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The use of multigrid solvers in the adaptive finite element method yields a pow-
erful tool for solving large-scale partial differential equations that exhibit localized
features such as singularities or shocks. The authors first give some historical back-
ground, then describe the basic method and related theory, and finish up with
numerical demonstrations of the performance and utility of the method on inter-
esting 3d problems.

Multigrid methods are solution methods of optimal complexity for a broad class of large and
sparse linear systems, see [28, this issue]. Adaptive methods provide a sequence of discretiza-
tions of partial differential equations (PDEs) with optimal approximation quality. Here, we
discuss the combination of both techniques: we consider multigrid solution methods of optimal
complexity on adaptively refined grids.

In many challenging applications, the solution of the overall problem requires the full com-
bination of effective linear and nonlinear solvers, accurate discretizations, adaptivity in space
and time, and, last but not least, parallelism. Thus, multigrid and adaptivity are now key
technologies for numerical simulations in PDEs.

Here, we give a short overview on the background and on the special interaction of both
concepts. In the first part, we summarize the main ideas and milestones in the development of
adaptive multigrid methods. Then, studying simple problems and geometries, we explain basic
features about the interplay of multigrid and adaptivity. We present local multigrid methods
in the framework of subspace correction methods. Finally, we compare different algorithmic
concepts by numerical tests for the model problem.

1 A short historical review

Already one of the first publications on multigrid methods by A. Brandt [13] outlined the com-
bination of multigrid and adaptivity (see also [2]). In the beginning of the 1980s S. McCormick
and coworkers developed the fast adaptive composite (FAC) grid method [17, 19]. This was
one of the first methods that looked at ways of improving the computational efficiency of the
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multigrid method by restricting the fine grid to local subdomains where the error is large.
They also introduced a variant that removes the inter-grid data dependencies inherent in stan-
dard multigrid methods thus improving the parallel efficiency [18]. While the FAC method
has been invented for locally refined structured grids at about the same time, M. C. Rivara
[22] developed an optimal complexity multigrid method in the context of an adaptive finite
element procedure on triangular grids in 2d with bisection refinement. Mitchell [20] developed
a similar method using higher-order finite element methods. Another type of grid refinement
algorithm, the so-called red/green refinement scheme, was pioneered by R. Bank and coworkers
in [4]. It was the basis of PLTMG, one of the most successful implementations of the adaptive
finite element method. As a solver, this code used the hierarchical basis multigrid method [3],
which was a variant of the hierarchical basis method [29] developed earlier by H. Yserentant.
The hierarchical basis methods are less efficient in three space dimensions, so new ideas were
required. Bramble, Pasciak and Xu [12] were the first to prove optimal convergence properties
for a multigrid algorithm that works on unstructured, locally refined grid independent of the
space dimension. A more robust and efficient variant, the local multigrid method, has been
shown to work efficiently also for more complicated problems in [5]. A breakthrough in a
unified presentation and analysis of the various methods has been achieved by J. Xu with the
notion of subspace correction methods in [26]. Unifying presentations that elegantly integrate
adaptive refinement, local sharp error measures and fast solvers have been given by U. Rüde
[23] and M. Griebel [15]. While a parallel implementation of adaptive multigrid methods in
the context of locally refined structured grids was developed in the late 1980s by S. McCormick
and D. Quinlan [18], the first optimal complexity implementation of multigrid methods in the
context of fully unstructured grids in two space dimensions were given by one of the authors
(P. B.) in [6] and by Mitchel [21]. The first implementation in three space dimensions including
time-dependent problems was given by S. Lang in [16].

2 Adaptive Finite Element Framework

As a prototype application, we consider the linear elliptic PDE

−∇ ·
(
K(x)∇u

)
= f in Ω ⊂ R

d,

u = 0 on ∂Ω,
(1)

which models, e. g., stationary heat conduction or fully saturated groundwater flow in d space
dimensions. Here, K(x) : Ω → R

d×d is a (in general position dependent) diffusion tensor,
u : Ω → R is the unknown solution (temperature, pressure) and f : Ω → R is the source/sink
term. To keep the technical details at a minimum, we restrict ourselves to homogeneous
Dirichlet boundary conditions, but the methods presented in the sequel can handle all kinds
of boundary conditions.

The finite element method (FEM) is one of the most popular methods for the numerical
solution of PDEs. This is due to its applicability to a wide range of problems and the existing
large body of mathematical theory (see, e. g., [14] for an introduction). The FEM is based on
the weak formulation of (1), which reads as follows: Find u ∈ V = H1

0 (Ω) such that

∫

Ω
(K(x)∇u) · ∇v dx

︸ ︷︷ ︸

a(u,v)

=

∫

Ω
fv dx

︸ ︷︷ ︸

ℓ(v)

for all v ∈ V . (2)
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Figure 1: Grids generated by hierarchical adaptive grid refinement in two space dimensions.
The grid is refined in order to resolve a point singularity. The left picture shows refinement
obtained with the red/green refinement algorithm using triangles. The right picture shows
red/green type refinement using quadrilaterals and triangles. Both grids were generated with
the PDE software Dune/UG [8, 7]. Visualization is done with ParaView/VTK.

This formulation follows from (1) by multiplication with a test function v and integration
by parts. Here, H1

0 (Ω) is the Sobolev space of functions that, together with all first-order
derivatives, are square integrable and that are zero on the boundary ∂Ω, a(u, v) : V × V → R

is a symmetric and continuous bilinear form, and ℓ(v) : V → R is a bounded linear functional.
Under certain assumptions, the solution of the weak formulation (2) and the PDE (1) are
equivalent.

To solve (2) on a computer, the infinite-dimensional function space V is replaced by a
finite dimensional approximation Vh consisting of continuous and piecewise polynomial (in the
simplest case, piecewise linear) functions. This requires the partitioning of Ω into elements of
simple shape (e. g., triangles, quadrilaterals or tetrahedra), called a computational grid. The
subscript h in Vh denotes the dependence of the quality of approximation on the diameter h
of the elements in the grid.

There are many different types of grids, and grid generation is a very important subject
in the practical application of the FEM. In adaptive methods, grids are typically generated
through hierarchical grid refinement, a process that is explained in more detail below. Figure 1
shows two grids generated in this way. The adaptive finite element method then consists of
the following steps:

1. Generate an initial grid. This grid can be quite coarse, but it should resolve important
geometric details of the domain Ω.

2. Compute a numerical approximation uh ∈ Vh to the solution u of the weak formulation
(2) using the FEM. This involves the solution of a large and sparse linear system of
equations.
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Figure 2: Hierarchical grid refinement for a domain Ω = (0, 1). The grid is constructed as
follows: start with an intentionally coarse grid which is indicated as level j = 0. Then each
element is subdivided into two elements of half the size each resulting in the grid on level j = 1.
On this level only three out of the four elements are refined, which yields grid level j = 2, and
then another two out of the six elements are refined to obtain grid level j = 3.

3. Compute an estimate E of the error ‖u − uh‖ in some norm using a posteriori error
estimators (see, e. g., [1]). If E < TOL, then stop.

4. Tag elements of the grid for refinement where the local error is large. An optimal refine-
ment strategy tries to equilibrate the error in each element. In time-dependent problems,
coarsening (removal of refinements from previous time steps) is also possible.

5. Refine the grid according to the refinement tags.

6. Interpolate the approximate solution uh from the previous grid to the new grid as an
initial guess. Go to step 2.

3 Hierarchical Grid Refinement and Multilevel Basis

The adaptive FEM produces a sequence of finite-dimensional function spaces Vh that are
adapted to the particular PDE problem to be solved. The construction of Vh is closely related
to hierarchical grid generation and to the multigrid solution of the arising large and sparse
systems of linear equations.

The process of hierarchical grid generation is illustrated in Figure 2. The initial grid, also
called coarse or macro grid, is intentionally coarse. Here it consists of two line elements and
three nodes. Then individual elements are recursively subdivided into smaller elements, which
leads to a tree structure. This enables an efficient implementation of the refinement algorithm.
The elements on a given grid level j form a subdomain Ωj ⊆ Ω. The local refinement gives
rise to a nested sequence of subdomains

ΩJ ⊂ ΩJ−1 ⊂ · · · ⊂ Ω1 ⊂ Ω0 = Ω

Here and throughout the rest of the paper J denotes the highest level in the grid hierarchy.
The nodes of the grid are each assigned a number as follows (see Figure 2):
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Figure 3: Nodal basis functions corresponding to the grid hierarchy from figure 2. On the left
the global nodal bases Φ̃0, Φ̃1, Φ̃2, Φ̃3 are shown. The middle and right drawing illustrate the
local nodal basis Φ0,Φ1,Φ2,Φ3 and the hierarchical basis Φ̂3 for the finest level J = 3.

• The interior nodes of grid level j = 0 are assigned unique numbers that form the index
set I0 ⊂ N.

• On grid level j > 0 the new nodes created by the refinement process are assigned unique
numbers that have not been used on coarser levels. Those nodes that were already present
on level j−1 are assigned the same number as on the coarser level. The indices for nodes
on level j form the index set Ij.

An important step in the finite element method is the construction of a basis for the finite
element space Vh. One possibility is the so-called nodal basis which consists of nodal basis
functions. A nodal basis function φ : Ω̄ → R has the value 1 at one nodal point of a grid, the
value 0 at all other nodal points and is linear on each element.

Starting with the hierarchical grid construction from Figure 2 we can complete each grid
level by all elements from coarser levels that have not been refined. This is illustrated on
the left in Figure 3. In this extended construction each grid level forms a partitioning of the
domain Ω. The finest grid on level J is called the leaf grid. The leaf grid is formed by all the
elements from Figure 2 that are leaves of their refinement tree, and this is the grid used in
step 2 of the adaptive finite element algorithm. Note that figures 1 and 4 only show the leaf
grid.

Now, nodal basis functions can be defined on each level of the extended hierarchical grid as
shown in Figure 3 on the left. Due to the Dirichlet boundary conditions of our model problem
(1), only basis functions corresponding to interior grid nodes are required. By φj

i , i ∈
⋃j

k=0 Ik,
we denote the nodal basis function corresponding to the i’th grid node on level j.

We are now in a position to define several sets of basis functions that are relevant in the
context of adaptive multigrid methods. We begin with the global nodal basis

Φ̃j =

{

φj
i






i ∈

j
⋃

k=0

Ik

}

, 0 ≤ j ≤ J ,

consisting of all the basis functions defined on one grid level of the extended hierarchical grid
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as shown on the left in Figure 3. On the finest level J ,

Φh = Φ̃J

is the set of nodal basis functions on the leaf grid. A basis function φi ∈ Φh is uniquely
determined by its index i ∈ Ih =

⋃J
j=0 Ij , i. e., we can safely omit the level superscript.

Next, the local nodal basis

Φj = {φj
i | i ∈ Ij}, 0 ≤ j ≤ J.

is made up by the basis functions on level j corresponding to the subdomain Ωj . These are
shown in the middle in Figure 3.

Finally, the hierarchical basis on level j is given by

Φ̂j = Φ0 ∪

j
⋃

k=1

{φk
i | i ∈ Ik \ Ik−1}, 0 ≤ j ≤ J.

It picks φk
i from the coarsest level k ≤ j where node i is present. It is illustrated for j = 3 on

the right in Figure 3.
Each of the bases defined above generates a corresponding finite element space:

Vj = spanΦj, Ṽj = span Φ̃j, V̂j = span Φ̂j , 0 ≤ j ≤ J.

In particular, Vh = ṼJ = V̂J is the leaf grid finite element space, generated by both the global
nodal basis and the hierarchical basis.

The hierarchical grid construction can be extended to multiple space dimensions. The FEM
requires that the maximum interior angle in any element is bounded away from 180 degrees,
a requirement that has led to a number of different grid refinement strategies. Most of these
refinement strategies subdivide an element in n > 2 smaller elements. The binary tree in
Figure 2 is then replaced by an n-ary tree.

4 Subspace Correction Methods

The finite element solution uh =
∑

i∈Ih
uiφi, φi the nodal basis functions on the leaf grid, is

determined by the variational equation

a(uh, φi) = ℓ(φi), φi ∈ Φh,

which is equivalent to the linear system

A u = f, A =
(
a(φj , φi)

)

φi,φj∈Φh
, f =

(
ℓ(φi)

)

φi∈Φh
.

Note that the finite element stiffness matrix A with respect to the nodal basis Φh is sparse, i. e.,
the matrix-vector product Au requires O(Nh) operations, where Nh = dimVh, the number
of interior grid points in the leaf grid. If Nh is large, direct solving is quite expensive or
even practically impossible. On the other hand, the iteration count for simple linear iterative
methods, such as Gauß-Seidel, increases by a factor of four with each refinement of the grid
which makes these methods also impractical.
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4.1 Multigrid methods with global smoothing

The standard multigrid method (as presented, e. g., by [28] in this volume) can be applied
in a straightforward way to locally refined grids by considering the extended hierarchical grid
construction shown on the left in Figure 3. Therefore, we consider the hierarchy of linear
systems

Ajuj = f
j
, Aj =

(
a(φk, φi)

)

φk,φi∈Φ̃j
, f

j
=

(
ℓ(φi)

)

φi∈Φ̃j
, 0 ≤ j ≤ J (3)

obtained from the global nodal basis Φ̃j on each grid level. Then, a multigrid preconditioner
can be constructed as follows:

(S0) Set the current level j = J to the finest level, and start with the correction c = 0.
Compute the residual rj = f

j
− Aj u∗

j from the current iterate u∗
j .

(S1) If j > 0, apply a simple preconditioner (the so-called smoother) and compute the correc-
tion on level j. Update the residual and then restrict the residual on level j to the next
coarser level j − 1.
Set j := j − 1 and repeat (S1) until j = 0.

(S2) Now, for j = 0, compute the coarse grid correction by (approximately) solving A0c0 = r0

(in general, the coarse grid is assumed to be small enough for direct solving). Set j = 1.

(S3) Interpolate the correction from level j − 1 to level j, update the residual and add the
interpolated correction to the current correction on level j. Again, perform a smoothing
step and update the correction.
If j < J , set j := j + 1 and repeat (S2) until j = J .
The final correction on level J is the result of the multigrid preconditioner.

Since each level of the grid used in the standard multigrid algorithm covers the full domain
Ω we speak of multigrid with global smoothing. The implementation of the multigrid cycle
with global smoothing requires O(Mh) operations in total, where Mh = dim Ṽ1 + · · ·+ dim ṼJ ,
assuming that the cost for the coarsest grid is negligible. Under the assumption of geometric
growth, i. e., dim Ṽj ≥ q dim Ṽj−1, q > 1, one can show that Mh ≃ Nh. In the case of
strong local refinement, e. g., towards a point singularity, the growth is not geometric, but
one can show that Mh ≃ Nh log Nh is possible. In that case the multigrid preconditioner has
non-optimal computational complexity.

The major challenge for adaptive multigrid methods is the selection of appropriate basis
functions such that: (1) the computational cost per cycle is O(Nh) and (2) the convergence
rate of the method is independent of Nh. Historically, the hierarchical basis method [29, 3]
was important step in the development of adaptive solvers because it provided a multigrid
preconditioner with optimal computational complexity. It is based on the linear system

Â û = f̂ , Â =
(
a(φk, φi)

)

φk,φi∈Φ̂J
, f̂ =

(
ℓ(φi)

)

φi∈Φ̂J
,

assembled with respect to the hierarchical basis Φ̂J . Although the matrix Â is not sparse,
one can show that a Jacobi or Gauss Seidel iteration applied to the system Â û = f̂ can
be implemented with O(Nh) computational cost independent of the locality of refinement.
The number of iterations needed to solve the system sufficiently accurate can by bounded by
O(log Nh) in two space dimensions. Thus, the method has optimal computational cost for the
single iteration, but suboptimal iteration count. Unfortunately, it turned out that in three

space dimensions the number of iterations increases even to O(N
1/3
h ).
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4.2 Local smoothing on subspaces

Optimal methods, both with respect to computational complexity and iteration count can
be obtained by employing the local nodal basis functions Φj related to the subdomains Ωj.
Therefore, these methods are termed multigrid methods with local smoothing.

The standard matrix based notation is quite technical for local multigrid methods (see, e. g.,
[6, 7] for a detailed description). Thus, to present the main ideas we define in the following
the algorithms in equivalent form for the corresponding operators. Therefore, let Ah : Vh → Vh

be the operator defined by (Ahv,w)L2(Ω) = a(v,w) (note that A is the corresponding matrix
representation with respect to the standard nodal basis Φh). Then, a linear solver is defined
by a preconditioner Bh : Vh → Vh and the linear iteration

uk+1 = uk + Bh(fh − Ahuk), k = 0, 1, 2, ...

(here, fh is the L2-projection of f onto Vh). The linear iteration is convergent for all initial
functions u0 and all right-hand sides fh, if and only if the spectral radius of I − BhAh is
smaller than 1 (where I denotes the identity operator). In general, the linear iteration will
be accelerated by a Krylov method, e. g., the conjugate gradient (CG) method for symmetric
positive definite problems. A preconditioner Bh is optimal if the condition number of BhAh is
bounded independently of the number of levels and the number of unknowns.

On every level j, we consider a decomposition Vj =
∑

i∈Ij
V j

i into one-dimensional subspaces

V j
i = span{φj

i} spanned by the nodal basis functions φj
i ∈ Φj. Based on this decomposition

two types of smoothing can be defined. An additive (or parallel) subspace correction on level
j corresponds to local Jacobi smoothing:

(J0) For the actual residual r = fh−Ahuk compute independently for every nodal point i ∈ Ij

the one-dimensional correction cj
i ∈ V j

i satisfying

a(cj
i , φ

j
i ) = (r, φj

i )L2(Ω) .

(J1) Then, sum all corrections cj =
∑

i∈Ij
cj
i .

The corresponding multiplicative (or successive) subspace correction is equivalent to local
Gauss Seidel smoothing:

(GS) Starting with the residual r = fh − Ahuk and cj = 0, compute successively for every

nodal point i ∈ Ij the one-dimensional correction cj
i ∈ V j

i satisfying

a(cj
i , φ

j
i ) = (r, φj

i )L2(Ω) − a(cj , φ
j
i )

and update the correction cj := cj + cj
i .

Note that in operator notation no restriction and prolongation is needed. They are introduced
naturally, however, when a basis representation of the functions is inserted.

Now, combining the local smoothers with a coarse grid correction results in different precon-
ditioners: additive local multigrid (a weighted Jacobi scheme), multiplicative local multigrid
(a Gauß-Seidel scheme), and a hybrid iteration in the parallel case that is multiplicative within
a processor and additive between processors.

The additive local multigrid (or parallel subspace correction) preconditioner Badd is defined
by the following algorithm: for the actual residual r = fh − Ahuk, compute the correction
c = Baddr by
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(A0) Compute on level j = 0 the coarse grid correction c0 ∈ V0 solving

a(c0, v) = (r, v)L2(Ω) for all v ∈ V0 .

(A1) Independently, compute on all levels j = 1, ..., J and for all i ∈ Ij the one-dimensional

correction cj
i ∈ V j

i satisfying

a(cj
i , φ

j
i ) = (r, φj

i )L2(Ω) .

(A2) Finally, collect the additive multigrid correction

c = c0 +

J∑

j=1

∑

i∈Ij

cj
i .

The corresponding damped linear iteration is convergent for the model problem, and Badd is
an optimal preconditioner for Krylov methods. The additive variant is in particular well suited
for the parallel realization, since, in the algorithm, the corrections on all levels and all spaces
V j

i can be computed independently.
A faster preconditioner is obtained by the corresponding successive subspace correction

method, which is equivalent to the multigrid V-cycle with local Gauss Seidel post-smoothing:
the correction c = Bmultr is defined by

(M0) Compute on level j = 0 the coarse grid correction c0 ∈ V0 solving

a(c0, v) = (r, v)L2(Ω) for all v ∈ V0 .

Set c = c0.

(M1) Successively, compute on all levels j = 1, ..., J and for all i ∈ Ij the one-dimensional

correction cj
i ∈ V j

i satisfying

a(cj
i , φ

j
i ) = (r, φj

i )L2(Ω) − a(c, φj
i )

and update the correction c := c + cj
i .

The spectral radius of the corresponding linear iteration is bounded independently of the
number of levels and the number of unknowns, and the preconditioner is optimal.

Although in general the performance of the multiplicative method is better, it is difficult to
realize a Gauss Seidel smoother in parallel, whereas the additive method completely decouples
in parallel (if a parallel coarse grid solver is available). A fairly efficient parallel multigrid
method is obtained by decomposing the indices Ij = I1

j ∪ · · · ∪ Ip
j on every level (requiring a

separate load balancing on every level j) and defining the parallel correction c = Bparr by

(P0) Compute on level j = 0 on one processor the coarse grid correction c0 ∈ V0 solving

a(c0, v) = (r, v)L2(Ω) for all v ∈ V0 .

Set c = c0.
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(P1) Successively, on all levels j = 1, ..., J , set cq = 0 for all processors q = 1, ..., p.
Then, compute in parallel for all processors q = 1, ..., p and on every processor successively
for all i ∈ Iq

j the one-dimensional correction cj
i ∈ V j

i satisfying

a(cj
i , φ

j
i ) = (r, φj

i )L2(Ω) − a(cq
j , φ

j
i ) − a(c, φj

i )

and update the correction cq := cq + cj
i . Then, collect the results on level j from all

processors and update

c := c +

p
∑

q=1

cq .

Several concepts may improve the robustness of the multigrid algorithm, e. g., an extension
of the local smoother on Ij to some overlapping region Ĩj ⊂ Ij ∪ Ij−1 in combination with
multiple smoothing. In the case of hanging nodes, such an approach is analyzed in [9].

Moreover, in the case of systems it is recommended to use a Block Gauss Seidel method where
V j

i combines all unknowns at a single nodal point. For saddle point systems or discontinuous
Galerkin approximations, even more involved smoothers such as overlapping Block Gauss Seidel
(corresponding to an overlapping subspace correction method) are required.

4.3 A remark on the analysis of local multigrid methods

Analytically, the optimality of local multigrid methods relies on the norm equivalence

|||v|||2 ≃ inf
v=v0+···+vJ∈V0+V1+···+VJ



|||v0|||
2 +

J∑

j=1

h−2
j ‖vj − vj−1‖

2
L2(Ω)





(hj denoting grid size on level j) for the energy norm |||v||| =
√

a(v, v). This is proved, e. g., in
the case of triangles and regular refinement with hanging nodes in [10]. The norm equivalence
implies that the additive preconditioner Badd is optimal.

Let P0 and P j
i be the Galerkin projections onto the coarse space V0 and onto the one-

dimensional subspaces V j
i , respectively. Then, the multiplicative local multigrid preconditioner

Bmult satisfies the norm identity derived by Xu-Zikatanov [27]

|||id − BmultAh|||
2 = 1 −

1

1 + c0
,

where

c0 = sup
|||v|||=1

inf

v=v0+
J

P

j=1

P

i∈Ij

vj
i



|||P0(v − v0)|||
2 +

J∑

j=1

∑

i∈Ij

∣
∣
∣

∣
∣
∣

∣
∣
∣P

j
i

∑

(k,l)>(i,j)

vl
k

∣
∣
∣

∣
∣
∣

∣
∣
∣

2



 ,

which is proved, e. g., in the case of triangles and bisection refinement, to be bounded indepen-
dently of the number of levels and the number of unknowns. Although the analytical results
up to now are quite restrictive, this theory provides the optimal framework for a profound
theoretical investigation of many relevant adaptive algorithms.
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5 Numerical results

We demonstrate the performance of multigrid methods in the context of adaptive local grid
refinement for the model problem (1). In both, the two- and three-dimensional test cases, the
diffusion coefficient was set to K(x) = I. Adaptive refinement was controlled by a residual
based error estimator. In each adaptive step, a certain percentage of the elements with the
largest contribution to the error were refined.

Figure 4: Adaptive solution of the elliptic model problem in three space dimensions with P1

conforming finite elements and residual based error estimator for an example with singularity
on an edge. Left: tetrahedral grid with red/green refinement. Right: hexahedral grid with
red/green refinement using pyramids and tetrahedra for closure. The computations were done
with the PDE software Dune/UG, visualization with ParaView/VTK.

In the 2d example, the domain was the unit square Ω = (0, 1)2 and the solution exhibited
a point singularity at (0, 1/2), see Figure 1. In the 3d test case the domain was the unit cube
Ω = (0, 1)3 and the solution exhibited a line singularity along (1/2, 0, z). Two example grids
are shown in Figure 4.

Table 1 compares several solvers for the elliptic model problem in two and three space
dimensions on simplicial and cube grids. The following solvers were used:

MGC Multiplicative local multigrid with 2 symmetric Gauss Seidel post-smoothing steps. This
is the successive subspace correction method labeled M0-M1 on page 9.

BICGMGC The same local multigrid method used as a preconditioner in the BiCGSTAB [25]
method.

CGBPX Additive multigrid with one Jacobi smoothing step used as preconditioner in the
conjugate gradient (CG) method. This is the additive local multigrid preconditioner
labelled A0-A2 on page 8.
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MGC BICGMGC CGBPX CGAMG CGILU0

2d, triangular elements, N = 1698410, E = 3393283

IT 9 7 29 23 2178
Tsolve 8.9 7.4 16.0 33.5 637.7
Tsetup 76.0 76.0 76.0 17.0 0.6

2d, quadrilateral elements, N = 1412468, E = 1412854

IT 7 6 18 18 1183
Tsolve 7.1 6.4 9.6 27.3 334.0
Tsetup 50.0 50.0 50.0 17.1 0.7

3d, tetrahedral elements, N = 287092, E = 1693032

IT 22 13 49 15 156
Tsolve 7.3 4.5 6.6 8.5 14.6
Tsetup 68.3 68.3 68.3 7.0 0.5

3d, hexahedral elements, N = 622370, E = 941302

IT 11 8 29 9 85
Tsolve 10.3 7.7 9.8 14.4 21.2
Tsetup 77.5 77.5 77.5 25.2 2.0

Table 1: Comparison of different linear solvers for 2d and 3d adaptively refined solution of the
model problem (1).

CGAMG Agglomeration type algebraic multigrid with 2 symmetric Gauss Seidel pre- and
post-smoothing steps used as preconditioner in the CG method. This method is similar
to the method introduced in [11]. It has been included here to show that algebraic
multigrid methods are also very competitive for linear systems arising from adaptive
local refinement. For more details on algebraic multigrid see also the article in this issue.

CGILU0 Incomplete LU decomposition with no additional fill-in as a preconditioner in the
CG method. This method has been included to give a comparison with a standard single
grid preconditioner.

The table gives iteration numbers (IT) for a reduction of the Euclidean norm of the residual
by the factor 10−8 in the last solution step of the adaptive procedure. The size of the finest
leaf grid obtained in each test case is given by the number of nodes N and the number of
elements E. Since the cost per iteration is different for the methods given we also show the
time spent for all iterations as Tsolve. All times are given in seconds and have been measured
on a Laptop-PC with an Intel T2500 Core Duo processor with 2.0 GHz, 667 MHz FSB and 2
MB L2 cache using the GNU C++ compiler in version 4.0 and -O3 optimization.

The table also includes the setup time Tsetup necessary for each preconditioner. In the
implementation used for the tests the matrix A as well as the level-wise matrices Aj and the
grid transfer operators used in the multigrid preconditioners are assembled as sparse matrices in
compressed row storage format. The multigrid preconditioner can then be written completely
in terms of (fast) matrix-vector and vector operations. The setup time for the local multigrid
preconditioners is the time needed for assembling the extra matrices Aj and the grid transfer
operators. For the algebraic multigrid preconditioner it is the construction of the coarse grid
operators and for the ILU method it is the computation of the incomplete decomposition. The
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setup time for the local multigrid methods seems to be rather high compared to the algebraic
multigrid method. This is due to the generality of the assembly procedure which works in
any dimension, for any kind of grid (including e. g. refinement with hanging nodes) and which
assumes a general, position dependent diffusion tensor. On the other hand this is a quite
realistic situation with respect to real world applications. There often the assembly of the
finite element stiffness matrix is the most costly part of the simulation.

From Table 1, we conclude that local multigrid used as a preconditioner in BiCGSTAB
has always the lowest iteration count and the minimum solution time Tsolve. The additive
multigrid method is between a factor 1.3 and 2.2 slower than the multiplicative method. The
iteration numbers for the incomplete decomposition preconditioner increase with O(h−1) and
thus the single grid method is always slower than the multigrid methods provided the grid is fine
enough. This point has been clearly reached in the two-dimensional examples while, in three
space dimensions, the single grid method is the winner in total time to solution Tsolve + Tsetup.
The algebraic multigrid method is very competitive. It is the fastest method in time to solution
in 2d and it is very close to the single grid method even in 3d.

2d, quadrilateral elements

N J MGC BICGMGC CGBPX CGAMG CGILU0

2092 9 8 6 18 9 81
6094 11 8 6 18 11 140

17751 13 8 6 19 12 228
55297 14 8 6 19 14 303

162963 16 7 6 18 16 585
500045 17 7 6 18 18 747

1412468 19 7 6 18 18 1183

3d, hexahedral elements

N J MGC BICGMGC CGBPX CGAMG CGILU0

689 3 8 6 16 4 10
4540 5 9 7 24 6 20

26903 7 10 7 28 7 35
129738 9 11 8 30 8 55
622370 11 11 8 29 9 85

Table 2: Demonstration of grid independence of the convergence rate for the adaptively refined
solution of the model problem (1) in two space dimensions.

In Table 2, we demonstrate that the iteration numbers are independent of the grid size
for the various multigrid algorithms discussed in this paper. The iteration numbers for the
AMG preconditioner and the ILU preconditioned conjugate gradient method are also given for
comparison.

Although we restricted the investigation of adaptive multigrid methods to the model prob-
lem, this is a basic technique which can be applied to solve the linearized problem within many
nonlinear and time dependent applications on locally adapted grids (e. g., the authors have ex-
periences with two-phase flow in porous media and plasticity). Since nonlinear applications are
not the main topic of this contribution, we cannot give a representative overview of adaptive
multigrid applications.
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6 Future challenges

Multigrid methods on locally refined hierarchical grids are now a standard tool for the efficient
numerical solution of a wide range of partial differential equations. The construction process
of suitably adapted grids and the solution method on these grids are completely independent.
The decoupling of error control and adaptive multigrid solver relies on the paradigm that the
problem can be solved with simple discretizations on sufficiently fine locally adapted grids,
where the grid resolves the specific features of the application. Thus, the design of these
multigrid methods solely relies on geometric quantities.

In modern applications with highly nonlinear problems in 3d it becomes clear that simple
discretization concepts are not sufficient for an overall effective solution process. It is necessary
to employ optimal discretizations such as higher order finite element methods, discontinuous
Galerkin methods, anisotropic grids or higher order upwinding together with adaptivity with
respect to grid size and polynomial degree (hp-adaptivity). Then, the design of the solver
cannot rely only on geometric quantities, but algebraic properties of the resulting system
matrices must be taken into account. The grand challenge in the construction and the analysis
of adaptive multigrid methods is the development of robust subspace correction techniques for
a broad class of optimal hp-adaptive discretizations and its application to demanding problem
classes.
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