, u(1) = 1. A finite volume discretization

of (32) yields

−
ki− 1

2

h
ui−1 +

(

ki− 1

2

+ ki+ 1

2

h

)

ui −
ki+ 1

2

h
ui+1 = hqi (34)

at grid point i using a mesh width h. ki− 1

2

and ki+ 1

2

denote point–wise

evaluation of (33) half way between the grid points.

Let us now consider a two–grid situation as shown in Fig. 2. The value

θ happens to be such that kj− 1

2

= 1, kj+ 1

2

= ε for fine grid node j and

ki− 1

2

= ki+ 1

2

= ε for coarse grid node i. The defect computed at fine grid

node j is of size O(1) and is restricted to the right hand side of equation j

on the coarse grid. All coefficients in row j on the coarse grid are of order ε,

therefore a correction of size O(1/ε) is computed which leads to divergence

of the multigrid method if ε is small enough. The problem would disappear

if the equations on all grid levels would be scaled to unit diagonal elements.

However, scaling the equations in multigrid must be done with care since

the discretization also involves powers of h depending on the order of the

operator and the space dimension. In the following, we show how to use this

observation in the construction of the coarse grid correction.

13

Application of 34 on all grid levels leads to the linear equations Klul = fl,

l = 0, . . . , J . The two–grid correction is given by

unew
l = uold

l + PlK
−1
l−1Rl

(

fl − Klu
old
l

)

. (35)

A left transormation with D−1
l , Dl = diag(Kl) yields the transformed

equations K̃lul = f̃l with K̃l = D−1
l Kl and f̃l = D−1

l fl. An equivalent form

of the coarse grid correction (35) using the transformed systems would read

unew
l = uold

l + PlK̃
−1
l−1D

−1
l−1RlDl

(

f̃l − K̃lu
old
l

)

. (36)

The ε–dependence has now been moved to the “new” restriction operator

R̃l = D−1
l−1RlDl as the situation of Fig. 2 leads to R̃l,ij = (1+ε)/2ε = O(1/ε).

The idea is now to replace R̃l by the truncated version rl:

rl,ij = Rl,ij · min

(

cut,
Kl,jj

Kl−1,ii

)

. (37)

Note that, for constant k, rl,ij contains the correct scaling when the order

of the differential operator is greater or equal than the space dimension. A

typical value for cut is 2.0 since Kl,jj/Kl−1,ii = 2 near Neumann boundaries

in the case of a constant diffusion coefficient.

The definition of the truncated restriction can be extended to the two–

phase system by considering the point–block ordering (29). The equations

on all grid levels are scaled by the block diagonal matrix D̄ from 28. The

2×2 block structure naturally carries over to the restriction matrices giving

the block–truncated version r̄l,ij,

(r̄l,ij)αβ =

(

R̄l,ij

)

αβ · max

(

0,min

(

cut,
(

K̄−1
l−1,iiK̄l,jj

)

αβ

)) (38)

where we have 1 ≤ i ≤ nl−1, 1 ≤ j ≤ nl and α, β ∈ {1, 2}.

In Table 1 we compare three different multigrid methods for a two–

dimensional variant of (32). The diffusion coefficient is chosen as depicted

in Fig. 3. TRUNC denotes the multigrid method with discretized coarse

grid operator and truncated restriction given by (37), MDGAL denotes a

multigrid method with matrix–dependen prolongation similar to that in [10,

10.3.10a-d] and SC denotes the Schur–complement multigrid method de-

scribed in [19]. All experiments used an ILU smoother, ν1 = ν2 = 1 and

γ = 1. Table 1 shows the number of iterations needed for a 10−8 reduction

14

Table 1: Iteration numbers for a two–dimensional interface problem. First

table is for quadrilateral elements, second table is for triangular elements.

mesh type h TRUNC MDGAL SC

quadri- 1/8 6 6 5

laterals 1/16 7 7 6

1/32 7 7 6

1/64 7 7 5

triangles 1/8 9 11 8

1/16 11 12 12

1/32 13 14 15

1/64 14 15 17

of the residual norm for the different methods on a quadrilateral mesh and

a triangular mesh. Both meshes had a coarse mesh width of h0 = 1/2 and

the initial guess was always zero (no nested iteration). The table shows that

the methods behave very similar. The cost per iteration is approximately

equal for TRUNC and MDGAL and one iteration of SC is about 25% more

expensive than the other two methods.

5 Parallel Implementation

Despite the good convergence properties of the multigrid method, computer

time requirements for three–dimensional nonlinear time–dependent prob-

lems are still enormous. The UG–toolbox, [5], on which our two–phase

simulator is based, offers a portable parallel computing environment. Grid

refinement, discretization and solution process have been parallelized. The

multigrid solver itself is readily parallelizable. See [14] for a review and

[4] for a description of parallel adaptive multigrid methods on unstructured

meshes.

5.1 Data Decomposition

The parallel multigrid algorithm exploits the inherent data parallelism of

the method by mapping the unstructured mesh data structure to the set of

processors P . In our approach, the individual elements t ∈ Tl of all mesh

levels l are assigned uniquely the processors resulting in a minimal overlap

15

k=1.0

k=10-6
1/

3

3/4

u=
0

u=
1

k=1.0

Figure 3: Setup for a two–dimensional interface problem.

as shown in Fig. 4.

p1 l

l-1

horizontal vertical

f

p2

p3

Figure 4: Data decomposition.

The mesh nodes are duplicated at processor boundaries resulting in a

horizontal overlap (Fig. 4 left). In a similar way, a level–l − 1–element f is

duplicated whenever a child element is not mapped to the same processor

as f . This is called vertical overlap and is shown in Fig. 4 right. Besides

mapping an equal number of elements to each processor, the load balancing

scheme tries to create a small horizontal and vertical overlap; for details

refer to [4, 3].

The decomposition of the mesh data structure implies a decomposition

of vectors and matrices used in the numerical algorithm. Let P be the set

of processors and T p
l the set of level–l–elements that have been mapped

to processor p ∈ P . Further, let Il be the set of node indices on level l

16

and Ip
l ⊂ Il the set of indices that are mapped to processor p. Note that

Ip
l ∩ Iq

l 6= ∅ is possible for p 6= q due to horizontal overlap. The set

Pl(i) =
{

p ∈ P |i ∈ Ip
l

}

(39)

gives all processors storing the i-th node on level l. Since the degrees of

freedom are associated with the nodes of the mesh, the components of a

vector xl are also duplicated at processor boundaries. Let xp
l,i be the copy

of the i-th component xl,i stored in processor p ∈ Pl(i). Then we can define

the following three states of a parallel vector:

xp
l,i = xseq

l,i ∀p ∈ Pl(i) (consistent)

∑

p∈Pl(i)
xp

l,i = xseq
l,i (inconsistent)

xp
l,i =

{

xseq
l,i p = p∗l (i) ∈ Pl(i)

0 else
(unique)

where xseq
l,i denotes the component xl,i computed by a sequential version

of the code. In consistent mode, each processor knows the same value as the

sequential version. In inconsistent mode, the sum of all copies of a compo-

nent gives the sequential value and in unique mode the sequential value is

stored in exactly one copy x
p∗

l
(i)

l,i . The function p∗l (i) : Il → P associates each

index with a unique processor. Note that a unique vector is also inconsis-

tent. The transformation of an inconsistent vector to a consistent or unique

one requires local communication. Lists of interface nodes are maintained

for efficient implementation of this communication.

5.2 Assembling the Jacobian System

In finite element and finite volume discretizations, the stiffness matrix is as-

sembled element by element. Therefore, processor p will be able to generate

all local stiffness matrices for elements t ∈ T p
l without any communication,

provided that the current solution in the Newton iteration is stored consis-

tently. Accumulation of local stiffness matrices in each processor produces

an inconsistent global stiffness matrix since we have for all i, j:

∑

p∈Pl(i)∩Pl(j)

Kp
l,ij = Kseq

l,ij . (40)

17

The same arguments apply to the right hand sidefl which is also assem-

bled inconsistently without communication. If load balance is perfect, we

can expect a perfect speedup for the assembly process.

5.3 Parallel Iterative Solver

In this subsection we provide the parallel algorithm for an iterative solver

using a single grid scheme as basic iteration (we omit the level subscript for

clarity):

psolve (K, u, f , εlin)

{

given u consistent, K, f inconsistent;

(UM)Qp
ij =



















∑

q∈P (i)∩P (j)
Kq

ij p = p∗(i) = p∗(j)

1 i = j ∧ p 6= p∗(i)

0 else

;

for (m = 0, 1, . . .) {

(D) dp
i = fp

i −
∑

j∈Ip

Kp
iju

p
j , p ∈ P, i ∈ Ip;

(UD) dp
i =











∑

q∈P (i)
dq

i p = p∗(i)

0 else
p ∈ P, i ∈ Ip;

(N) rm =

√

√

√

√

(

∑

p∈P

∑

i∈Ip

(dp
i)

2

)

;

(E) if (rm < r0εlin) break ;

(BJ) vp = (Mp)−1 dp, Qp = Mp − Np, ∀p ∈ P ;

(C) vp
i =

∑

q∈P (i)
vq
i , p ∈ P, i ∈ Ip;

(U) up
i = up

i + ωvp
i , p ∈ P, i ∈ Ip;

}

}

The algorithm is called with a consistent initial guess u and matrix K

and vector f in inconsistent form. The preparation step (UM) will be ex-

plained below. In the iteration loop step (D), computes the defect d in

inconsistent form without communication. Step (UD) transforms the defect

d from inconsistent to unique form which requires an interface communica-

tion. This is necessary to compute the euclidean norm of d in (N) correctly.

18

The norm computation requires a global communication. Step (E) checks

the convergence criterion.

In order to compute the new iterate in the following steps, a splitting of

the form K = M − N is required. However, not every splitting leads to a

parallelizable algorithm. In order to allow independent computation in each

processor, we require

Mij = 0 ⇔ p∗(i) 6= p∗(j) . (41)

In other words, a processor may only (approximately) invert the matrix

Qp computed in the preparation step (UM) of algorithm psolve. Note that

the unique defect dp (part of d stored in p) is compatible with the consistent

Qp. An exact inversion of Qp (Mp = Qp in (BJ)) would lead to a block–

Jacobi type iteration with M given by Mij = Kij ⇔ p∗(i) = p∗(j) and (41).

We intend to use the iteration as a smoother in multigrid. Therefore, one

step of an ILU decomposition or Gauss–Seidel applied to Qp is sufficient in

step (BJ). Since the correction v is in unique mode, it must be transformed

to consistent mode in (C) before it can be added to the current iterate in

(U).

It is clear that the convergence behaviour of this method depends on the

number of processors and the individual mesh partitioning. In addition to

the losses due to load imbalance and communication overhead in the parallel

solver, we also have to consider carefully the number of iterations needed in

comparison to the sequential version.

The parallel solution algorithm can be extended to multigrid by replacing

steps (BJ), (C), and (U) with one multigrid iteration. One smoothing step

in multigrid is identical to the body of the for–loop in psolve without steps

(N) and (E), i.e. it requires two interface communications per smoothing

iteration and level. Discussion of the grid transfer operators and the coarse

grid solver remain.

It can be shown that the restriction of an inconsistent defect and the

prolongation of a consistent correction can be computed without communi-

cation when only the coarsest mesh T0 is partitioned to the processors and

refined elements are mapped to the same processor as their father element.

However, such a mapping is only efficient if |T0| � |P | (Note that, on the

other hand, |T0| should not be too large in multigrid). If the number of ele-

ments in T0 is comparable to the number of processors or less, the coarsest

19

grid should be mapped to a subset of the processors P . If the number of

processors is very large, it may be necessary to map T0, . . . , Tb−1 for some

b > 0 to fewer than all processors. In that case, grid transfers up to level b

require local communication. It should be noted that, in our approach, the

size of the coarsest grid T0 is not related to the number of processors in any

way as in some domain decomposition approaches.

6 Numerical Results

In this section we present some numerical results using the methods dis-

cussed in this paper. We are especially interested in the robustness of the

multigrid procedure, i. e. the number of iterations should not depend on the

mesh size.

Sequential Results have been obtained on an Apple Power Macintosh G3

Computer (266 MHz) with the CodeWarrior IDE 2. 1 and full optimization.

Parallel Computations have been carried out on the 512 Processor Cray T3E

system of HLRS Stuttgart using Cray Programming Environment Version

3. 0 and -O2 optimization level.

Unless otherwise noted, the multigrid parameters were: Two pre– and

post–smoothing steps (ν1 = ν2 = 2) with point–block–ILU and V–cycle (γ =

1). The multigrid cycle is always used as a preconditioner in BiCGSTAB

(see [9]). The nonlinear reduction required in the Newton procedure within

each time step was set to εnl = 10−5 and the linear reduction per Newton

step was computed by (15) using εmin = 10−4. At most q = 6 line search

steps were allowed in the Newton algorithm. No time step reduction was

necessary in all the examples presented here. BDF(1) (i. e. implicit Euler)

was used as a time–stepping scheme in all examples.

A nested iteration procedure is used in the very first time step to obtain

better starting values on the finer grids. For the second and later time steps,

the value of the preceding time step is used as initial guess on the finest level.

Table 2 explains the column labels used in the presentation of the nu-

merical results.

6.1 Five Spot

This example tests the multigrid method in the case of pure displacement,

i.e. no capillary pressure. In this case saturation is governed by a hyperbolic

20

Table 2: Notation used in the result presentation.

P Number of processors used in parallel computation

STEPS Number of time–steps computed

MESH Indicates the number of elements in the finest mesh

EXECT Reports total computation time in seconds

NLIT Number of Newton iterations for the total computation

AVG Average number of multigrid iterations per Newton step

MAX Maximum number of multigrid iterations in any Newton step

TI Time per multigrid iteration

equation. The problem is treated for different discretisation techniques in

[12].

The setup for the five–spot problem is given by Fig. 5. The reservoir is

initially filled completely by the non–wetting phase fluid and is displaced by

the wetting phase fluid from the lower left corner. At the inflow boundary

ΓIN a flux of Qw = 0.0032[kg/(sm2)] is prescribed while the flux of the non–

wetting phase is zero here. At the outflow boundary ΓOUT the pressure pn

is fixed to 105[Pa] and the wetting phase saturation is assumed to be zero:

Sw = 0. On all other boundaries, zero flux conditions are supplied. The

initial conditions are Sn = 1 and pw = 105[Pa] throughout the reservoir.

non-wetting phase

wetting
phase

30
0

m

300 m

15
 m

15
 m

ΓIN

ΓOUT

Figure 5: Domain for the five–spot problem.

The porosity was set to Φ = 0.2 and the fluid parameters were %w =

%n = 1000[kg/m3] and µw = 0.001[s Pa], µn = 20µw. For the absolute

21

Figure 6: Permeability fields for the five spot problem. Case (B) with

correlation lenth 16 shown left and case (C) with 8 cells right.

permeability, we consider three different cases: In case (A), we use a homo-

geneous field with k = 10−10[m2]. Cases (B) and (C) use a geostatistically

generated permeability field with 1602 cells, a mean value of k = 10−10[m2]

and a variation of four orders of magnitude (i. e. permeability is in the range

of 10−8 . . . 10−12). Case (B) uses a correlation length of 16 cells and Case

(C) one of 8 cells. The permeability fields are shown in Fig. 6.

In all cases the relative permeability is given by the relations of Brooks

and Corey with λ = 2:

krw(Sw) = S4
w, krn(Sn) = S2

n

(

1 − (1 − Sn)2
)

. (42)

Fig. 7 shows saturation plots for cases (B) and (C) after 600 and 675

days of simulated time. Table 3 gives the results for the five spot problem

variants (A) to (C). Standard parameters were used as described above.

The initial guess for the Newton iteration has been obtained recursively by

solving the time–step on the coarse mesh and interpolating the result. The

coarsest mesh T0 had 5 by 5 quadrilateral elements in all computations, the

finest mesh used 7 levels corresponding to 320 by 320 elements.

For each case the size of the finest mesh is varied while using a fixed time

step. This has been done in order to test the robustness of the multigrid

procedure and the Newton iteration with respect to iteration numbers. The

Courant number is between 5 and 6 in the finest computations.

Table 3 shows a linear increase in total computation time with growing

22

Figure 7: Saturation plot for case (B) after 40 steps of 15 days on the left

and for case (C) after 45 steps of 15 days to the right.

Table 3: Results for five spot problem obtained on an Apple Power Macin-

tosh G3 computer. The time step was ∆t = 15[d] in all cases.

Case STEPS MESH EXECT NLIT AVG MAX

(A) 50 802 694 151 2.1 4

50 1602 2861 151 2.1 4

50 3202 12005 151 2.4 5

(B) 40 802 948 170 3.4 6

40 1602 4070 171 3.4 6

40 3202 17866 181 3.5 6

(C) 45 802 1393 216 4.2 7

45 1602 5661 217 3.9 5

45 3202 24109 243 3.5 6

23

0.
65

 m

0.9 m

ΓN ΓN

ΓW

ΓE

ΓS

ΓIN
0.384375m 0.51625m

0.1875m 0.7125m

0.32m

0.4625m

DNAPL

Ω1

Ω

Figure 8: Domain and permeability field for the DNAPL infiltration prob-

lem.

mesh size. This is due to the fact that the number of Newton iterations and

the number of multigrid iterations do not depend on the mesh size. One

can also see that the number of Newton and multigrid iterations depends on

the form of the permeability field. The computation on the highly varying

permeability field from case (C) is twice as expensive as that on the homoge-

neous field from case (A). For the highly varying permeability fields spatial

resolution is more important than temporal resolution and the use of large

time steps is reasonable even with a first order scheme. As far as robustness

is concerned the time step size can be increased further (say Courant number

15 . . . 20) without changing the number of Newton or multigrid iterations.

6.2 2D DNAPL Infiltration

The second test case simulates the vertical infiltration of a DNAPL into

a fully water–saturated reservoir. This problem is treated in detail in [12]

where experimental results are also reported. The problem setup is given in

Fig. 8. The following three variants are investigated:

(A) A low permeable lens is placed into the interior of the reservoir as

shown in Fig. 8 on the left. Capillary pressure relations after Brooks

and Corey with different entry pressures are assumed in the lens and

the surrounding matrix. Entry pressure of the lens is high enough that

no infiltration of the lens is possible in case (A) (see below for specific

values).

24

Figure 9: Solution plots for the 2D DNAPL infiltration after 75 steps of

60[s] for cases (A) and (B) and 60 steps of 35[s] for case (C) (from top).

Mesh size was 384 times 256 for all cases.

25

Table 4: Sand properties for the 2D DNAPL infiltration problem.

Sand Φ k[m2] Swr λ pd[Pa]

matrix 0.4 6.64 · 10−11 0.10 2.7 755

lens 0.39 3.32 · 10−12 0.12 2.0 1163.5/1466.1

(B) Same as case (A) but entry pressure is lower. Infiltration of the lens

is possible.

(C) Randomly generated porous medium with permeability field shown

in Fig. 8 on the right. The permeability has the same mean value

as the homogeneous case, is defined on a 192 by 128 mesh and has

a correlation length of 8 cells. Permeability varies by two orders of

magnitude. The entry pressure in the Brooks–Corey relationship is

now different for each fine grid element (see below).

The geometry of the reservoir is given in Fig. 8 (left). The bottom of

the reservoir is impermeable for both phases. Hydrostatic conditions for

pressure pw and homogeneous Dirichlet conditions for Sn are prescribed at

the left and right boundaries. At the inlet on the top boundary, a flux Qn =

0.075[kg/(sm2)] for the non–wetting phase is prescribed. Initial conditions

were Sn = 0 and a hydrostatic pressure distribution. The fluid parameters

were %w = 1000[kg/m3], %n = 1460[kg/m3], µw = 0.001[s Pa] and µn =

0.0009[s Pa].

Relative permeabilities and capillary pressure are defined after the model

of Brooks and Corey:

krw(Se) = S
2+3λ

λ
e ,

krn(Se) = (1 − Se)
2(1 − S

2+λ
λ

e),

pc(Se) = pdS
−1/λ
e .

(43)

where the effective saturation is Se = (1−Sn −Swr)/(1 − Swr). The param-

eters pd, λ and Swr and other properties are given in Table 4. The value of

the entry pressure for the low permeable lens is 1466.1 Pascal for case (A)

and 1163.5 Pascal for case (B).

In the random case (C), the capillary pressure curve depends on the local

value of absolute permeability:

pc(x, Se) = pd

√

k̄

k(x)
S−1/λ

e (44)

26

Table 5: Multigrid performance for 2D DNAPL infiltration problem on an

Apple Power Macintosh G3 computer.

Case STEPS MESH EXECT NLIT AVG MAX

(A) 75 48 × 32 398 253 3.0 5

75 96 × 64 1840 248 3.7 5

75 192 × 128 7601 235 3.9 6

75 384 × 256 31369 234 4.0 7

(B) 75 48 × 32 400 254 2.8 4

75 96 × 64 1915 262 3.5 5

75 192 × 128 7802 245 3.8 6

75 384 × 256 32409 254 3.7 7

(C) 60 48 × 32 497 364 2.7 4

60 96 × 64 2689 381 3.9 7

60 192 × 128 11502 336 4.9 8

60 384 × 256 53168 320 6.4 12

where k̄ = 6.64 · 10−11 is the mean value of the permeability field and the

parameters pd and λ are taken from the matrix.

Figure 9 shows solution plots for all three cases on a mesh with 384 by

256 elements. In case (A), it can be seen that no DNAPL infiltrates the fine

sand lens, saturation is discontinuous over the lens boundary. In case (C),

the flow is restricted to channels of highest permeability and DNAPL pools

are formed above zones of low permeability and high entry pressure.

Table 5 shows the solver performance for all three cases. Standard pa-

rameters as listed above have been used. The initial guess for Newtons’

method has been obtained through nested iteration. The coarse mesh had

6 by 4 elements, the finest mesh hierarchy had 7 levels. Again the time step

size has been fixed (60 [s] for cases (A) and (B), 35 [s] for case (C)) while the

spatial mesh size has been increased. Total execution time increases linearly

for cases (A) and (B) and slightly more than linear in case (C) indicating

that both the number of Newton iterations and the number of multigrid

cycles per Newton step remain (almost) constant. The propagation speed

of the free boundary (seperating the domains where only water and both

phases are present) is about 5 mesh cells per time step on the finest meshes

in cases (A) and (B).

27

Sand 2

2

2

2
Sand 1

Sand 0

6.43 [m]

2.
4

[m
]

hy
dr

os
ta

tic
 p

re
ss

ur
e

di
st

ri
bu

tio
n

non-wetting phase
x=3.25[m] x=3.55 [m]ΓINΓN ΓN

ΓE

ΓS

ΓW

Figure 10: Setup of the two–dimensional VEGAS experiment.

Table 6: Parameters for the different types of sand in the VEGAS infiltration

problem.

Sand Φ k [m2] Swr Snr λ pd [Pa]

0 0.4 4.60 · 10−10 0.10 0.0 3.0 234.0

1 0.4 3.10 · 10−11 0.12 0.0 2.5 755.0

2 0.4 9.05 · 10−12 0.15 0.0 2.0 1664.0

6.3 VEGAS Infiltration Problem

The setup shown in Fig. 10 has been used in an experiment at the VEGAS

facility in Stuttgart (cf. [13]). It consists of several fine sand lenses with

different inclinations within a coarse sand. It is very similar to the previous

example but with a more complicated geometry. We use this example to

show the parallel performance of the simulator and the superiority of the

multigrid method compared to a single grid scheme.

Table 6 shows the parameters for the different types of sand in the VE-

GAS problem as indicated in Fig. 10. Brooks–Corey constitutive relations

are used for relative permeability and capillary pressure. Boundary condi-

tions at the left and right boundaries of the domain are hydrostatic for pw

and Sn = 0. All other boundaries are impermeable except for the inflow of

0.259 [kg/(sm2)] of DNAPL as indicated in Fig. 10.

Fig. 11 shows the saturation obtained after 2 hours of simulated time.

Note that the U–shaped lens (sand 1) to the right has been infiltrated by

the DNAPL.

28

Figure 11: Saturation plot for the VEGAS Experiment after 240 steps of 30

[s].

Table 7: Multigrid solver performance for 2D VEGAS experiment on Cray

T3E.

P STEPS MESH EXECT NLIT AVG MAX TI

1 240 4640 9407 827 5.5 10 0.96

4 240 18560 19280 1206 7.5 13 1.06

16 240 74240 23819 1148 8.4 13 1.15

64 240 296960 29624 1219 9.4 15 1.24

256 240 1187840 35669 1297 10.3 15 1.26

29

Table 7 gives the solver performance on up to 256 processors of the

CRAY T3E. The coarsest mesh was that shown in Fig. 10 with 290 ele-

ments. Six levels of uniform refinement resulted in a finest mesh with about

1.2 million elements or 2.4 million unknowns. Multigrid parameters were as

listed above execept that a symmetric point–block Gauß–Seidel smoother

has been used instead of the point–block ILU smoother. The Gauß–Seidel

smoother showed slightly lower iteration numbers in the parallel case. The

initial guess for the Newton iteration was obtained through nested iteration.

The number of elements per processor was fixed at 4640, i. e. we consider

a scaled computation where the problem size increases linearily with the

number of processors. The time step size was fixed at 30 [s]. Therefore exe-

cution time should remain constant if all components of the algorithm scale

in the optimal way. This is not the case. Table 7 shows a fourfold increase

in execution time from one processor to 256 processors. This increase can

be explained by the increase in the the number of Newton iterations NLIT

(56 %), multigrid iterations AVG (87%) and the time per multigrid iteration

TI (31%). The increase in the number of multigrid iterations is due to the

fact that information is lagged by one iteration at processor boundaries in

the smoother and not due to the decreasing spatial mesh size. Nevertheless

the scalability of the whole algorithm is quite acceptable. The propagation

speed of the non–wetting phase infiltration front in this example is more

than 6 mesh cells per time step in the finest calculation.

Table 8 compares the multigrid preconditioner with symmetric point–

block Gauß–Seidel smoother to a stand–alone symmetric point–block Gauß–

Seidel preconditioner. Ordering of the grid points was lexicographic within

each processor. The comparison is made after 25 time steps of the cal-

culation (the time limit on the CRAY is 12 hours for a single job). The

table shows that the number of multigrid cycles remains nearly constant

while the number of Gauß–Seidel preconditioning iterations doubles with

each mesh refinement (as one would expect for an elliptic model problem,

but this is a fully coupled system here). Similar behavior has been observed

for a point–block ILU(0) preconditioner (within each processor). While it

may be possible to improve iteration numbers for single–grid preconditioners

through various techniques (diagonal scaling, ordering of unknowns, more

fill–in in ILU) the dependence on the mesh size essentially remains the same

for all these variants. “Modification” of the ILU scheme (see [2]) is able to

30

Table 8: Comparison of multigrid and single grid preconditioner for 2D

VEGAS experiment after 25 time steps on Cray T3E.

Prec. P STEPS MESH EXECT NLIT AVG MAX

MG– 1 25 4640 887 107 3.3 6

SGS(2,2) 4 25 18560 1151 93 4.3 8

V–cycle 16 25 74240 1483 104 4.4 8

64 25 296960 1793 105 5.1 9

256 25 1187840 1955 100 5.6 9

SGS(1) 1 25 4640 3674 107 84 153

4 25 18560 4516 93 137 249

16 25 74240 11244 104 317 450

64 25 296960 21231 106 541 1149

256 25 1187840 42040 101 1121 2699

Table 9: Sand properties for the 3D DNAPL infiltration problem.

Sand Φ k [m2] Swr Snr λ pd [Pa]

coarse 0.4 5.04 · 10−10 0.08 0.0 3.86 369

fine 0.39 5.26 · 10−11 0.10 0.0 2.49 2324

achieve an order reduction (doubling of iteration numbers only with every

two mesh refinements) but this has only been shown for certain scalar elliptic

problems and not for the fully–coupled systems considered here.

The use of the multigrid preconditioner resulted in a 21–fold improve-

ment in total execution time in the example presented above. While it may

very well be that multigrid is not necessary for problem sizes that can be

treated on a workstation it is a necessity for large scale parallel computa-

tions.

6.4 3D DNAPL Infiltration

A three–dimensional DNAPL infiltration problem with two fine sand lenses

has been setup. The porosity, permeability and Brooks–Corey parameter-

sare given in Table 9.

The position of the lenses and isosurfaces for DNAPL saturation are

shown in Fig. 12. A water flow from right to left (in the top picture) has

been prescribed. The solution shows a counter current flow of the DNAPL

31

Figure 12: Isosurfaces for Sn = 0.01 and Sn = 0.30 after 960 [s] in the 3D

DNAPL infiltration problem.

and no infiltration of the fine sand lenses.

Table 10 gives results for a scaled parallel computation on the CRAY

T3E system. Standard parameters have been employed as descrived above.

The size of the coarsest mesh was 4 by 4 by 5 hexahedral elements. Five

levels of uniform refinement yield a fine mesh of 128 by 128 by 160 elements

corresponding to 5.2 million unknowns. 50 time steps of 20 [s] have been

computed. Fig. 12 shows isosurfaces of non–wetting phase saturation for two

different values of saturation after 960 [s] of simulated time. The propagation

speed of the non–wetting phase front is between five and six mesh cells per

time step in the finest calculation. The number of elements per processor

was about 10000 for 4, 32 and 256 processors. The calculation with one

processor had only 5120 elements, since mesh size grows by a factor of 8

from level to level in 3d. Therefore the execution time for the one processor

calculation has to be doubled to be comparable to the time needed by 4,

32 and 256 processors. The scalability in this example is better than in the

two–dimensional VEGAS example: From 4 to 256 processors total execution

time increases only by 27%.

Conclusions

In this paper we presented a fully–coupled solution method for two–phase

flow in porous media. The large non–linear systems were solved per time

32

Table 10: Performance statistics for 3D DNAPL infiltration with two low

permeable lenses on Cray T3E.

P STEPS MESH EXECT NLIT AVG MAX TI

1 50 5120 4187 218 1.6 2 2.10

4 50 40960 11589 243 2.5 4 4.69

32 50 327680 13214 264 3.5 7 4.76

256 50 2621440 14719 255 4.3 9 4.82

step by a Newton–Multigrid algorithm. The different terms in the Jacobian

and their influence on the multigrid method were discussed in detail. A

truncated restriction operator enabled us to use the discretized operator on

the coarse meshes. In order to achieve a further reduction in computation

time a data parallel implementation has been developed.

Experimental results have been presented for various two–phase flow

situations including vanishing capillary pressure and heterogeneous media

with entry pressure effects as well as two– and three–dimensional exam-

ples. Very satisfactory multigrid performance was observed in all examples

and a comparison with an ILU preconditioner showed the superiority of

multigrid. In two–dimensional computations (not reported here) with 2.4

million unknowns on 112 processors an improvement of a factor eleven in

wall clock time for a complete calculation could be observed in comparison

to a BiCGSTAB-ILU solver.

Since a convergence proof of multigrid is not available for the problems

discussed in this paper, more practical experience is necessary. The code

is also able to handle compressible fluids and fully unstructured meshes

although neither aspect has been tested extensively up to now.

The fully–coupled solution method is also the basis for multiphase– mul-

ticomponent simulators. The development of effective multigrid precondi-

tioners for these models will be a challenge for the future.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft in Son-

derforschungsbereich 404, project A3. We thank all members of the UG

group at ICA 3, Stuttgart, especially Klaus Birken, Stefan Lang and Chris-

33

tian Wieners that we could use their work on the parallel version and Klaus

Johannsen for his implementation of BiCGSTAB.

References

[1] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter. The multi-

grid method for the diffusion equation with strongly discontinuous co-

efficients. SIAM J. Sci. Stat. Comput., 2:430–454, 1981.

[2] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary

Value Problems. Academic Press, 1984.

[3] P. Bastian. Load balancing for adaptive multigrid methods. SIAM J.

Sci. Stat. Comput., page to appear.

[4] P. Bastian. Parallele adaptive Mehrgitterverfahren. Teubner–Verlag,

1996.

[5] P. Bastian, K. Birken, S. Lang, K. Johannsen, N. Neuß, H. Rentz-

Reichert, and C. Wieners. Ug: A flexible software toolbox for solving

partial differential equations. Computing and Visualization in Science,

1, 1997.

[6] D. Braess. Towards algebraic multigrid for elliptic problems of second

order. Computing, 55:379–393, 1995.

[7] S. C. Brenner and L. R. Scott. The mathematical theory of finite element

methods. Springer, 1994.

[8] G. Chavent and J. Jaffré. Mathematical Models and Finite Elements

for Reservoir Simulation. North–Holland, 1978.

[9] H. A. Van der Vorst. Bicgstab: A fast and smoothly converging variant

of Bi–CG for the solution of non–symmetric linear systems. SIAM J.

Sci. Stat. Comput., 13:631–644, 1992.

[10] W. Hackbusch. Multi–Grid Methods and Applications. Springer–Verlag,

1985.

[11] W. Hackbusch. Iterative Solution of Large Sparse Systems of Linear

Equations. Springer, 1994.

34

[12] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface

— A Contribution to the Modeling of Hydrosystems. Springer Verlag,

1997.

[13] H. Kobus. The role of large–scale experiments in groundwater and

subsurface remediation research: The vegas concept and approach. In

Groundwater and Subsurface Remediation. Springer–Verlag, 1996.

[14] O. A. McBryan, P. O. Frederickson, J. Linden, A. Schüller, K. Solchen-

bach, K. Stüben, C. A. Thole, and U. Trottenberg. Multigrid methods

on parallel computers — a survey of recent developments. Impact of

Computing in Science and Engineering, 3:1–75, 1991.

[15] J. Molenar. Multigrid methods for fully implicit oil reservoir simulation.

Technical report, TWI, Delft University of Technology, 1995.

[16] W. A. Mulder and R. H. J. Gmelig Meyling. Numerical simulation of

two–phase flow using locally refined grids in three space dimensions.

SPE Advanced Technology Series, 1(1):36–41, 1993.

[17] M. Raw. Robustness of coupled algebraic multigrid for the Navier–

stokes equations. Technical Report 96–0297, AIAA, 1996.

[18] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multi–grid by smoothed

aggregation for second and forth order elliptic problems. Computing,

to appear.

[19] C. Wagner and G. Wittum. A robust multigrid method for groundwater

flow. Numer. Math., to appear, 1997.

[20] T. Washio and C. W. Oosterlee. Experiences with robust paral-

lel multilevel preconditioners for BiCGSTAB. Technical Report 949,

Gesellschaft für Mathematik und Datenverarbeitung, 1995.

[21] P. Wesseling. An Introduction to Multigrid Methods. John Wiley, 1992.

[22] G. Wittum. On the robustness of ILU smoothing. SIAM J. Sci. Stat.

Comput., 10:699–717, 1989.

35

