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Abstract. The parallelization of two multi-grid methods that are robust for systems of linear
equations arising from the discretization of certain singularly perturbed elliptic partial differential
equations is presented. The multi-grid method with ILU smoother and the Frequency Decomposition
Method, based on a multiple coarse grid correction, were implemented on a MIMD computer with
distributed shared memory using a ring configuration for the first and a hypercube configuration for
the second method. The speedups were determined for various grid sizes and numbers of processors.
An objective comparison of both methods against the multi-grid method with highly parallelizable
red-black Gauf-Seidel smoother is made for the anisotropic equation and shows the superiority of
both methods over the standard approach. The speedup of the ILU smoother is modelled and the
influence of computer architecture on the speedup is discussed.
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1. Introduction. In this paper we study the parallel solution of systems of
linear equations arising from the discretization of partial differential equations which
depend on one or more parameters. The equation is assumed to be basically of elliptic
type, except for certain extremal values of the parameters. As model equations for
this class of singularly perturbed problems we consider the anisotropic equation
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and «, 8 > 0, and n the exterior normal. Further we consider the convection-diffusion
equation
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on Q =[0,1] x [0,1], u(z,y) = b(z,y) on 0N, € >0, ¢1,¢c2 € R.

The anisotropic equation is of elliptic type for a,8 > 0 and of parabolic type
for « = 0 or § = 0. The convection-diffusion equation is of elliptic type for e > 0
and of hyperbolic type and first order if ¢ = 0. These two equations can serve as
model equations for the numerical solution of the Navier-Stokes equations, where the
influence of grids with high aspect ratio or a flow with high Reynolds number on the
rate of convergence can be studied.
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A standard finite difference discretization of Eqn. (1) with Dirichlet boundary
conditions on an equidistant grid €; = {(ihy, jh;)|0 < 4,5 < Ny, by = 1/N;, N, = 2141}
yields a system of linear equations

(4) Ay = fi

where the index [ € N indicates the grid level within the multi-grid process. 4; is a
block tridiagonal matrix if the grid points are ordered lexicographically first in  then
in y direction:
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Eqn. (4) will serve as model equation throughout the paper.

If Kj(a, ) is the iteration matrix of an iterative method for the solution of the
discrete problem Eqn. (4), then the method Kj(«, 3) is called robust for the anisotropic
equation iff

(7) ||Kl(a7ﬂ)|| < g <1 Va,ﬂ > 07 leN

with ||.|| the spectral norm.

We assume a central difference discretization of the diffusive terms of the convection-
diffusion equation (3), and stable upwind differences for the convective terms. The
robustness of a method for a discretization of Eqn. (3) can be defined similarly.

The first method we consider is the multi-grid method with ILU smoother. This
method is suitable for a finite difference or finite volume discretization of a wide
range of two-dimensional partial differential equations (see [11]) including Eqns. (1)
and (3). Several variants of the method have been published, for example the semi-
implicit procedure (SIP) of Stone [10], 7- and 9-point ILU, or Wittum’s ILUgz. Wittum
showed in [12] that the multi-grid method with his ILUg smoother is robust for the
anisotropic equation. The ILUg and the SIP method have both been succesfully
used in Navier-Stokes solvers (see [3], [13]). The parallelization of the ILU method
presented in section three is applicable to all of the above-mentioned variants and is
described only for the basic 5-point version.

The second method we consider is the frequency decomposition multi-grid algo-
rithm introduced by Hackbusch in [5]. The range of applicability of the method in
this form is not as large as for the first method: it is able to solve Eqn. (1) but not
Eqn. (3). The motivation behind the method is as follows: Let Kj(«, 8) denote the
iteration matrix of an iterative algorithm for the solution of Eqn. (4), then the error
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in the n-th iterate o' = u; —u]* is given by v} = K;(a, 8)v]' . With the eigenvectors
e/ of A; given by

(8) (e/")i,; = sin(vmihy) sin(unjhi), 0<p,v <Ny —1

one defines the low frequencies Voo = span{e;”|v,u € L}, the high frequencies in
x-direction Viq = span{e;”|v € H,pu € L}, the high frequencies in y-direction
Vor = span{e;*|v € L, € H} and the high frequencies in both directions Vi; =
span{e;"|v,p € H} with £ = {1,...,Nj_1 — 1} and H = {N;_1,...,N; — 1}. Stan-
dard multi-grid theory assumes the smoother to reduce the high frequency errors
v € V1o U Vp1 U V71 and the coarse grid correction to reduce the low frequency errors
v € Viyo. Fourier analysis of the two-grid method with a damped Jacobi smoother or a
red-black GauB-Seidel smoother applied to Eqn. (4) yields that the smoother fails to
reduce the errors in Vig (Vo1) if @ = 0 (8 — 0). A first way to achieve robustness is
to incorporate a more complex smoothing algorithm that works for all high frequen-
cies, like the ILU method. Another approach is the frequency decomposition method,
where four different coarse grid corrections are constructed to reduce the error in each
of the spaces V,, ¢ € {00,10,01,11} on coarser grids. As smoother a simple damped
Jacobi is sufficient.

In the next section the principles of parallel multi-grid algorithms will be shortly
reviewed. Sections three and four describe the ILU iteration and the frequency decom-
position method, respectively, together with the parallelization and speedup results
for each method. In the fifth section the two methods will be compared with a parallel
multi-grid method using a highly parallelizable red-black Gauf3-Seidel smoother.

2. Parallelization of Multi-Grid Methods. When we assume that a two-
dimensional partial differential equation is discretized on a rectangular grid with (N;—
1) x (V; — 1) unknowns then each processor is assigned to a subset of the unknowns
(data partitioning). In a one-dimensional arrangement of n processors called a ring
configuration of length n, processor p, p € {0,...,n—1}, is assigned to the grid points
{(@,7)|maz(1,pNi/n) <i < (p+1)Ni/n,1 <j < N;}. In an x m array configuration
each processor is assigned to Nj/n x N;/m unknowns. However if the sidelength of
the grid is not divisible by the number of processors in the appropriate direction then
some processors will be assigned more unknowns than others, which results in an
unequal load balance. This is one source for losses of efficiency.

All components of the multi-grid method require only local operations, i.e. com-
putations at grid point (¢, ) need only values at the grid points (i = 1,7 £ 1). In
addition most operations (defect calculation, restriction, ...) can be carried out in
parallel at each point. The number of points that can be computed simultaneously
varies however between different smoothing procedures: This number is (N; — 1) for
Jacobi smoothing, (N; — 1)?/2 for red-black smoothing and at most N; — 1 for ILU
and lexicographic Gauf-Seidel smoothers.

The speedup S(n) of a parallel algorithm is defined as

) )= T

with Throno the time needed for the execution of the program on a single computer and
Trrwiti(n) the time taken on n processors. This is the factor by which computation
time is reduced through the use of a parallel processor. The efficiency E(n) of a
parallel implementation is then defined as
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(10) E(n) = 2~

The speedup for all operations carried out on a fixed level [ within the multi-grid
method depends heavily on the number of unknowns per processor, because a larger
proportion of computing time is spent on communication and the effects of unequal
load distribution are more pronounced if the number of grid points per processor is
small. This means that a high speedup can be achieved on the fine grids (assuming
a large number of grid points per processor on the fine grids), whereas the speedup
deteriorates on the coarser grids. Nevertheless the overall speedup can be expected
to be very high because most of the work is spent on the finest levels.

2.1. The DIRMU System. DIRMU is a multiprocessor consisting of 26 stand-
alone micro-computers (8086/87) developed at the University of Erlangen-Niirnberg
[6]. The processors communicate via distributed shared memories whereby each pro-
cessor can be connected to the memories of up to seven other processors. In addition
to this communication memory, called multiport memory, each processor has a pri-
vate memory where the program and local data are stored. All variables shared with
neighbouring processors are stored in the multiport memories in order to avoid explicit
transportation of data. The distributed operating system DIRMOS supplies informa-
tion about various possible connection structures like ring, array, tree or hypercube
to a parallel program. In this way it is possible to use a connection structure that
best fits the problem. DIRMOS also allows multiple users to run parallel programs
on different parts of the system simultaneously and independently of each other.

2.2. Transputers. In order to compare the speedups on different computer ar-
chitectures the ILU method was also implemented on an INMOS transputer system
consisting of 7 T800 transputers connected in a ring. In contrast to DIRMU, the
transputer system is a message passing architecture, where the time for sending a
message consists of a fixed message setup time and a portion depending on the length
of the message.

3. The Incomplete LU Factorization. In general we allow a 5-point finite
difference star with variable coefficients denoted by

(11) A(i,§) = Af‘; A’gj Afj
,J
The discretization on a rectangular equidistant grid then yields a matrix with a
sparsity pattern as for matrix A; in Eqn. (4). As long as we regard ILU as a single
grid method we will omit the index [. ILU is an iterative method which uses an
approximate factorization of A into a product of lower and upper triangular matrices
L and U with prescribed sparsity pattern. In the 5-point version the entries of L and

U are allowed to be non-zero on the five non-zero diagonals of A. L and U are then
defined in star notation as follows:

0 UnN
(12) L(i,j) = | LYY ng,- 0|, UG4=|0 U5 U5
Ly 0



The matrix A is replaced by LU — C, where C is the error in the approximation.
The iterative algorithm can be formulated without explicit calculation of C using the
defect d"™ = f — Au™:

(13) u™t =" + UL = u o™ ,
where v™ is obtained from solving LUv™ = d™ in two steps:

(14) L = d°
(15) Ut = 6

This approach is preferable to the use of C for three reasons; storage space for
the diagonals of C' is saved, the defect is available, since it must be calculated at every
iteration for convergence testing, and the iteration is more numerically stable. The
matrices L and U are triangular and therefore easily invertible once computed. If
A is a tridiagonal matrix the incomplete LU factorization is equal to the exact LU
factorization and this explains why the method can be applied with great success to
discretizations of the singularly perturbed problems (1) and (3), since the discretiza-
tion matrices of these equations tend towards tridiagonal matrices for the limit values
of the parameters in the singularly perturbed sense. Existence and stability aspects
of the ILU decomposition process are covered in [9].

The entries of L and U are computed recursively from the entries of A in the
following manner:

(16) Lij = AV Lij=Af

W pAE S N
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(18) Uy = L, U= 7.C.’ Uii = ¢
17] /L’]

The computation of the vectors § and »™ is then given by forward and back
substitution:

dij— LWy s — L5 6ise
(9 = “L WU I )N -1 = ()N -1
4]

QWY = 68— U v —Ulvijer i=N—-1(-1)1; j =N -1(-1)1

3.1. Parallelization. As described the method consists of two parts: decom-
position of A into L and U and the inversion of L and U by forward and backward
substitution. First we will consider the decomposition process. The key to the par-
allelization lies in the observation that when Dirichlet or von Neumann boundary
conditions are given, the ‘west’ coefficients of the leftmost variables A}’f’j and the
‘east’ coeflicients of the rightmost variables Aﬁ_ly ; are equal to 0. This means that
the term A} AP | (L, ;)~" drops out of Eqn. (17) and that therefore L{'; depends
only on Llc, j—1- We therefore have the following data dependencies: ng can be com-
puted as soon as LiC_L ; and ng_l have been computed except on the west boundary,
where L{'; depends only on L{’; | and on the south boundary where L{;, depends

only on ch—l,l' Regarding the grid it follows that LY at all locations (i,7) with
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i+ j = k, k fixed, can be computed independently of each other from L at the
locations i + j = k — 1.

The two-dimensional grid is mapped onto a ring of processors as described in
section two. The parallel algorithm then proceeds as follows: Processor 0 starts with
its segment of the first row of grid points. After completion, a signal is sent to pro-
cessor 1 which then starts to process its section of the first row. Meanwhile processor
0 has started with the computation of its part of the second row. All processors are
running when processor n — 1 begins with the computation of its part of the first row.
Algorithm 3.1, which is executed simultaneously by each processor, shows the parallel
computation of the coefficients LY;, where the variables zmin(p) and zmaz(p) con-
tain the leftmost and rightmost grid point column stored by processor p. On DIRMU,
the execution of routine signal_row(j) by processor p indicates the completion of its
segment of row j by incrementing a counter in the multiport memory of its right
neighbour. The procedure wait_row(j) waits for this signal in order to be able to
proceed with the computation of row j. Note that in the DIRMU implementation
grids which are to be accessed by neighbouring processors are located in the multiport
memory, the others in private memory.

ALGORITHM 3.1. Parallel computation of the LC entries.

PROCEDURE computelLC (A4, L);

BEGIN

FORj:=1TO N—-1DO
wait_row(5);
FOR i := zmin(p) TO zmaxz(p) DO

L§; = Af — Al (Ll ) TH A — A (L) T AT

END;
signal_row(j);

END;

END computelLC ;

Zero entries in AW and AP are reproduced in LY and UF according to Eqns.
(16) and (18). Therefore the forward substitution to compute d leads to the same
data dependencies as the computation of L and therefore can be parallelized using
the same ideas. The data dependencies for the backward substitution are different.
Here again the values of v™ at locations ¢ + j = k can be computed simultaneously
but are dependent on values of v™ with ¢ + j = k + 1, which means that the parallel
algorithm starts in the upper right corner of the domain instead of the lower left.

The extension of the ILU method to 9-point difference stars is straightforward.
For the computation of the matrices L, U and the vector § we have the following data
dependencies: computations at grid point (¢,5) need values at grid points (i — 1, ),
(t—1,7—-1), (i,5—1) and (i+1,5—1). We can use the same basic algorithm with the
exception that at processor boundaries the values at grid point (i +1, j—1), located in
the right neighbour are needed. In the memory coupled system this poses no problem,
but in the message passing system an additional data transfer is necessary. In the
backward substitution process for computing v™ the computations at grid point (4, )
need values at locations (i +1,7), i+ 1,7+ 1), (,,7+ 1) and (¢ — 1,5 + 1).

3.2. Speedup Results. In order to better understand the behaviour of the
parallel method we have developed a model for the speedup. Having an accurate
model of the speedup has several advantages:



TABLE 1
Predicted (P) and Measured (M) ILU Efficiencies for the DIRMU Multiprocessor

h Processors

2 4 6 8 12 16 20
1/32 P 0.92 0.84 0.73 0.71
1/32 M 0.93 0.83 0.73 0.69

1/64 P 093 0.89 0.86 0.77 0.75 0.63

1/64 M 095 0.91 0.86 0.77 0.73 0.62

1/128 P 0.90 0.87 0.81

1/128 M 0.93 0.88 0.82
TABLE 2

Predicted ILU efficiencies for large DIRMU configurations

h Processors

4 8 16 32 48 64
1/256 0.98 0.97 0.94 0.88 0.79 0.78
1/512  0.99 0.98 0.97 0.94 091 0.89
1/1024 0.99 0.99 0.98 0.97 094 0.93

e The model can be used to predict speedups for large problems whose memory
requirements exceed the capacity of the DIRMU system.
e Estimated speedups for larger processor configurations can be obtained
e The influence of the multiprocessor architecture can be examined by variation
of the model parameters
Here a simplified version of the model is given:

(Nl — 1)2 * Top

21 Sn,Ny) =
( ) ( l) Tstartup + Tparallel
N, —1
(22) Tstartup = (TL - ]-) * TSY + (Nl —-1- n ) * TOP
N -1
(23) Tparallel = (Nl - 2) *Tsy + (Nl - 1) * x*Top

Tstartup is the time the rightmost processor must wait until it can begin its com-
putation. Tparaiier is then the time taken until the parallel computations are complete.
Tsy (Synchronization time) is the time needed for a signal_row and wait_row pair, and
Top (Operation time) is the time needed for the arithmetical computations at a single
grid point. We can obtain the following estimate for the resulting efficiency:

1

24 E(n, Ny >
24 M2 v

where ¢ = #+1.



TABLE 3
Multi-grid efficiency on the DIRMU. Multi-grid data : ILU smoother, vi = 1, va =0, v =
1, h=1/64

Processors Efficiency

5 0.88
6 0.82
7 0.76
8 0.73
9 0.67
10 0.64
11 0.65
12 0.58
13 0.54
14 0.50
15 0.46
16 0.44

This estimate, which was pointed out to the authors by G. Wittum, shows how
the ratio Tsy /Top will be an important factor in the resulting speedup. The smaller
this ratio the higher will be the speedup for given values of n and N;. Alternatively,
it can be seen that a value of Tsy /Top which is not small will require a large number
of grid points per processor to achieve a high efficiency. In a message passing system
Tsy will include the message setup time and the time required to transport the value
of a boundary point Lgmaw(p)’j from one processor to the next, while in a memory
coupled system Ty is the time that passes from incrementing a variable in shared
memory until the neighbouring processor recognizes that the variable has changed its
value.

Tables 1 through 3 show the results for the DIRMU implementation. Table 1
shows a comparison of the measured efficiency E of the ILU method and the pre-
dictions for various configuration lengths and grid sizes obtained by an enhanced
speedup model which includes specific hardware parameters of the DIRMU multipro-
cessor. Table 2 shows the predictions obtained for larger problems and configurations.
Finally, Table 3 shows the efficiency of the multigrid method with ILU smoothing and
h =1/64 on the finest grid.

The model is found to predict the measured efficiency very well for the grid and
configuration sizes available on DIRMU. It is seen that h < 1/64 gives ’reasonable’
grid sizes for DIRMU, with efficiencies over 75% for up to 14 processors for h = 1/64,
and up to 23 processors for h = 1/128. The results are typical for a parallel algorithm
with data-distribution, where the efficiency decreases when the number of processors
is increased, owing to the growing communication and synchronization requirements
relative to the number of parallelizable operations. For the same reason large grids
can be more efficiently processed than smaller ones.

The model was considered to be accurate enough to enable predictions for larger
problems. Here efficiencies better than 75% can be expected with up to 64 processors
for a grid of side length 256, and the efficiency is better than 90% for grids with side
length 512 or larger.

Table 4 shows the efficiencies measured for the transputer implementation. Note
that Top on the transputer system is about sixty times shorter than that of the

8



TABLE 4
Efficiency for the ILU method on the transputer system.

h Processors

2 3 4 5 6 7
1/32  0.89 0.79 0.76 0.67 0.62 0.58
1/64 0.94 0.88 0.87 0.83 0.79 0.73
1/128 0.97 094 0.93 0.90 0.87 0.85

DIRMU system, and that Tsy is about three times as small. The difference in the
ratio of Tsy and Tpp means that the transputer system needs grids with twice the
side length in order to achieve efficiencies comparable to DIRMU.

Note that it is possible to reduce the number of messages by grouping the grid
lines [7]. With this modification, each processor computes k line segments, for some
small k, before passing data on to the next processor. In this way, the efficiency
for message-passing parallel computers with a high message setup overhead can be
greatly enhanced. This has been shown both by an appropriate model and by direct
simulation [8].

4. The Frequency Decomposition Method. The reduction of high frequency
errors on coarser grids is made possible by the introduction of new prolongation
operators poo, Pio, Po1 and pi1, which are constructed such that an error function
v on the coarse grid is mapped to the space V, by p,. poo is identical to the usual
bilinear interpolation operator. The restriction operators r, are constructed from p,
by transposition: r, = % pl', which results in the usual full weighting operator for rgo.
Now we can describe the two grid algorithm. Assuming that we enter the cycle with
the n-th iterate u}’, first a smoothing algorithm is applied vy times on the fine grid.
Then the defect d; = f— Au™ is calculated. Now the four restricted defects dj_; = r,d;
can be computed and the four defect equations A; ,v; , = dj_; have to be solved
on the coarse grid. The coarse grid matrices are A}_; = r,A;p, (Galerkin product).
After the solution of the coarse grid equations the fine grid solution is corrected by
ut™ =ul + 3, pv} ;. Note that the four coarse grid corrections (restriction of the
defect, solution of the coarse grid equations, prolongation of the corrections) can be
computed independently of each other. As in the standard multi-grid method the
multi-grid cycle is obtained by an approximate solution of the coarse grid equations
with a recursive call (y times) of the method.

As described above, the algorithm produces four matrices A;_; on level [ — 1.
These produce 16 coarse grid matrices A", on level -2, and in general 4F coarse grid
equations result at level [ — k. Hackbusch showed that not all coarse grid equations
are necessary and gave a criterion that results in the necessary coarse grid tree of
Figure 1. This criterion states that a coarse grid matrix A;*‘2"** can be omitted if

(25) A,k € {t1,t2y--ytk}: L EKNLKFOD

Note that most of the nodes have two descendants (type II nodes in the following)
and only some nodes have four descendants (type I nodes). The number of coarse
grid equations on level I — k is thus reduced to 3 - 2¥ — 2. For further details of the
method we refer to [5]. This gives us the following algorithm. The parameter & is
used to omit the unnecessary coarse grids.
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ALGORITHM 4.1. The frequency decomposition multi-grid algorithm using the
necessary coarse grids only.

PROCEDURE fdm (I, A, u, f1, K);
BEGIN
IF 1 =0 THEN w := A7,
ELSE
w =8 (w, fr); (* pre-smoothing x)
dp = fi — Ayug; v = 0 (* coarse grid correction *)
IF Kk =00 THEN
I :={00,10,01,11}
ELSE
I:={00,x}
END;
FOR . €1 DO
dj_q :=r,dp;
vj_q =05
IF k =00 THEN ) := . ELSE X := k END;
FOR k := 1 TO « DO fdm(l — 1,r,4;p,, v'_,,d'_,, \) END;
v = U+ P
END;
up = up + vg;
w =8 (w, fi); (* post-smoothing x)
END;
END fdm ;
It can be shown that the complexity of one application of algorithm 2 is O(n;)
if v =1 and O(n;logn;) if v = 2 (n; denotes the number of unknowns on the finest
grid). For further details we refer to [5].

4.1. Parallelization. The frequency decomposition multi-grid algorithm allows
parallelism to be exploited in two ways [2]. Firstly each processor can be assigned to
a subset of the unknowns as described in section 2. A high speedup can be expected
because simple Jacobi smoothing is sufficient. Secondly task partitioning can be used
on the coarser grids, where the speedup normally deteriorates (one task is one coarse
grid correction).

Therefore we use a two-level strategy. The fine grids, where the number of grid
points per processor is assumed to be large, are distributed amongst all processors of
an array configuration as described in section 2. On the coarser grids, the configu-
ration is split into halves and each subconfiguration is assigned to a different coarse
grid correction, thus avoiding the problem of the decreasing number of unknowns per
processor usually associated with parallel multigrid methods. The level where the
subdivision process starts can be prescribed by the parameter I 544 -

The subdivision strategy is as follows: If a 2n x m array configuration is used
on level [ and a type II node is encountered, then the configuration is subdivided
into two equal halves of size n x m. Note that the whole defect grid function is
needed in each of the two halves, which seems to require an explicit data transport,
and that the situation is reversed when the two corrections have been computed. If
a type I node is encountered, the configuration is also split into two equal halves,
where first the 00 and 10 corrections are computed in parallel followed by the parallel
computation of the 01 and 11 corrections. Now the strategy is applied recursively,
whereby subconfigurations can be further divided.
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F1G. 1. Necessary coarse grid tree. The dashed and dotted subtrees are computed in parallel.

The parallel computation of the 00 and 10 corrections, each on one half of the
configuration, results in an unequal load balance, as can be seen from Figure 1, where
the dashed subtree (00 correction) has more nodes than the dotted subtree (10 correc-
tion). This can be partially balanced by using a different parameter v in the multi-grid
cycle for type I and type IT nodes. If v = 1 is used when calling a type I node, and
v = 2 is used when calling a type II node, the work spent in the two subtrees is almost
equal.

In order to make the exact solver on level 0 as efficient as possible the level 0
grids should be located in a single processor. To achieve this, a configuration of the
form 2% x 2™ has to be used on the finest level. Now, after n’' + m' subdividing
steps, on'+m’ configurations of size 1 x 1 are reached. This restriction results in a
lower bound for the parameter lsypgiv: lsubdiv > 1 + m'.

Using a hypercube configuration it turns out that the explicit transfer of data
mentioned above can be omitted in the DIRMU implementation. An array config-
uration, where the number of processors in both directions is a power of 2 can be
mapped onto a hypercube configuration using so-called gray codes. If we assume a
2n'+1 x 9m" configuration that is subdived into two halves of size 2" x 2™ then in
each row of processors the same data transports would be necessary. Therefore it is
sufficient to consider one row of processors (this is a ring of length 2™'). Instead of
taking the processors {0,...,2" —1} and {2,...,2"+! — 1} as the two halves we
take the processors

Left:{p|0§p<2"1+1, pmod4=0 V pmod 4 =3}
Right={p|0<p<2"*' pmod4=1V pmod4=2}
It can be shown by inspection of the gray codes, that
e the two halves form a ring configuration
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TABLE 5
Speedups for different cycle forms

cycle | 2 processors 4 processors 8 processors 16 processors
S@2) E(Q2) S@A) E@) S(8) E®) S(16) E(16)
A% 3 1.82 091 326 0.81 543 0.68
4 190 095 358 0.89 6.28 079 11.00 0.69
5 3.59 090 680 0.8 1248 0.78
6 13.95 0.87
mixed 3 193 097 3.59 090 582 0.73
4 198 099 380 095 704 088 11.89 0.74
5 392 098 7.63 095 14.39 0.90
6 15.47 097
W 3 1.8 093 321 080 524 0.66
4 188 094 350 088 578 0.72 9.47 0.59
5 3.56 0.89 649 081 11.04 0.69
6 12.29 0.77

e all required data during the restriction and prolongation operations is located
in neighbouring processors. This means that no data transports are necessary
in the memory coupled DIRMU system

e this process can be applied recursively.

4.2. Speedup Results. The speedups and efficiencies have been determined for
2, 4, 8 and 16 processors (this is due to the hypercube configuration used) and various
grid sizes. Table 5 shows the results for the V-cycle, the mixed cycle described above,
and for the W-cycle. Index [ indicates the grid fineness. The speedups obtained for
the mixed cycle are very good even for coarse grids. However it should be noted that
numerical tests have shown that the W-cycle is necessary to achieve a convergence
rate independent of h;.

5. Comparison. Speedup alone is not sufficient as an objective criterion for
the comparison of iterative methods on a parallel computer. In addition we have
to consider the convergence rate and the operation count, as these factors also play
a key role in the overall efficiency of a solution procedure. We therefore define the
normalized parallel computation time T}, to be

Tc cle
2 Ty, = — 2%
(26) P —Inp-S(n)

where Ttye is the time needed for one iteration on a single computer, p is the average
convergence rate and S(n) is the speedup of the method on n processors. T, is the
time needed for n processors to reduce the error in the solution by a factor of 1/e.
Alternatively, the operation count for one Iteration can be used instead of Tiycie,
in order to provide a measure that is independent of differences in implementation
between the methods under comparison.

Table 6 shows the convergence rates and values of Ty, obtained on DIRMU
for 8 and 16 processors for the frequency decomposition method, and for standard
multi-grid methods with ILU and Gauf3-Seidel red-black smoothing applied to the
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TABLE

6

Normalized Parallel Computation Times for the anisotropic equation, h = 1/64

« B GS —rb FDM ILU

4 Tnp(8) Tnp(16) 4 Tnp(8) Tnp(16) 4 Tnp(8) Tnp(16)
1 1 0.108 0.9 0.5 0.086 5.9 34  0.121 0.86 0.73
1 2 0.393 2.23 1.1 0.196 8.8 52  0.150 0.96 0.81
5 10 0.938 32.5 16.2  0.295 11.8 6.9 0.135 0.91 0.77
1072 102 0.977 89.4 44.7  0.050 4.8 28 8-107* 0.26 0.22
1075 10 0.977 89.4 44.7 0.051 4.8 2.8 4-107% 0.05 0.05

TABLE 7

Normalized Parallel Computation Times for the convection-diffusion equation, h = 1/64

€ GS—1b ILU
Tnp(8) Tup(16) Tnp(8) Tnp(16)
1 371 185 423 357

0.1 5.02 2.51 5.35 4.51
0.01 7.97 3.99 3.97 3.35
0.001 14.1 7.05 2.27 1.92

anisotropic equation with h = 1/64 on the finest grid. Two pre-smoothing steps were
used for the red-black and frequency decomposition methods, and one for the ILU
method. No post-smoothing was done. In addition V-cycles were used for the red-
black and ILU measurements, and W-cycles for the frequency decomposition tests.
Full-Weighting was used as restriction operator in all cases.

Table 6 shows that as soon as the two factors a and f differ by a factor of ten or
more, the two robust methods are superior to the standard parallel algorithm with
red-black smoothing. In the case of strongly anisotropic coefficients, the ILU method
is several hundred times as fast and the frequency decomposition method is about
sixteen times as fast. Even for the Poisson equation (o = § = 1) the ILU method is
comparable to red-black smoothing.

The multi-grid method with ILU smoother has been found to be superior to the
frequency decomposition method also for other problems we tested. Table 7 shows
values of Tp,, for ILU and red-black smoothing applied to a discretization of Eqn.
(3), where upwind differencing has been used for the convective terms and central
differences have been used for the diffusive terms. The flow direction was 45 de-
grees (¢c; = ¢ = 1). Again the ILU method is superior to red-black smoothing.
The frequency decomposition method in the present form could not be applied to
the convection-diffusion equation with strong convection because the stable upwind
differences on the finest grid are gradually changed to unstable central differences on
the coarser grids by the Galerkin products.

6. Concluding Remarks. The results presented here show that the multi-grid
method with ILU smoother can be effectively parallelized and is greatly superior
to the multi-grid method with red-black smoother often used on parallel machines.
The efficient solution properties of the method in the case of vanishing ellipticity

13



are provided by the ILU relaxation, which in this case would also be appropriate
as a preconditioner for a Conjugate Gradient scheme which is known to be highly
parallelizable, see, for example [1]. In the elliptic case however, multi-grid is known
to be an optimal order method, having a rate of convergence independent of the grid
size. It has to be emphasized that the ILU algorithm was not changed to achieve the
parallelization. The method is especially suited for the anisotropic equation and the
convection-diffusion equation with strong convection, which are important problems
in practice.

The second method considered also showed superiority over the standard approach
for the anisotropic equation, but is applicable only to a smaller range of problems than
the ILU method.

The parallelization of the ILU method can be easily extended to the three-
dimensional case but it should be noted that the method is not robust for the three-
dimensional anisotropic equation. Whether the frequency decomposition method re-
mains robust in the sense of Eqn. 7, which requires a bounded rate of convergence
also for h — 0, for three dimensional problems is not known yet. Further work will in-
clude the incorporation of the ILU method into a parallel solver for the incompressible
Navier-Stokes equations.
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