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SUMMARY

We introduce and analyze a projection of the discontinuous Galerkin (DG) velocity approximations
that preserve the local mass conservation property. The projected velocities have the additional
property of continuous normal component. Both theoretical and numerical convergence rates are
obtained which show that the accuracy of the DG velocity field is maintained. Superconvergence
properties of the DG methods are shown. Finally, numerical simulations of complicated flow and
transport problem illustrate the benefits of the projection. Copyright c© 2000 John Wiley & Sons,
Ltd.
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1. Introduction

The objective of this paper is to study the effects of the discontinuities in the fluxes
of the discontinuous Galerkin approximations of elliptic problems. Due to their flexibility,
discontinuous Galerkin (DG) methods have been popular among the finite element community
and they have been applied to a wide range of computational fluid problems. Since the first
DG method introduced in [16] the methods have been developed for hyperbolic problems, see
[7] for an overview, and for elliptic problems in [21, 15, 8, 17, 18, 11]. A unified analysis for
many DG methods has been given recently in [4].

Advantages of DG methods are their higher order convergence property, local conservation
of mass and flexibility with respect to meshing and hp-adaptive refinement. Their uniform
applicability to hyperbolic, elliptic and parabolic problems as well as their robustness with
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2 P. BASTIAN B. RIVIÈRE

respect to strongly discontinuous coefficients renders them very attractive for porous medium
flow and transport calculations [20, 2]. One disadvantage is, however, that the normal
component of the velocity field is not continuous at inter-element boundaries. This leads to
non-physical oscillations if a DG flow calculation is coupled to a DG transport calculation in a
straightforward way. Moreover, the sign of the normal fluxes may be different from both sides
of an edge (or face in 3D) which makes it impossible to do particle tracking or to employ the
flow field in connection with characteristic type methods.

In this paper we present a simple and cheap postprocessing technique for the DG velocity
field that results in continuous normal component at inter-element boundaries. In principle any
finite element space contained in H(div) can be used for this postprocessing. We have chosen
the BDM finite element spaces introduced in [5] because they nicely match in dimension with
the space of velocities generated by the DG method. It is shown that the postprocessed velocity
field has the following properties:

1. The new velocity field identically reproduces the averaged normal flux of the DG velocity
field. This is important because averaged normal fluxes in the DG method are locally
conservative.

2. The new velocity field has continuous normal component at inter-element boundaries.
3. It has the same accuracy and order of convergence as the original DG velocity field.

The normal flux at inter-element boundaries plays an important role in the construction
of the projected velocity field. As a side effect we show numerically that those fluxes and the
jumps of pressure in the DG method are superconvergent by one order if the problem possesses
enough regularity.

The paper is organized as follows. In Section 2 we state the continuous problem, its DG
discretization and introduce the necessary notation. Section 3 describes the construction of
the locally conservative velocity projection scheme and the next section presents several error
estimates. Section 5 contains the numerical results and some conclusions are given in the last
Section.

2. Model Problem and Scheme

Let Ω be a polygonal domain in IRn, n = 2, 3. Let the boundary of the domain ∂Ω be the union
of two disjoint sets ΓD and ΓN . For f ∈ L2(Ω), p0 ∈ H1/2(ΓD) and g ∈ L2(ΓN ), we consider
the following elliptic problem:

∇ · u = f, in Ω, (1)

u = −K∇p, in Ω, (2)

p = p0, on ΓD, (3)

u · n = g, on ΓN . (4)

Here, K is a symmetric positive definite matrix and n is the outward normal vector to ∂Ω.

In groundwater applications, the problem (1)-(4) characterizes the single phase flow in a
porous medium with p the fluid pressure, u the Darcy velocity and K the permeability field.
It is essential to develop numerical schemes that yield very accurate approximations of the
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SUPERCONVERGENCE AND H(DIV) PROJECTION FOR DG 3

velocity. The velocity obtained in (1)-(4) contributes to the advection of the solute transport
problem described below:

ψ
∂S

∂t
+ ∇ · (Su −D∇S) = R(S), in Ω, (5)

(Su −D∇S) · n = Sinu · n, on Γ+, (6)

D∇S · n = 0, on Γ−, (7)

where S is the saturation of the species advected, ψ the porosity of the porous medium, D the
molecular diffusion-dispersion coefficient, R(S) a general reaction-source term and Γ+ (resp.
Γ−) the inflow (resp. outflow) boundary.

Γ+ = {x ∈ ∂Ω : u · n > 0}, Γ− = ∂Ω \ Γ+.

Let Eh = {E}E be a non-degenerate quasi-uniform subdivision of Ω, where E is a triangle
or a quadrilateral if n = 2, or a tetrahedron or hexaedron if n = 3. Let h denote the maximum
diameter of the elements in Eh. The set of all interior and Dirichlet edges (or faces) is denoted
by Γh. With each edge (or face) e, we associate a unit normal vector ne. For a boundary edge
e, ne is taken to be the unit outward normal vector. For real m ≥ 0 define,

Hm(Eh) = {w ∈ L2(Ω) : w|E ∈ Hm(E) ∀E ∈ Eh}

The usual Sobolev norm of Hm on E ⊂ IRn is denoted by ‖ · ‖m,E. The reader can refer to
Adams [1] and to Lions and Magenes [13] for the properties of Sobolev spaces. We define the
following broken norms for positive integer m and for w ∈ Hm(Eh):

|||w|||m =

(

∑

E∈Eh

‖w‖2
m,E

)
1

2

.

We now define the average and the jump for w ∈ Hm(Eh), m > 1
2 . We assume that ne is

exterior to E1
e .

{w} = 1
2 (w|E1

e
) + 1

2 (w|E2
e
), [w] = (w|E1

e
) − (w|E2

e
), ∀e = ∂E1

e ∩ ∂E2
e ,

{w} = w|E1
e
, [w] = w|E1

e
, ∀e = ∂E1

e ∩ ∂Ω.

The finite element subspaces consist of discontinuous piecewise polynomials:

Dk = {w : w|E ∈ IP k(E) ∀E ∈ Eh},

where IP k(E) is a discrete space containing the set of polynomials of total degree less than or
equal to k on E. We now present the discontinuous Galerkin scheme for solving the elliptic
problem (1)-(4): find PDG ∈ Dk such that

∑

E

∫

E

K∇PDG·∇w −
∑

e∈Γh

∫

e

{K∇PDG · ne}[w] +
∑

e∈Γh

∫

e

{K∇w · ne}[P
DG]

=

∫

Ω

fw +
∑

e∈ΓD

∫

e

K∇w · nep0 −
∑

e∈ΓN

∫

e

gw, ∀w ∈ Dk.

(8)

Let U
DG denote the DG velocity obtained as follows:

U
DG = −K∇PDG. (9)
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4 P. BASTIAN B. RIVIÈRE

We easily see that the DG velocity satisfies the conservation of mass locally on each element
E with nE the outward normal to ∂E:

∫

∂E

{UDG · nE} =

∫

E

f, ∀E ∈ Eh.

This property of the DG approximations is an appealing feature. However, the pointwise
discontinuity in the normal component of the DG velocity produces an additional numerical
error that can be significant in applications where transport is coupled to non-uniform flow.
We address this problem by defining a H(div) projection of the DG velocity, described below.

3. A locally conservative projection

In this section, we present a local projection on each element of the subdivision, from the
space of totally discontinuous velocities to the space of velocities that have continuous normal
components. The resulting velocity lies in the velocity subspace of the BDM spaces [5]
introduced by Brezzi, Douglas and Marini. The construction of the projection is as follows: fix
an element E with edges ei, i = 1, 2, 3 and let U

∗ ∈ (IP k−1(E))2 be such that
∫

ei

(U ∗ · nei
)z =

∫

ei

({UDG} · nei
)z, ∀z ∈ IP k−1(ei), i = 1, 2, 3, (10)

∫

E

U
∗ · ∇w =

∫

E

U
DG · ∇w, ∀w ∈ IP k−2(E), (11)

∫

E

U
∗ · S(φ) =

∫

E

U
DG

S(φ), ∀φ ∈ Mk(E). (12)

Here, S(φ) = ( ∂φ
∂x2

,− ∂φ
∂x1

) and the space Mk(E) is the finite dimensional space of polynomials
vanishing on the boundary of E.

Mk(E) = {φ ∈ IP k(E) : φ|∂E = 0}.

One interesting characteristic of our construction is that the H(div) projection defined in [5]
is applied to the average of the DG fluxes.

Lemma 3.1. The conditions (10), (11) and (12) uniquely define U
∗.

Proof: Since the system defining U ∗ is of finite dimension, it suffices to show uniqueness of
U∗. It is equivalent to prove that if v ∈ (IP k−1(E))2 satisfies

∫

ei

(v · nei
)z = 0, ∀z ∈ IP k−1(ei), i = 1, 2, 3, (13)

∫

E

v · ∇w = 0, ∀w ∈ IP k−2(E), (14)

∫

E

v · S(φ) = 0, ∀φ ∈Mk(E). (15)

then, v vanishes. Clearly, the first conditions imply that v · nei
= 0 for i = 1, 2, 3. In the case

where k = 2, this immediately implies that v = 0. We also have
∫

E

∇ · v∇ · v = −

∫

E

v · ∇(∇ · v) +

∫

∂E

v · nE∇ · v.
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Since ∇ · v ∈ IP k−2(E), the condition (14) yields
∫

E

∇ · v∇ · v = 0,

thus ∇ · v = 0. Therefore, there is a function φ ∈ IP k(E) such that v = S(φ). An easy
computation gives ∇φ · t = v · n = 0, with t the unit tangential vector along ∂E. Thus, we
can take φ in Mk(E) and we have by (15)

‖v‖2
0,E =

∫

E

v · S(φ) = 0.

Thus, v = 0, which concludes the proof.
We note that the new velocity U ∗ has both advantages of a continuous normal component

and a local mass conservation:
∫

∂E

U∗ · nE =

∫

E

f, ∀E ∈ Eh.

4. Error estimates

It is well known [18] that if the solution p of (1)-(4) belongs to Hs(Eh), for s ≥ 2, then there
is a constant C independent of h and k such that

|||UDG − u|||0 ≤ C
hmin(k+1,s)−1

ks− 5

2

|||p|||s. (16)

In this section, our main result shows that the convergence rate for the error in the projected
velocities is optimal with respect to the mesh size. We first recall a trace theorem [3], an inverse
estimate and the DG interpolant [18] needed for proving the estimates.

Lemma 4.1. Let E be an element of Eh.

‖∇ξ · ne‖
2
0,e ≤ C(h−1‖∇ξ‖2

0,E + h‖∇2ξ‖2
0,E), ∀e ⊂ ∂E, ∀ξ ∈ H2(E), (17)

‖∇ξ · ne‖
2
0,e ≤ Ck2h−1‖∇ξ‖2

0,E, ∀e ⊂ ∂E, ∀ξ ∈ IP k(E). (18)

Lemma 4.2. Let p ∈ Hs(Eh) with s ≥ 2 be the solution of (1)-(4). Let k ≥ 2. There is an
interpolant P I ∈ Dk of p such that:

|||∇i(p− P I)|||0 ≤ C
hmin(k+1,s)−i

ks−3/2−δ
|||p|||s, i = 0, 1, 2, (19)

where δ = 0 if i = 0, 1 and δ = 0.5 if i = 2, and C is a constant independent of h and k.
Besides, we have

|||∇(PDG − P I)|||0 ≤ C
hmin(k+1,s)−1

ks− 5

2

|||p|||s. (20)

We analyze the error in the normal components of the DG velocities.

Lemma 4.3. Let (p,u) be solution of (1)-(4) such that p ∈ Hs(Eh) for s ≥ 2. Let UDG be
defined by (9). Then, we have for any element E of Eh

‖({UDG} − u) · ne‖0,e ≤ C
hmin(k+1,s)−3/2

ks− 7

2

|||p|||s, ∀e ⊂ ∂E.
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Proof: Let U I = −K∇P I with P I defined in Lemma 4.2. Then, we have

‖{UDG} − u‖0,e ≤ ‖({UDG} − {U I}) · ne‖0,e + ‖({U I} − u) · ne‖0,e.

By the inverse estimate (18) and the bound (20), we obtain

‖({UDG} − {U I}) · ne‖0,e ≤ Ckh−1/2‖K∇(PDG − P I)‖S(e)

≤ C
hmin(k+1,s)−3/2

ks− 7

2

|||p|||s.

Here, S(e) denotes the set of elements of Eh that share the edge e. By the trace theorem (17)
and the approximation result (19):

‖({U I} − u) · ne‖0,e ≤ C(h−1/2‖∇(P I − p)‖0,S(e) + h1/2‖∇2(P I − p)‖0,S(e))

≤ C
hmin(k+1,s)−3/2

ks−2
|||p|||s.

The final result is obtained by combining the two bounds.
Remark: By construction of U ∗, Lemma 4.3 immediately implies

‖(U∗ − u) · ne‖0,e ≤ C
hmin(k+1,s)−3/2

ks− 7

2

|||p|||s, ∀e ⊂ ∂E.

Lemma 4.4. Let p be the solution of (1)-(4) such that p ∈ Hs(Eh) for s ≥ 2. Let (PDG,UDG)
be defined by (8) and (9). Then, we have for each element E ∈ Eh

‖[PDG]‖0,e + ‖[UDG] · ne‖0,e ≤ C
hmin(k+1,s)−3/2

ks− 7

2

|||p|||s, ∀e ∈ ∂E.

Proof: We note that

‖[PDG]‖0,e = ‖[PDG − p]‖0,e, ‖[UDG] · ne‖0,e = ‖[UDG − u] · ne‖0,e,

and we apply similar techniques as in Lemma 4.3.

Theorem 4.5. For any element E of the subdivision Eh, there is a constant C independent
of h such that

‖U∗ − UDG‖0,E ≤ Chmin(k+1,s)−1|||p|||s,

Proof: Let us fix an element E of Eh and let us denote by n(ei;E) the element of Eh that
is a neighbor of E via the edge ei ⊂ ∂E. Let us define χ = U ∗ − UDG. Then, from (10)-(12),
χ satisfies:

∫

ei

(χ · nei
)z = −

1

2

∫

ei

(UDG|E − UDG|n(ei;E)) · nei
, ∀z ∈ IP k−1(ei), i = 1, 2, 3,

∫

E

χ · ∇w = 0, ∀w ∈ IP k−2(E),

∫

E

χ · S(φ) = 0, ∀φ ∈Mk(E).
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The first equation clearly implies that χ|∂E = − 1
2 (UDG|E − UDG|n(ei;E))|∂E . Passing to the

reference element Ê, we have ‖χ‖0,E ≤ Ch‖χ̂‖0,Ê. We now show that ‖ · ‖0,∂Ê is a norm for
the discrete space

{v ∈ (IP k−1(Ê))2 :

∫

Ê

v · ∇w = 0 ∀w ∈ IP k−2(Ê),

∫

Ê

v · S(φ) = 0 ∀φ ∈Mk(Ê)}.

It suffices to show that if v vanishes on ∂Ê, then v vanishes on Ê. This follows from the proof
of the uniqueness of the H(div) projection of Lemma 3.1. Thus, we have

‖χ‖0,E ≤ Ch‖χ̂‖0,∂Ê ≤ Ch1/2‖χ‖0,∂E ≤ Ch1/2‖[UDG]‖0,∂E .

The final result is then obtained from Lemma 4.4.

5. Numerical Experiments

5.1. Convergence studies

Smooth problem: In the first example we solve −∆p = f , p = p0 on ∂Ω, in the unit square Ω =

(0, 1)2 where f and p0 are chosen such that the exact solution p(x, y) = e−((x−1/2)2+(y−1/2)2)

is obtained. Table I lists the L2-norm of the error in the DG velocity, in the new projected
velocity and the difference of DG and projected velocity for k = 2 and k = 3. The experiments
are run on quadrilateral and triangular meshes. As can be seen, all three differences converge
with the same optimal rate k predicted by our theoretical results. Table II shows that fluxes and
jumps of pressure at interior edges in the DG solution are superconvergent. The unstructured
mesh is generated by a triangular mesh generator with h ≈ 1/4. Finer meshes are obtained by
regular refinement.

We note that the fluxes are superconvergent of order O(hk+1/2) instead of O(hk−1/2)
as expected and the jumps of pressure are superconvergent of order O(hk+3/2) instead of
O(hk+1/2). The latter is a very interesting result since it is known that numerically the error
in the L2 norm for the DG pressure is not optimal for even order polynomials. The best
theoretical result so far is a rate of O(hk−1/2). Here, superconvergence results are obtained for
both odd and even polynomials.

Reentrant corner problem: In order to illustrate the dependence of the convergence on the
regularity of the problem we solve −∆p = 0, p = p0 on ∂Ω in a domain with a reentrant
corner, in this case 7/8th of a circle. Dirichlet boundary conditions are taken from the exact

solution p(r, φ) = r
4

7 sin( 4
7θ) in polar coordinates. The solution is in Hs(Ω) with s = 1 + 4/7.

The theoretical convergence rate is now s − 1 = 4/7 ≈ 0.5714 for the L2 norm of the error
in the velocities. This result is confirmed in Table III and as expected, the convergence rate
is independent of the polynomial degree. The convergence rate of fluxes at interior edges is
s−3/2 = 1/14 and the convergence rate of pressure jumps at interior edges is s−1/2 = 1+1/14
as is fully confirmed in Table IV.

We also observe that the quantity UDG − U∗ can be used as an error indicator: it is easily
obtained, computationally cheap and it does not require the knowledge of the exact solution.
In the case of non-smooth solution, the convergence rate of the L2 norm of UDG −U∗ is also
a good indicator of the regularity of the solution.
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Table I. Full regularity model problem.

h
−1 ‖UDG − u‖0 rate ‖U ∗ − u‖0 rate ‖UDG − U∗‖0 rate

equidistant triangular mesh, k = 2

8 2.92 · 10−3 4.84 · 10−3 4.61 · 10−3

16 7.30 · 10−4 2.00 1.22 · 10−3 1.99 1.16 · 10−3 1.99
32 1.82 · 10−4 2.01 3.05 · 10−4 2.00 2.90 · 10−4 2.00
64 4.55 · 10−5 2.00 7.62 · 10−5 2.00 7.26 · 10−5 1.99

128 1.14 · 10−5 2.00 1.91 · 10−5 2.00 1.82 · 10−5 2.00
256 2.84 · 10−6 2.01 4.76 · 10−6 2.00 4.54 · 10−6 2.00

equidistant quadrilateral mesh, k = 2

8 5.52 · 10−3 5.53 · 10−3 2.01 · 10−3

16 1.41 · 10−3 1.97 1.37 · 10−3 2.01 4.07 · 10−4 2.30
32 3.54 · 10−4 1.99 3.43 · 10−4 2.00 9.47 · 10−5 2.10
64 8.85 · 10−5 2.00 8.55 · 10−5 2.00 2.32 · 10−5 2.03

128 2.21 · 10−5 2.00 2.14 · 10−5 2.00 5.76 · 10−6 2.00
256 5.53 · 10−6 2.00 5.34 · 10−6 2.00 1.44 · 10−6 2.00
512 1.38 · 10−6 2.00 1.33 · 10−6 2.01 3.60 · 10−7 2.00

equidistant triangular mesh, k = 3

8 1.04 · 10−4 1.48 · 10−4 1.52 · 10−4

16 1.29 · 10−5 3.01 1.85 · 10−5 3.00 1.92 · 10−5 2.98
32 1.60 · 10−6 3.01 2.31 · 10−6 3.00 2.41 · 10−6 2.99
64 2.00 · 10−7 3.00 2.88 · 10−7 3.00 3.02 · 10−7 3.00

128 2.50 · 10−8 3.00 3.60 · 10−8 3.00 3.78 · 10−8 3.00
256 3.12 · 10−9 3.00 4.50 · 10−9 3.00 4.73 · 10−9 3.00

5.2. Flow: Heterogeneous case

This example is taken from [9] and illustrates the case of highly discontinuous coefficients. We
solve (1)-(4) in the unit square with p = 1 for x = 0, p = 0 for x = 1 and no flow boundary
conditions for y = 0 and y = 1. The permeability field is defined on a 20 × 20 mesh and is
shown in Fig. 1 on the left. In dark areas the permeability is K = 10−6 · I , elsewhere it is
K = I .

The unit square is discretized with 20×20×2 triangular elements such that the permeability
field is resolved with coarse grid elements. Finer grids are obtained through regular refinement.
The right plot in Fig. 1 shows the flow field computed with degree k = 3 on the coarsest mesh.

Table V shows the convergence rates of the L2 norm of UDG −U∗ for k = 2 and k = 3. The
rates suggest that the unknown exact solution belongs to Hs(Eh) with s ≈ 1.7.

5.3. Transport: Heterogeneous case

This example illustrates the advantage of the projected velocity proposed in this paper in
connection with transport simulations using a DG space discretization. Eqs. (5)–(7) are solved

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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Table II. Full regularity model problem. Superconvergence of fluxes and jumps in pressure.

h
−1 supe ‖({UDG} − u) · ne‖0,e supe ‖[PDG]‖0,e

k = 2 rate k = 3 rate k = 2 rate k = 3 rate

equidistant triangular mesh

8 9.98 · 10−04 2.67 · 10−05 8.65 · 10−05 1.58 · 10−06

16 1.93 · 10−04 2.37 2.48 · 10−06 3.43 7.82 · 10−06 3.47 7.12 · 10−08 4.47
32 3.59 · 10−05 2.43 2.21 · 10−07 3.49 6.96 · 10−07 3.49 3.15 · 10−09 4.50
64 6.52 · 10−06 2.46 1.96 · 10−08 3.50 6.17 · 10−08 3.50 1.39 · 10−10 4.50

128 1.17 · 10−06 2.48 1.73 · 10−09 3.50 5.47 · 10−09 3.50 6.15 · 10−12 4.50
256 2.08 · 10−07 2.49 1.53 · 10−10 3.50 4.83 · 10−10 3.50 2.72 · 10−13 4.50

unstructured triangular mesh

8 1.05 · 10−03 3.46 · 10−05 8.68 · 10−05 1.85 · 10−06

16 1.97 · 10−04 2.41 3.97 · 10−06 3.12 8.06 · 10−06 3.43 8.62 · 10−08 4.42
32 3.62 · 10−05 2.44 3.83 · 10−07 3.37 7.71 · 10−07 3.39 4.18 · 10−09 4.37
64 6.55 · 10−06 2.47 3.50 · 10−08 3.45 7.01 · 10−08 3.46 1.98 · 10−10 4.40

128 1.17 · 10−06 2.48 3.14 · 10−09 3.48 6.33 · 10−09 3.47 9.01 · 10−12 4.46
256 2.09 · 10−07 2.48 2.80 · 10−10 3.49 5.64 · 10−10 3.49 4.03 · 10−13 4.48

Table III. Reentrant corner problem. Convergence rates for DG and projected velocities.

h
−1 ‖UDG − u‖0 rate ‖U∗ − u‖0 rate ‖UDG − U∗‖0 rate

triangular mesh, k = 2

8 1.01 · 10−1 1.09 · 10−1 2.93 · 10−2

16 6.79 · 10−2 0.573 7.36 · 10−2 0.567 1.97 · 10−2 0.573
32 4.57 · 10−2 0.571 4.95 · 10−2 0.572 1.33 · 10−2 0.567
64 3.08 · 10−2 0.569 3.33 · 10−2 0.572 8.94 · 10−3 0.573

128 2.07 · 10−2 0.573 2.24 · 10−2 0.572 6.01 · 10−3 0.573
256 1.39 · 10−2 0.575 1.51 · 10−2 0.567 4.05 · 10−3 0.569

triangular mesh, k = 3

8 6.71 · 10−2 7.05 · 10−2 1.32 · 10−2

16 4.51 · 10−2 0.573 4.74 · 10−2 0.573 8.83 · 10−3 0.580
32 3.04 · 10−2 0.569 3.19 · 10−2 0.571 5.94 · 10−3 0.572
64 2.04 · 10−2 0.576 2.15 · 10−2 0.569 3.99 · 10−3 0.574

128 1.38 · 10−2 0.564 1.44 · 10−2 0.578 2.69 · 10−3 0.569
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Table IV. Reentrant corner problem. Convergence of fluxes and jumps in pressure at interior edges.

h
−1 supe ‖({UDG} − u) · ne‖0,e supe ‖[PDG]‖0,e

k = 2 rate k = 3 rate k = 2 rate k = 3 rate

8 3.61 · 10−1 2.89 · 10−1 8.29 · 10−3 4.59 · 10−3

16 3.43 · 10−1 0.074 2.75 · 10−1 0.072 3.95 · 10−3 1.070 2.19 · 10−3 1.068
32 3.27 · 10−1 0.069 2.62 · 10−1 0.070 1.88 · 10−3 1.071 1.04 · 10−3 1.074
64 3.11 · 10−1 0.072 2.49 · 10−1 0.073 8.95 · 10−4 1.071 4.95 · 10−4 1.071

128 2.96 · 10−1 0.071 2.37 · 10−1 0.071 4.26 · 10−4 1.071 2.36 · 10−4 1.069
256 2.82 · 10−1 0.070 2.03 · 10−4 1.070

Figure 1. Permeability and flow field for the discontinuous coefficient example computed with DG(3).
Permeability 1 shown in light gray and 10−6 in black. Vectors not drawn to scale are indicated by

gray color in the vector plot.

Table V. Heterogeneous flow problem for triangular mesh

k = 2 k = 3

h
−1 ‖UDG − U∗‖0 rate ‖UDG − U∗‖0 rate

20 4.68 · 10−2 2.43 · 10−2

40 2.82 · 10−2 0.73 1.70 · 10−2 0.52
80 1.79 · 10−2 0.66 1.05 · 10−2 0.70

160 1.12 · 10−2 0.68 6.58 · 10−3 0.67
320 7.01 · 10−3 0.68
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Table VI. Summary of convergence rates for pressure approximations of degree k.

error theoretical rate numerical rate superconvergence

‖UDG − u‖0 h
k

h
k

‖U∗ − u‖0 h
k

h
k

supe ‖{UDG} − u‖0,e h
k−1/2

h
k+1/2

√

supe ‖U∗ − u‖0,e h
k−1/2

h
k+1/2

√

supe ‖[PDG]‖0e
h

k−1/2
h

k+3/2
√

in the flow field shown in Fig. 2 generated by a setup identical to that in the previous section
except that the permeability field has a single low permeability zone.

Parameters for eq. (5) are ψ = 1, R(S) = 0 and D = 0 (pure convection). Boundary
conditions are S = 1 at x = 0, no flow at y = 0 and y = 1 and outflow at x = 1. Initial
condition is S = 0 in Ω.

The problem is solved by a DG space discretization as developed in [19] using DG(1)
elements and implicit Euler discretization in time. The flow field is computed with DG(2).
The approximate solutions are shown at the final simulation time T = 20. Since |u| ≈ 1 and
the domain has a diameter of order 1 the solution is expected to be S = 1 in the highly
permeable region and S = 0 in the low permeably region. The plot on the left in Fig. 3 shows
the concentration obtained with a DG flow and transport calculation. The solution shows an
overshoot of 33%. The right plot in Fig. 3 shows the solution that is obtained by replacing
the DG velocity field with the projected velocity U

∗. The solution does not show any over-
or undershoots. The reason for the oscillations obtained with the DG velocity field is that
the averaged normal flux on element edges {UDG} · ne is not continuous. This is visualized
in Fig. 4. The figure shows the flow field in two neighbouring triangles. Clearly, the normal
velocity is not the same on both sides of the 45 degree edge near the lower left corner of the
plot on the left which is obtained from the DG velocity. The right plot shows the projected
velocity field with continuous normal component.

It should be noted that both solutions have been obtained without using slope limiters.
Clearly, a slope limiter is able to remove the oscillations obtained with the DG velocity since
the solution has the correct cell averages. However, a slope limiter should not be necessary in
the problem shown here.

6. Conclusion

In this paper we have introduced and analyzed a projection of the DG approximations that
preserve the local mass conservation property. The projected velocities have the additional
property of continuous normal component. Both theoretical and numerical convergence rates
have been obtained; they are summarized in Table VI for a regular solution. Superconvergence
properties of the DG methods are shown. Finally, the H(div) projection has been applied
to complicated flow and transport problem and the resulting solution is shown to be more
accurate.
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Figure 2. Flow field used for the transport simulation.

Figure 3. Stationary solution of a transport calculation. DG flowfield left and projected flow field right.
Medium gray means S = 1.0, S < 0.9 is shown black and S > 1.1 is white. Maximum overshoot in

left plot is 1.33.
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Figure 4. Comparison of DG (left) and projected (right) flow field.
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