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Abstract

In the present paper we discuss the development and practical appli-
cation of robust multi-grid methods to solve partial differential equations
on adaptively refined grids. We review several approaches to achieve robust
multi-grid methods and describe two special new strategies for anisotropic
and convection diffusion problems. The performance of these algorithms is
investigated for three selected test problems.

1 Introduction

In the present paper we discuss the development and practical application of ro-
bust multi-grid methods to solve partial differential equations on adaptively re-
fined grids. Since a couple of years multi-grid methods are well established as fast
solvers for large systems of equations arising from the discretization of differen-
tial equations. However, it is still a substantial unresolved question to find robust
methods, working efficiently for large ranges of parameters e.g. in singularly per-
turbed problems. This applies to diffusion-convection-reaction equations, arising
e.g. from modelling of flow through porous media, the basic equations of fluid
mechanics and plate and shell problems from structural mechanics.

Multi-grid methods are known to be of optimal efficiency, i.e. the convergence
rate k does not depend on the dimension of the system, characterized by a stepsize
h. Following [28] we call a multi-grid method robust for a singularly perturbed
problem, if

k(h,e) < kg <1, Ve >0, h>0, 1)

€ denoting the singular perturbation parameter. Up to now multi-grid meth-
ods satisfying (1) have been studied in the literature only for special model cases
using structured grids, see [25], [26], [15], [27], [28], [29]-

Problems of the type mentioned, typically show degenerations in hyperplanes.
To resolve these zones special dynamic grid adaptation techniques are necessary.

*Interdisziplindres Zentrum fiir Wissenschaftliches Rechnen (IWR), Universitit Heidel-
berg, Im Neuenheimer Feld 368, 69120 Heidelberg, Federal Republic of Germany, email:
wittum@iwr.uni-heidelberg.de



Here it is necessary to rethink standard multi-grid techniques. In §2 we classify
several multi-grid approaches for adaptively refined grids. On the one hand adap-
tively refined grids can substantially weaken the robustness requirement (1) as
outlined in §3. On the other hand the unstructured grids generated by adaptive
refinement require special numbering techniques so that the smoother does a good
job on the problem. It is the main objective of the present paper to present a
strategy to combine the techniques of robust multi-grid and adaptivity.

The techniques have been implemented within the software package ug, which
will be shortly described in §4. Results of numerical tests for several practical
problems are given in §5.

2 Multi-Grid Strategies

2.1 Basic Multi-Grid Techniques

Let the linear boundary-value problem

Ku = finQ (2)
u = wug on Of)

with a differential operator K : U — F between some function spaces be
given on a domain Q C R%. Let (2) be discretized by some local discretization
scheme on a hierarchy of admissible grids (cf. [13])

Q , 1=0,..., e 3)
Y C YU CO
We use nested grids only for ease of presentation. Most of the methods dis-

cussed below can readily be applied to general loosely coupled grids violating (3).
The discretized equations on §2; are denoted by

Klul = fl in Ql, for | = ].,. --almaw ) (4)
w = upy on OfY
with
K :U — F 5 (5)

Ui, F; denoting the discrete analoga of U and F' with finite dimension n. We
assume that the discretized equations are sparse. Further let some “smoother”

Sl:Ul—>Ul fOI‘lZO,...,lmaw , (6)



and “grid transfer operators”

pi—1 : U1 = Uy, ri—1:Fp > F_q, forl=1,...,lnes (7

be given.

Multi-grid methods are fast solvers for problem (4). We basically distin-
guish between additive and multiplicative multi-grid methods. The multiplicative
method is the well-known classical multi-grid (cf. [12]) as given in algorithm 2.1:

Algorithm 2.1 Multiplicative multi-grid method. mmgm(l, u, f)

integer I; grid function wu, f;
{ grid function v, d; integer j;
if (1=0)u:=K;'f;

else {
u = S (u, f);
d = r_1(Kiu — f);
v = 0

for j:=1 step 1 to v do mmgm(l — 1, v, d);
U= U — P10

u = S/ (u, f);

The additive multi-grid method is given by the following algorithm.

Algorithm 2.2 Additive multi-grid method. amgm(l, u, f)

integer I; grid function v[l], d[{];
{ integer j;
dl] :== Kyu — f; v[l] :== 0;
for j:=l step -1 to 1 do { d[j — 1] := r;_1d[j]; v[j — 1] :== 0;
for j:=1 step 1 to I do v[j] := S} (v[4], d[4]);
v[0] := Ky 'd[0];
for j:=1 step 1 to I do v[j] :=v[j] + pj—1v[j — 1];
u = u — v[l];

The structure of both algorithms can be seen from Figs. 1(a) and 1(b). The
main difference between these two variants is that in the multiplicative method
smoothing and restriction of the defect to the next coarser level are performed
on one level after the other sequentially, while in the additve method smoothing
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Figure 1: Outline of the V-cycle multiplicative multigrid algorithm mmgm (a) and
of the additive multigrid algorithm amgm (b).

on the different levels can be performed in parallel. Restriction and prolongation,
however, are sequentially in the additive method too. Usually, the additive methods
are applied as preconditioners, since acceleration methods like cg directly pick an
optimal damping parameter, the multiplicative methods are used as solvers and as
preconditioners. According to [31], these methods can be formulated as additive
Schwarz methods.

Applying multi-grid methods to problems on locally refined grids one has
to think about the basic question, how to associate grid-points with levels in the
multi-grid hierarchy. Consider the hierarchy of grids {€;,1 = 0,...,lnaz} from (3).
Early multi-grid approaches smooth all points in §2;. This may cause a non-optimal
amount of work and memory of O(nlogn) per multi-grid step. This problem was
the starting point for Yserentant , [32], and Bank-Dupont-Yserentant, [1], to de-
velop the method of hierarchical bases (HB) and the hierarchical basis multi-grid
method (HB/MG). These were the first multi-grid methods with optimal amount
of work per step for locally refined grids. This is due to the fact that on level [ only
the unknowns belonging to points in §; \ ;_1 are treated by the smoother. How-
ever, the convergence rate deteriorates with logn. For the first time this problem
was solved by the introduction of the additive method by Bramble, Pasciak and
Xu, [8], (BPX). There on level I the smoother treats all the points in Q; \ Q;_;
and their direct neighbours, i.e. all points within the refined region.



Table 1: Multi-grid methods for locally refined grids.
basic structure

smoothing pattern additive multiplicative
1 HB HBMG
(_ )tnewl Yserentant, 1984, Bank, Dupont,
pomts only [32] Yserentant, 1987, [1]
(2) refined BPX , local multi-grid, [20],
. Bramble, Pasciak,
region only Xu, 1989, [§] [9], [5]

parallel multigrid . .
(3) all points Greenbaum, 1986, classical multi-grid,

[11] [10]

Table 1 gives an overview of the multi-grid methods used for the treatment
of locally refined grids and classifies the variant we call “local multi-grid”. The
methods mentioned above differ in the smoothing pattern, i.e. the choice of grid
points treated by the smoother. The methods in the first two lines are of optimal
complexity for such problems. The amount of work for one step is proportional
to the number of unknowns on the finest grid. However, only the methods in the
second line, BPX and local multi-grid converge independently of h for scalar elliptic
problems. The basic advantage of the multiplicative methods is that they do not
need cg-acceleration and thus can be directly applied to unsymmetric problems,
further they show a better convergence rate and on a serial computer the additive
process does not have any advantage. The local multi-grid scheme is the natural
generalization of the classical multi-grid method to locally refined grids, since in
case of global refinement, it is identical with the standard classical multi-grid
method.

The local multi-grid has first been analyzed in 1991 by Bramble, Pasciak,
Wang and Xu, [9]. They considered it as a multiplicative variant of their so-called
BPX-method, [8]. However, they did not consider robustness. Further there exist
predecessors of this method since a couple of years in some implementations (
pers. communication by J.-F. Mastre and H. Yserentant). Without knowledge of
this, the authors developed this method as a variant of standard multi-grid based
on the idea of robustness (cf. [5]). The main advantage of this approach is that
the application to unsymmetric and non-linear problems is straightforward (cf.
[5])- Robustness for singularly perturbed problems is achieved by combining local
multi-grid with robust smoothers (cf. [5]), as explained in the next section.



3 Robustness Strategies

3.1 Robust Smoothing

Already in 1981, Wesseling suggested the first robust multi-grid method for singu-
larly perturbed problems discretized on structured grids [25], [26]. The main idea
is to apply a smoother which solves the limit case exactly. This is possible e.g. for
a convection-diffusion equation using a GaufB3-Seidel smoother and numbering the
unknowns in convection direction. Wesseling however, suggests to use an incom-
plete LU-smoother, since this handles the convection dominated case as well as
the anisotropic diffusion (cf. [15], [28]). Main ingredients, however, are the use of
structured grids and a lexicographic numbering.

A simple analysis of the hierarchical basis methods (HB, HB/MG) shows
that the smoothing pattern is too poor to allow robust smoothing.

Remark 3.1 The hierarchical basis method and the hierarchical basis multigrid
method do not allow robust smoothing for a convection-diffusion equation. The
smoothing pattern used in these methods does not allow the smoother to be an
exact solver for the limit case. This holds for uniformly as well as for locally
refined grids.

Based on this observation, we extended the smoothing pattern, adding all
neighbours of points in €; \ ©;_;. This allows the smoother to solve the limit
case exactly, provided the grid refinement is appropriate. This is confirmed by
numerical evidence given in Chapter 5.

Up to now some theory is contained in [28],[29] and the new papers by Steven-
son [21], [22] for uniformly refined grids. This theory shows that the basic require-
ment that the smoother is an exact solver in the limit case is not sufficient to obtain
robustness. Additionally it must be guaranteed that the spectrum of the smoother
is contained in [—¢,1] for 0 < ¢ < 1. This can be achieved by modification (cf.
28], [22)).

3.2 A Robust Smoother for Convection-Diffusion Problems

The construction of a robust smoother, which is exact or very fast in the limit, is the
kernel of a robust multigrid method and makes up the main problem when applying
this concept to unstructured grids. Here we need special numbering strategies.

In the following we present a strategy for the convection-diffusion equation

—eAu+c-Vu=f, (8)

with the convection vector ¢, and € > 0. Discretizing the convection term
by means of an upwind method, we can assign a direction to each link in the
graph of the stiffness matrix. If the directed graph generated by this process is



cycle-free, it defines a partial ordering of the unknowns. This partial ordering can
be used to construct an algorithm for numbering of the unknowns, which brings
the convective part of the stiffness matrix to a triangular form. The following
numbering algorithm performs such an ordering on general unstructured grids,
provided the convection graph is cycle-free.

Algorithm 3.1 downwind_numbering.

1. Assign the downwind direction from the discretization of the convective term
to each link in the stiffness martix graph. Indifferent links are marked by 0.

2. Put n = number of unknowns.

3. Find all vertices with minimal number of incoming links and put them in a
fifo F.

4. Derive a total order from the directed acyclic graph

For all vertices L initialize Index(L) = 0;
While (F not empty) do
get E from F
(4a) Put Index(E) := 1; Put E in fifo FP; i := 1;
(4b) While (FP not empty) and (i < n) do
Get K from FP;
For all neighbors L of K do
If (L downwind from K) and (Index(L)< Index(K))
i := Index(L);
Index(L) := Index(K)+1;
Put L in FP;

5. Call quicksort with the vertex list and the criterion Index(L) < Index(K) =
L < K. Output: Ordered vertex list.

Remark 3.2 If the edge graph is cycle-free, loop (4b) terminates in O(n)-steps
with FP = (. Loop (4) has complezity O(q - n) where q is the number of minimal
elements in the edge graph, which is small. Because of calling quicksort in (5) the
complezity of the whole algorithm equals O(q-nlnn).

If loop (4b) terminates with FP # 0 and i > n, the edge graph contains a
cycle.

This method has been used for the computations described in Section 5 .
Meanwhile it has been improved by Bey (cf. [6]). Cycles in the matrix graph may
occur, if there are vortices in the convection c. If ¢ is vortex-free, cycles can occur
if several triangles with sharp angles are neighbouring each other and are almost
perpendicular to the flow direction (cf. [6]). These numerically caused cycles, how-
ever, can be simply eliminated by finding and cutting elementwise cycles. This is
possible with O(n) work count.
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Figure 2: Illustration of semi-coarsening (a) and anisotropic refinement (b).

3.3 Semi-coarsening

Another strategy to obtain a robust multi-grid method is the so-called semi-
coarsening approach (cf. [7]). The basic idea is to improve the coarse grid correction
instead of the smoother. Starting with a fine and structured grid, coarsening is per-
formed only in those co-ordinate directions, in which the scale of the equation is
already resolved. E.g. for the anisotropic model problem

—(E0pe + Oyy)u=f, inQ=(0,1) x (0,1) 9)

with corresponding boundary conditions one would coarsen an equidistant
cartesian grid in case of small € as shown in Figure 2(a).

Remark 3.3 Such a sequence of coarse grids yields a robust multi-grid method
for the anisotropic model problem (9) without using a special smoother, since the
coarse grid resolves the scale in the direction where the smoother does not work.
This semi-coarsening approach, however, is based on the use of fine grids
which do not resolve the differential scale, otherwise there would be no semi-
coarsening. Consequently this approach is not applicable as soon as the finest grid
resolves the problem scale, which is crucial when solving differential equations.

This does not apply to so-called multiple semi-coarsening approaches, since
these methods are able to construct sequences of coarse grids from any struc-
tured fine one, no matter if the scale is resolved. Thus we mainly have to look for
an approach which allows to adapt the grid to the differential scale by adaptive
refinement and to solve efficiently on the hierarchy of grids generated this way.



3.4 Anisotropic Refinement

Instead of starting with a fine grid and constructing the grid hierarchy by coarsen-
ing we start with a coarse grid and refine that anisotropically in order to resolve the
scale successively. Such a refinement process is given e.g. by the “blue refinement
strategy” due to Kornhuber, [16]. The basic idea is just to refine quadrilaterals
with a “bad aspect ratio” by halving the longer edge. Bad aspect ratios can be
introduced either by element geometry or by anisotropic coefficients in the equa-
tion. This is shown for the anisotropic model problem (9) in Fig. 2(b). Note that
the discretization error is balanced on the coarsest grid for semi-coarsening, while
it is balanced on the finest grid for the anisotropic refinement approach. Korn-
huber described how to generalize this approach to triangular unstructured grids.
Following this process we finally obtain a grid €; which resolves the scale of the
problem.

From this grid on we refine regularly and so the multi-grid process will obvi-
ously work without problems.

Remark 3.4 A proof of robust multi-grid convergence is straightforward since the
asymptotic behaviour is determined by the isotropic problem. So we need a robust
method only for a finite sequence of grids up to a fixed h > 0, weakening the
robustness requirement (1) to

k(h,e) < ko<1, VE>e>e>0,Vh>h>0, (10)

which makes the job much easier. Thus it is sufficient in many cases to use
Just a lexicographically numbered ILUg, since we do not need the property that the
smoother is exact in the limit case. It is sufficient that it reasonably accounts for
the “main connections” up to a fized range of € > 0 and for finite h.

Since this process improves the approximation of the differential problem at
the same time, this will be the appropriate approach to follow.

An example of that type is the skin problem described in §5.

3.5 Algebraic Multi-grid

Another approach yielding robustness is the family of algebraic multi-grid meth-
ods, see e.g. [24] and the references there. A new algebraic multi-grid approach is
described by Reusken, [23], which shows to be fairly robust in practice. The basic
idea of algebraic multi-grid is to decompose the stiffness matrix K into

_( Kir Kye
Kl - ( ch ch > (11)

where Ky denotes the part of K; acting on the grid points which belong
to the finest grid only, K.. the part of K; acting on coarse grids points only
and the off-diagonal blocks represent the coupling between coarse and fine grid.
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Figure 3: Overview of the internal structure of the ug code.

The approximation of K.. and the off-diagonal blocks within the multi-grid cycle
have to be such, that it yields robustness. This is also satisfied for the frequency-
decomposition multi-grid method, [14], and other multiple correction schemes, see
([18], [19]). However, these methods typically work only on structured grids and
do also not provide a strategy to improve the approximation of the differential
equation.

4 The Software Toolbox ug

The code ug (“unstructured grids”) is used as a test-bed for the robustness strate-
gies mentioned above and has been designed as problem independent as possible in
order to allow reuse of its components for many different applications. It is a lay-
ered construction of several libraries, see Fig. 3 for an overview. The bottom layer
contains all components that are totally independent of the PDE to be solved,
e. g. grid I/0, grid refinement, device independent graphical output and the user
interface. The next layer is the so-called problem class library that implements

10



discretization, error estimators and solvers for a whole class of PDEs, e. g. a scalar
conservation law. On top of that resides the user’s application that provides the
domain, boundary conditions and problem coeflicients to the lower layers.

The relative code size of these layers indicates that the proper abstractions
(interfaces) have been chosen: The ug layer typically makes about 75% of the
executable, the problem class layer takes 20% in the convection-diffusion case (with
many different solvers) and a main program typically is only 5%. This means in
practice:

e 75% of the code can be reused without any change when switching to more
complicated equations. This has been proved already for incompressible
Navier-Stokes equations.

e The user interested in implementing new numerical algorithms (a problem
class library) will never be concerned with low level programming,.

e As a consequence of that his code is portable since machine dependencies
typically arise only in the ug layer.

The concept of code reuse becomes even more important in a parallel envi-
ronment, see [4] for a parallel implementation of ug.

5 Numerical Results

In the following we discuss the application of the above-mentioned robustness
strategies to three problems, serving as paradigms for typical singularly perturbed
problems.

5.1 The Skin Problem

As a first test problem we take the following one which is used to model the
penetration of drugs through the uppermost layer of the skin (stratum corneum).
The stratum corneum is made up of corneocytes which are embedded in a lipid
layer. The diffusion is described by the diffusion equation

—V(D(z,y)Vu) + % = 0 inQ (12)
U 1 only
U 0 onl,
6_u = 0 onl'.UIY
on

where Q is the unit square and the diffusion coefficient D(z,y) is given by
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Figure 4: Right hand side: Structure of skin made up from corneocytes (white)
and lipid layers (gray/black). The considered block of stratum corneum is 11pm
by 60.2um. Left hand side: Elementary cell consisting of a corneocyte surrounded
by one half of the lipid layer.

_ [ Dy if (z,y) € lipid
D(z,y) = { D, if (z,y) € corneocyte ’

i.e. it may jump by some orders of magnitude across the corneocyte edges.
The corneocytes are very flat and wide cells which in a two-dimensional cross-
section are approximated by thin rectangles as shown in Fig. 4.

From Fig. 4 we see that the lipid layer is 0.1um thick while the corneocytes are
1 by 30um of size. Since the permeability may jump by some orders of magnitude
between lipid and corneocyte, we must align the coarse-grid lines with the inter-
faces. So we just take the corners of the corneocytes as points for the coarse grid
connecting them to form a tensor product grid. Thus we get rid of the problems
induced by jumping coefficients. However, we obtain highly anisotropic grid cells
in the lipid layer with an aspect ratio of approx. 1:150. Since such an aspect ratio
makes the approximation strongly deteriorate and the multi-grid method as well,
we use the anisotropic (“blue”) refinement strategy to derive a robust multi-grid
method and to create a grid which after 5 levels of blue refinement has elements not
exceeding an aspect ratio of 1:5. Above that level we refine uniformly. To obtain
a robust method on the coarser grids we use an ILUg-smoother, cf. [28]. Average
convergence factors for a (1,1,V)-cycle are given in Table 2. For more details on
this problem see [17].

5.2 Convection-Diffusion Equation

As a second example we show results for the convection-diffusion equation

12



Table 2: Convergence rate of a (1,1,V)-mmgm applied to the stationary skin prob-
lem for various values of Dy (D; = 1). The number of unknowns was 54385 on
level 5 (6 grid levels).

D, 1 10! 1072 10°%® 107%* 10° 10°°
p 008 022 039 041 045 045 043

Table 3: Robustness of a (1,1,V)-mmgm with ILU-smoother and downwind
numbering. The method used 8 locally refined grids to discretize problem the
convection-diffusion problem with over 10.000 unknowns on level 8. The conver-
gence rate k(10) is averaged over 10 steps and refers to the finest grid.

€ 1 10! 1072 1073 107* 107° 10°¢® 1077
x(10) 0.068 0.067 0.075 0.102 0.092 0.068 0.033 0.018

—Au+c-Vu=f (13)

in the unit square with Dirichlet boundary conditions. We choose ¢ as follows

c= (1 — sin(a) [2 (a: + %) — 1] + 2cos(a) [y - i])Ll (cos(a),sin(a))T  (14)

where a is the angle of attack. The boundary conditions are: v = 0 on
{(,y) ¢ =0,0<y <1}U{(z,):0<e<Ly=1}U{(&,y):2=1,0<y <
1}JU{(z,y) : 0<2<0.5,y=0}andu=1on {(z,y) : 0.5 <z <1ly=0} The
jump in the boundary condition is propagated in direction . We have dive = 0
and c varies strongly on {2 such that the problem is convection dominated in one
part of the region and diffusion dominated in another part. As discretization we
use a finite volume scheme with first order upwinding for the convective terms
on a triangular grid. The grid is refined adaptively using a gradient refinement
criterion. As smoother we took a GauB-Seidel scheme with downwind numbering
using algorithm 3.1 in a (1,1,V)-cycle mmgm. Tt is important to note that the
smoother itself is not an exact solver. Thus we should see the benefit of multi-
grid in the diffusion dominated part and of the robust smoother in the convection
dominated one. This is confirmed by the results given in Table 3. There we show
the residual convergence rate averaged over 10 steps for problem (13) on adaptively
refined unstructured grids versus €.

For the same problem with € = 107 the same mmgm but without downwind
numbering shows a convergence rate of 0.95 averaged over 40 steps and taking the

13



- Dirichlet 0.0 4 mm >

D N N DN D ND N

Zoom \

?

_>| |<— N: Neumann b.c. between wires ﬂ

D: Dirichlet 1.0
0.01 mm at "wires'

Figure 5: Problem definition, coarse grid and zoom for the drift chamber problem.

smoother with downwind numbering but without coarse grid correction as a solver,
we end up with a convergence rate of 0.949 as well. This confirms the outlined
concept of robust multi-grid. Results of 3d computations can be found in [6].

5.3 Drift Chamber

This problem solves the Laplacian —Awu = 0 in the domain given by Fig. 5. The
boundary conditions are of Dirichlet and Neumann type as indicated in the figure.
The feature of this problem are the small wires with Dirichlet boundary conditions
that must be resolved on the coarse grid. The smallest wire has a radius of 0.005
mm, while the whole chamber is 4 mm wide and 1 mm thick. So one has to trade
off between a coarse grid with few unknowns but a large aspect ratio in grid cells
and a coarse grid with equal sized triangles but a large number of unknowns. The
grid in Fig. 5 is a reasonable compromise with 85 nodes and 112 triangles but still
aspect ratios are large and a robust smoother is required.

Table 4 shows the results of multiplicative and additive multigrid with sev-
eral different smoothers applied after 3, 4, 5 and 6 levels of uniform refinement.
Specifically the smoothers were damped jacobi with w = 2/3 (djac), (symmet-
ric) GauB-Seidel (gs, sgs) and ILU without modification and with 8 = 0.35 (ILU,
ILUg). We make the following remarks:
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Table 4: Results for different solver/smoother combinations for the drift chamber
problem. Multigrid data: (2,2,V) cycle for jacobi smoother, v = 1 for amgm,
(2,2,V) cycle for all other smoothers, initial solution 4 = 0, numbers are iterations
for a reduction of the residual by 1079 in the euclidean norm. The grid nodes have
been ordered lexicographically, iteration numbers exceeding 100 are marked with
an asterisk, diverging iterations are marked with 1.

highest level 3 4 5 6
grid nodes 3809 14785 58241 231169
mmgm djac * * * *
gs 79 99 * *

sgs 48 59 66 70

ILU 33 0 1 1

ILUg 9 9 9 9

mmgm+cg  djac 31 38 43 43
sgs 13 16 17 18

ILU 10 0 0 T

ILUg 6 6 6 6

amgm+cg  djac 74 99 * *
sgs 36 46 53 57

ILU 62 0 0 T

ILUg 20 24 25 26

1. h independent convergence is only achieved with the ILUg smoother. The
optimal value was 8 = 0.35 but the choice is not very sensitive and good
results are achieved with values between 0.2 and 0.5. This corresponds nicely
with the theory in [28].

2. The additive method shows qualitatively the same behaviour as the multi-
plicative multi-grid method but has worse numerical efficiency.

3. Multiplicative multi-grid with a symmetric Gauf3-Seidel smoother used as
preconditioner in a conjugate gradient method is the only combination giving
also relatively satisfactory results, being only a factor 3 slower in computation
time than the ILUg smoother.

4. The diverging iteration for ILU without modification can be explained by
accumulating roundoff errors. Since the global stiffness matrix is symmetric
positive definite but not an M-matrix due to obtuse angles the diagonal
elements in the ILU decomposition can become very small which leads to
instabilities. The modification helps in this case too, since it enlarges the
diagonal.
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