Advances in High-Performance Computing:
Multigrid Methods for Partial Differential
Equations and its Applications

Peter Bastian, Klaus Johannsen, Stefan Lang, Sandra Nigele, Christian
Wieners, Volker Reichenberger, Gabriel Wittum, and Christian Wrobel

IWR/Technical Simulation, University of Heidelberg, Im Neuenheimer Feld 368,
69120 Heidelberg, Germany

Abstract. The program package UG provides a software platform for discretizing
and solving partial differential equations. It supports high level numerical methods
for unstructured grids on massively parallel computers. Various applications of com-
plex up to real-world problems have been realized, like Navier-Stokes problems with
turbulence modeling, combustion problems, two-phase flow, density driven flow and
multi-component transport in porous media. Here we report on new developments
for a parallel algebraic multigrid solver and applications to an eigenvalue solver, to
flow in porous media and to a simulation of Navier-Stokes equations with turbulence
modeling.

1 Introduction

In many cases the modeling of physical and technical problems leads to a
description by partial differential equations. Due to the complexity of the
equations and the geometry involved, often the mathematical problem can
be treated only by numerical methods. Appropriate discretizations lead to
large systems of (non-linear) equations to be solved. To make the numerical
treatment feasable, advanced numerical methods in conjunction with High
Performance Computing have to be applied. Unstructured grids, adaptivity,
multigrid methods, and parallelism have proven to be an efficient approach.
Unstructured grids are required by the complex geometries. Adaptivity has
to be used to reduce the computational cost especially for three-dimensional
simulations. Finally the use of both multigrid methods and High Performance
Computing on massively parallel MIMD machines is indispensable to reduce
the computing time.

To bring together the features mentioned above the program package
UG [4] has been designed during the last decade. It provides a platform for
the discretization and the solution of partial differential equations on paral-
lel computers. The kernel of UG has reached a mature state and state-of-
the-art numerical methods can be applied to complex and real-world prob-
lems. Applications to the Navier-Stokes equations with turbulence modeling,
to combustion problems, to two-phase flow, density driven flow and multi-
component transport in porous media and to flow in fractured rock have been
realized, see also [5,6].

2 Bastian et al.

In this paper we report on some of the recent developments. In Section 2
developments of the parallel algebraic multigrid solver [6] are discussed. Sec-
tion 3 is devoted to the parallel solving of eigenvalue problems. Section 4
reports on a porous media application with special emphasis on parallel per-
formance. Section 5 presents a parallel application to density driven flow
in porous media. Finally, in Section 6 an application to the Navier-Stokes
equations with turbulence modeling is given.

2 Parallel Algebraic Multigrid FAMG

Besides classical (or geometric) multigrid methods purely algebraic multigrid
methods (AMG) are desirable for many reasons. AMG considers only the
stiffness matrix and no geometric information is needed. It has the potential
to solve even very complicated problems. Furthermore AMG can be used in a
geometric multigrid as the coarse grid solver. A third point of interest is the
coupling of multigrid methods with already existing programs. The smallest
possible interface—the matrix itself—is already feasible for AMG and the
solver has no interaction with the geometry.

The starting point for our parallel AMG is the filtering AMG (FAMG)
by Wagner [3,25]. The main idea is to choose for each node appropriate pairs
of parent nodes for eventual elimination which ensures a certain filtering
condition and leads to exactness on a given subspace. The best pairs are
selected to eliminate the corresponding nodes; these parent nodes persist on
the next coarser grid level and restriction and prolongation matrix entries
with individually calculated values are installed between the nodes and their
parents. The recursive application of this process yields a grid hierarchy on
which standard multigrid algorithms can be realized.

For parallelizing this FAMG several additional steps have to be done.
Since the elimination of a node influences its neighborhood, and thus the
following selections for elimination, the cardinal point for the parallel FAMG
will be to break up this sequential order in a suitable way. Due to the locality
of the direct influence of a node, our approach will divide the nodes into
two classes: those which are influenced directly by nodes on other processors
and the rest. Whereas the latter can be eliminated locally on each processor,
the processing of the first ones needs a synchronization. Therefore a parallel
graph coloring method is used [13]. For further details see [6].

First results of the new parallel FAMG are obtained by examining the
Laplace operator on the unit square with a tensor product mesh (called struc-
tured case) and on the shape of Lake St. Wolfgang (Austria) with an unstruc-
tured mesh from a grid generator (unstructured case). The structured mesh is
distributed by a special load balancer to achieve tensor product like processor
configurations, the unstructured mesh is distributed by Recursive Cordinate
Bisection. For anisotropic model problems the equation eug, 4+ uyy = f is
solved with the anisotropy parameter e.

Multigrid Methods for PDEs and their Application 3

Tab. 1 shows that the convergence rate is almost independent from the
mesh width/the number of nodes. This is essential to solve large problems
efficiently.

structured unstructured

isotropic anisotropic 107 isotropic
unknowns | conv. nr. time conv. nr. time unknowns| conv. nr. time
rate it. [sec] rate it. [sec] rate it. [sec]
16641 | 0.0563 7 6.6 1075 2 4.2 14095 | 0.057 7 4.6
66049 | 0.054 7 9.7 0.001 3 6.3 56637 | 0.123 9 94
263169 | 0.0564 7 173 0.065 7 13.2 221065 | 0.206 12 20.7
1050625 | 0.057 7 38.1 0.044 6 31.8 881297 | 0.246 14 51.7
4198401 | 0.064 7 110.1 0.041 6 78.0 3519265 | 0.256 14 137.2
16785409 | 0.068 72953 0.036 6 233.9 14065217 | 0.258 14 391.6

Table 1: The convergence rate depends only weakly upon mesh width (struc-
tured grid on a 16x8 processor configuration, unstructured grid on 128 pro-
Cessors).

Fig. 1 shows that the solver is very robust with respect to the variation of
the anisotropy parameter. The convergence rate is bounded by 0.15 even for
128 processors and the solution time is nearly independent of this parameter;
this holds for low load up to full load examples.

Next we evaluate the quality of the parallelization. First we consider the
speedup where the same problem is solved on different numbers of processors.
Tab. 2 indicates an almost constant convergence rate and the solution time
decreases nearly proportional to the number of processors. Second we look at
the scaleup in Tab. 3. In practice the scaleup is often more important than
the speedup since large parallel computers are mainly used to solver larger

parameter dependency for AVGCONV (PE 16x8, cm3) parameter dependency for CLOCKLS (PE 16x8, cm3)

1000 |

100 |

overall solution time [sec]

1 1 letl le+2 le+3 levd le+5 lets
parameter parameter

Fig. 1: Robustness against anisotropy (128 processors, different loads), struc-
tured case.

4 Bastian et al.

structured unstructured
isotropic anisotropic 107° isotropic

PE | conv. nr. time conv. nr. time conv. nr. time
rate it. [sec] rate it. [sec] rate it. [sec]

8| 0.058 7 220.6 1077 2 140.7 0.237 13 235.8
16 | 0.067 7 135.8 0.053 7 123.2 0.194 12 179.6
32 | 0.062 7 814 0.046 6 70.7 0.241 13 97.6
64 | 0.059 7 583 0.043 6 43.7 0.240 13 784
128 | 0.067 7 38.1 0.044 6 31.8 0.246 14 51.7

Table 2: Speedup on different processor configurations (structured grid with

1 million unknowns, unstructured grid with 880000 unknowns).

structured unstructured
isotropic anisotropic 10~° isotropic

PE | conv. nr. time conv. nr. time conv. nr. time
rate it. [sec] rate it. [sec] rate it. [sec]
2| 0.064 7 162.0 10°° 2 94.2 0.187 11 167.6
81 0.068 7 220.6 1074 2 140.7 0.237 13 235.8
32| 0.067 7 263.2 0.041 6 229.9 0.257 14 311.1
128 | 0.068 7 295.3 0.036 6 233.9 0.258 14 391.6

Table 3: Parallel performance for scaled computations (constant load per PE:
structured case 131000 unknowns, unstructured case 110000 unknowns).

problems instead of reducing the computational time. Again the convergence
rate is (nearly) constant and the solution time increases only by a factor of
about 2 from 2 up to 128 processors. Only in highly anisotropic cases it is
not possible to hold the extremely good convergence rates for larger numbers
of processors.

We have seen very promising features of the new parallel FAMG. Com-
pared with the results presented in [6] we have realized substantial improve-
ments by a factor of 2 to 3 in the performance. Nevertheless, further model
problems (e. g. jumping coefficients and convection) should be examined to
explore the benefits and the limitations of the new method. At the end real
world problems should be solved.

The advantages of the IBM RS/6000 SP are its 2 GB nodes which enable
very large serial calculations for several comparisons and the large memory
on the many parallel nodes enables us to do various experiments with minor
memory limitations. Already in the phase of development a large amount of
computing time on many processors is required.

Multigrid Methods for PDEs and their Application 5

3 The efficient and reliable computation of eigenvalues
and eigenmodes

In UG, a general finite element library is included [26] which supports vari-
ous discretizations, and which is especially adapted to problems in nonlinear
solid mechanics [27]. Here, the applicability and flexibility of the finite el-
ement module is illustrated on the following model problem in eigenvalue
computations.
Let 2 C R%, d = 2,3 be a domain. We solve the eigenvalue problem:
Find (w;, \;) € H(2) x R such that

/Vwi-Vvdx:)\i/wivd:v, v e HY(N).
o) o)

This corresponds to the eigenvalue problem
—Aw; = \jw; in £2, w; -n =0 on 412

in the strong formulation; in particular, we impose Neumann boundary con-
ditions. Thus, we know a priori the first trivial eigenpair wg = 1 and A9 = 0.
Note that this results in a singular stiffness matrix (which, has severe conse-
quences for the solution process).

The eigenmode approximations are computed by a block inverse iteration
with a full Ritz-Galerkin orthogonalization in every step. Starting from initial
guesses W1, ..., Wy, we perform the following algorithm:

a) Ritz-Galerkin step: We form the small matrices

M:(fVu?,Vu?,dx), N=<hfu~1,~'u~)jda:>,
0]
and we solve the generalized eigenvalue problem
Mx; =)\iNaZ,', z; € R™;
then, we define approximations by

m

1 - .

w; = E Ti; W; 1=1,...,m.

JITN.CL'z ' ¥l VEI 3)
K3 J:1

b) Block inverse iteration step: We update the space of test functions by
solving

[V; - Vodz = \; [wvdz, ve HY (N),i=1,...m
2 2
and return to a).

For the solution of the linear problems, we use a fixed number of paral-
lel multiplicative multigrid cycles with Krylov acceleration and Gauf-Seidel

6 Bastian et al.

Fig.2: The 11th eigenmode wy; of lake Constance, Germany.

smoother, where we project in every step the solution onto the space which
is orthogonal to wyg.

As an example, we present the parallel results of the eigenmode computa-
tions on a domain representing the surface of lake Constance, Germany. The
shape of the eigenmode wy; is visualized in Fig. 2 (using GRAPE [22]), the
first 16 eigenvalues are listed in Tab. 5.

level 2 3 4 5
elements 101312 405248 1620992 6483968
unknowns 205745 816737 3254465 12992897
32 processors 21 min. 49 min.
[21 sec.] [50 sec.] [190 sec.]
64 processors 11 min. 28 min. 93 min.
[13 sec.] [26 sec.] [99 sec.]
128 processors 7 min. 15 min. 47 min.
[9sec.] [14 sec.] [44 sec.] [169.8 sec.]

Table 4: Parallel performance of the eigenvalue computation (average time
for the linear solver in every step) on IBM RS/6000 for P-elements. Due to
the cpu-time-limit, not sufficiently many steps of the block inverse iteration
could be performed on level 4 (32 proc.) and level 5 (128 proc.).

The parallel performance (see Tab. 4) underlines the efficiency of the
method, which is asymptotically of optimal complexity and optimal parallel
scalability (due to the large coarse grid problem with 6332 elements we do not
obtain optimal multigrid efficiency in the first refinement step). Since we use a
second order discretization and millions of unknowns, the results are reliable
due to the monotone asymptotic convergence; by simple extrapolation, we
expect an accuracy of at least 0.1%.

Nevertheless, fully reliable results can be obtained only by the com-
putation of rigorous eigenvalue inclusions; this is realized—using interval

Multigrid Methods for PDEs and their Application 7

discretization P P P Py
elements 1620992 101312 405248 1620992
unknowns 816737 205745 816737 3254465
Ao 0.00000e-00 0.00000e-00 0.00000e-00 0.00000e-00
A 8.88113e-04 8.88274e-04 8.89473e-04 8.88088e-04
Ao 2.46599e-03 2.46597e-03 2.46582¢-03 2.46576e-03
A3 4.77479¢-03 4.77490e-03 4.77461e-03 4.77447e-03
v 8.60307e-03 8.60324¢-03 8.60273e-03 8.60253e-03
As 1.27349e-02 1.27350e-02 1.27344e-02 1.27342¢-02
s 1.69387e-02 1.67759¢e-02 1.67748e-02 1.67744e-02
A7 1.95241e-02 1.95241e-02 1.95234e-02 1.95230e-02
A 2.49470e-02 2.49471e-02 2.49464e-02 2.49462e-02
Ao 3.01706e-02 3.01705e-02 3.01696e-02 3.01692¢-02
Ao 3.23264¢-02 3.23267¢-02 3.23240e-02 3.23240e-02
A1 3.86922¢-02 3.87021e-02 3.86901e-02 3.86892e-02
A2 4.09167e-02 4.09226e-02 4.09123e-02 4.09111e-02
A3 4.59070e-02 4.60913e-02 4.59268e-02 4.58889¢-02
A4 4.89770e-02 4.98155e-02 4.91613e-02 4.90074e-02
A5 5.14639e-02 5.19207e-02 5.15270e-02 5.14699¢-02
A6 6.09801e-02 6.90931e-02 6.80042¢-02 6.70623e-02

Table 5: Comparison of the numerical solution with different discretizations
and different mesh sizes of the 16 smallest eigenvalues of the Bodensee.

arithmetic—on IBM RS/6000, and first results (on simpler geometries) are
already documented in [9].

4 Two-Phase Flow

This section evaluates the speedup, which can be achieved when a fixed size
problem has to be computed fast for productivity reasons. Fast computation
of a given problem is for example advantageous, if parameter studies are
necessary for optimization.

Two phase flow problems with phases consisting of liquids with different
viscosity form fronts which tend to be instable [1]. These instabilities can be
observed in real live or physical experiments as fingers. The fingering results
from a statistical behaviour, where interactions between the two phases on
a very small scale influence the structure of the viscous front on a visible
level [2].

As a test scenario we choose a two-phase flow problem, where water dis-
places oil in a cubic channel (see figure 3). Interesting are different fingering
patterns evolving from different viscoscity parameters of the two phases. For
details about the numerical schemes of discretization and solution see [7].
Since the resolution of the highly nonlinear effects at the front must be very

8 Bastian et al.

Fig. 3: Adaptively refined multigrid with hexa/tetrahedra and pyramids; 16 x
16 stripped load balancing in flow direction; Vertical cutted domain with
isolines of concentration.

high, the combination of parallelism and adaptivity tends to be an optimal
approach. As load balancer a simple Recursive Orthogonal Bisection Method
is applied to distribute the coarse grid levels in flow direction. Thus impor-
tant coupling information of the problem is kept local to the processors to
avoid degradation of the solver’s convergence rate. No load balancing needs
to be done during computation, since the load remains equally distributed
between the processors when the front moves.

PROCS 1 2 4 8 16 32 64 128 256
NLSOLVE [s]| 233921 145842 72575 37962 17597 9091 4599 2423 1354
SNLSOLVE 1 1.60 3.22 6.16 13.3 25.7 50.9 96.6 173
ADAPT [s] 3413 2426 1541 1238 691 502 347 314 271
SapapT 1 1.41 221 2.76 4.94 6.80 9.84 10.9 12.6
TOTAL [s] 237394 148268 74116 39200 18288 9593 4946 2737 1625
Srorar 1 1.6 3.20 6.06 13.0 24.7 480 86.7 146

Table 6: Fixed speedup for two-phase flow: NLSOLVE (nonlinear solution
in seconds), Snrsorve (speedup for this phase), ADAPT (grid adaption in
seconds), Sapapr (speedup for this phase), TOTAL (overall time in seconds),
Storar (overall speedup).

Tab. 4 shows the speedup of the displacement example for the first 34
timesteps. The minimal amount of serial main memory needed is about 2
GB to allow the front to finger after about 100 timesteps. This corresponds
to about 1 million unknowns which have to treated in each timestep. Results
for one to eight processors are computed on a IBM SP-256, from 8 to 256
processors on a Cray T3E. Timings are scaled by a constant factor, which is
gained from the comparison of the 8 processor run on both machines.

The nonlinear solution process scales good, giving a speedup of 173 for
256 processors. Speedup losses have two reasons: The first is the introduction
of communication in the linear solver, when going from one to two proces-
sors; speedup loss is 20%. Second the convergence rates become worse with

Multigrid Methods for PDEs and their Application 9

increasing processor count. The cycle time of one linear iteration step scales
good, which shows a stable scaling of the machine itself.

Grid adaption shows a scaling which is not comparable to that of the
nonlinear solution. A speedup factor of 12.6 could be achieved in the 256
processor configuration. Analysis of the losses has shown that the grid man-
ager itself has a better speedup behaviour, but the underlying programming
model DDD has high constant algorithmic costs for several modules. This
means that the algorithmic costs, which behave linearly with the number of
refined or coarsened elements, are dominated by the fixed constant costs as
processor count increases. Thus the fundamental approach of the grid man-
ager is valid and has no principal weakness, but the efficiency should be
improved by reimplementation of some lower DDD layers. This can be done
without changing the grid adaption process itself. E.g., the rebuilding of the
interfaces for communication is one bottleneck during adaption, which can
be speeded up by reimplementation of the DDD interface module.

Fixed speedup of this experiment behaves well up to 64 processor, only
in the 128 and 256 processor case grid adaption has a significant impact on
the efficiency. The total efficiency of the 256 processor run is 0.57 (speedup
146), which can be reguarded as a quite satisfying overall result for a fixed
sized problem with adaptive mesh refinement.

5 Density—Driven Flow in Porous Media

The density driven flow in porous media can be described by
two coupled non-linear time-dependent partial differential equations,
see [8,16,19]. In the case of strong
coupling, i.e. if the transported
solute affects the flow field, the
fully coupled equations have to be
solved. These situations arise fre-
quently in practice and are of sig-
nificant importance. To mention
are the problem of coastal saltwater
intrusion, the groundwater flow in
the vicinity of salt domes, upcon-
ing of saltwater in a stable system
of saltwater and freshwater layers.

We discretize and solve the
equations using the program pack-
age d®f [10], a simulator based on
UG. The equations are discretized
by means of mass conserving finite
volumes using a consistent veloc-
ity approximation [11]. The semi-
discrete equations are solved by a

Fig. 4: Iso-surfaces for the saltpool, case
2 (graphics by GRAPE [22]).

10 Bastian et al.

diagonally implicit Runge-Kutta method [14,18]. The discretization is second
order consistent both in space and time. The solution of the discrete system is
done by a fully coupled/fully implicit solving strategy. After linearization the
linear subproblems are solved by a multigrid V-cyle iteration using a mod-
ified Vanca-type SSOR smoother [17]. We report on numerical results for
the benchmark problem saltpool, case 2 defined in [18]. It is a mathematical
model for an upconing experiment described in [20]. Starting with a stable
system of a saltwater below a freshwater layer, freshwater charges at one of
the upper corners of the cube and water discharges at the diagonally oppo-
site upper corner. The upconing effect can easily be seen in Fig. 4, showing
three iso-surfaces of the solute concentration (¢ = 0.1, 0.5, 0.9) at the end
of the simulation (¢ = 9495s). To obtain an accurate numerical result a fine
grid spacing had to be used (2097152 hexahedral elements). Due to memory
requirements as well as due to computational time the simulation had to be
carried out on a parallel computer (Cray T3E).

6 Navier-Stokes Equations and Turbulence Modelling

The Navier-Stokes library in UG uses a Control Volume Finite Element
method with colocated variables. Since a colocated scheme is not stable,
a special stabilization scheme is applied which introduces a physical advec-
tion correction scheme to couple the momentum equation and the pressure
equation. This results in a Laplacian term for the pressure in the continuity
equation scaled with the mesh size squared and therefore tends to zero as
the grid is refined. This physical advection correction scheme called FIELDS
was developed by Raw [23]. The idea is to solve in each element a Finite
Difference approximation of the linearized momentum equation at all inte-
gration points. The resulting integration point velocities depend on all corner
values of velocity and pressure. After insertion in the continuity equation a
pressure dependence and full coupling of all equations is gained. This can be
done independently on all elements and is therefore very advantageous for
parallelization.

A special problem class in the Navier-Stokes community is turbulence
modelling. A very promising way to simulate turbulent flow characteristics
is the so-called Large Eddy Simulation (LES). In contrast to Reynolds av-
eraged turbulence models (RANS), it is not based on time averages but on
local volume averages. This means that large structures have to be resolved
and only the small ones are modelled. RANS methods model all structures
and therefore a suitable turbulence model is not easy to design. LES models
use the fact that small structures are nearly isotropic and more universal
than large structures and hence the modelling becomes simpler. Nevertheless
a high spatial resolution is neccessary, requiring the usage of a High Perfor-
mance Computer.

The averaged equations for LES are derived by applying filter operators
(for example a volume-average box filter) to the governing equations. For the

Multigrid Methods for PDEs and their Application 11

momentum equation this results in:
0u; o ,__ __ Op 0 (<8u_,~ ouj 0
v +)) +

ot T ow; W g 5 oy, Tan)) tas

where an overbar denotes an average value. The subgrid scale stress tensor 7;;
is modelled by the dynamic model of Germano [12]. This model, in contrast
to the Smagorinsky model [24], for which a constant and universal model pa-
rameter is assumed, is truly local and hence it is able to reflect approximately
local flow phenomena. Finally the model has the form:

Tij = 07

1 —
Tij — g(sikak = —20A2|S|Sz’j

with

n

5i=3(g * g)» SI=V2 S

An interesting problem is the flow around an infinitely long square cylin-
der as described in the workshop of Rodi et al. [21]. The infinite dimension
in axis direction can be numerically realized using periodic boundary condi-
tions since the flow structures in that direction can be assumed to be almost
periodic. A sketch of the domain is given in Fig. 5. For implementing peri-
odic boundary conditions in UG each element at the periodic boundary and
its partner at the opposite side have to be assigned to the same processor.
For this reason the load balancing strategy RCB of CHACO [15] has been
modified to handle periodicity. An example for 8 processors can be seen in
Fig. 5.

symmetry boundary

y

L

symmetry boundary

inflow
outflow

Fig. 5: Sketch of the domain and load balance on 8 processors.

The Reynolds number for this problem is 1000. The grid is built of 800000
hexahedrons which correspond to 3 million unknowns. The nonlinear system

12 Bastian et al.

is linearized by a Quasi-Newton method and the resulting linear system is
solved by the Kryloc subspace method BiCGSTAB with multigrid as precon-
ditioner. As smoother the incomplete LU factorization with § modification is
employed and the time solver is a diagonally implicit Runge-Kutta-method of
second order. In Fig. 6 the solution of the velocity component in x-direction
on a line through the midpoint of the cylinder in mean flow direction is shown
at 6 successive points of time illustrating the complex behaviour of the flow.

Fig. 6: u-component of the velocity vector.

7 Conclusions

With the program package UG we follow the strategy of combining advanced
numerical methods with the advantages of high-performance computers like
the IBM RS/6000 SP and the Cray T3E. It has been shown that on the base
of the portable code for massively parallel computers both the development
of new, highly efficient numerical algorithms and the solution of complex
problems is feasible.

On the one hand we have reported on the development of algorithmic
aspects, i.e. further advances in parallel algebraic multigrid methods. It has
been shown that an efficient multigrid algorithm on a purely algebraic base for
elliptic and singular perturbed problems can be implemented on (massively)
parallel computers without loss of its performance properties (section 2). On
the other hand several applications have been presented. They range from the
calculation of eigen-values on unstructured grids to turbulence modelling.
Due to memory requirements and/or due to the expense of computational
time the applications presented here took great benfits from the usage of
High-Performance Computers.

Multigrid Methods for PDEs and their Application 13

References

N =

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

K. Aziz and A. Settari. Petroleum Reservoir Simulation. Elsevier, 1979.

E. O. Frind B. H. Kueper. An overview of immiscible fingering in porous media.
J. of Contaminant Hydrology, 2:95-110, 1988.

R. E. Bank and C. Wagner. Multilevel ILU decomposition. Numerische Mathe-
matik, 82:543-576, 1999.

P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert,
and C. Wieners. UG - a flexible software toolbox for solving partial differential
equations. Computing and Visualization in Science, 1:27-40, 1997.

P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners,
G. Wittum, and C. Wrobel. A parallel software-platform for solving problems
of partial differential equations using unstructured grids and adaptive multigrid
methods. In E. Krause and W. Jéger, editors, High performance computing in
science and engineering, pages 326-339. Springer, 1999.

P. Bastian, K. Birken, K. Johannsen, S. Lang, V. Reichenberger, C. Wieners,
G. Wittum, and C. Wrobel. Parallel solutions of partial differential equations
with adaptive multigrid methods on unstructured grids. In High performance
computing in science and engineering II, 1999. submitted.

P. Bastian and R. Helmig. Efficient fully-coupled solution techniques for two-
phase flow in porous media. Advances in Water Resources Research, 23:199—
216, 1999.

J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in
Porous Media. Kluwer Academic Publishers, 1991.

H. Behnke, U. Mertins, M. Plum, and C. Wieners. Eigenvalue inclusions via
domain decomposition. 1999. submitted.

E. Fein(ed). d3f - Ein Programmpaket zur Modellierung von Dichtestrémungen.
GRS, Braunschweig, GRS - 139, ISBN 3 - 923875 - 97 - 5, 1998.

P. Frolkovic. Consistent velocity approximation for density driven flow and
transport. Technical report, Advanced Computational Methods in Engineering,
Ghent 1998, to be published.

M. Germano. Turbulence: the filtering approach. Journal of Fluid Mechanics,
238:325-336, 1992.

R. K. Gjertsen Jr., M. T. Jones, and P. E. Plassmann. Parallel heuristics
for improved, balanced graph colorings. Journal of Parallel and Distributed
Computing, to appear.

E. Hairer and G. Wanner. Solving ordinary differential equations II. Springer-
Verlag, Berlin, 1991.

B. Hendrickson and R. Leland. The chaco user’s guide version 1.0. Technical
Report SAND 93-2339, Sandia National Laboratory, 1993.

Ekkehard O. Holzbecher. Modeling Density-Driven Flow in Porous Media.
Springer-Verlag, Berlin, Heidelberg, 1998.

K. Johannsen. Modified SSOR - a smoother for non M-matrices. in preparation.
K. Johannsen, W. Kinzelbach, S. Oswald, and G. Wittum. Numerical simula-
tion of density driven flow in porous media. in preparation.

A. Leijnse. Three-dimensional modeling of coupled flow and transport in porous
media. PhD thesis, University of Notre Dame, Indiana, 1992.

S. E. Oswald, M. Scheidegger, and W. Kinzelbach. A three-dimensional physical
benchmark test for verification of variable-density driven flow in time. Water
resources research, to be published.

14

21

22.

23.

24.

25.

26.

27.

Bastian et al.

W. Rodi, J. H. Ferziger, M. Breuer, and M. Pourquié. Status of large eddy
simulation: Results of a workshop. Journal of Fluids Engineering, 119:248—
262, 1997.

M. Rumpf and A. Wierse. Grape, eine objektorientierte Visualisierungs- und
Numerikplattform. Informatik Forschung und Entwicklung, 7:145-151, 1992.
G. E. Schneider and M. J. Raw. Control volume finite-element method for heat
transfer and fluid flow using colocated variables. Numerical Heat Transfer,
11:363-390, 1987.

J. Smagorinsky. General circulation experiments with the primitive equations
i. the basic experiment. Monthly Weather Review, 91:99-164, 1963.

Christian Wagner. On the algebraic construction of multilevel transfer opera-
tors. Computing, 2000, to appear.

C. Wieners. The implementation of adaptive multigrid methods for finite ele-
ments. Technical report, Universitit Stuttgart, SFB 404 Preprint 97/12, 1997.
C. Wieners. Multigrid methods for Prandtl-Reuf-plasticity. Numer. Lin. Alg.
Appl., 6:457-478, 1999.

