ADAPTIVE MULTIGRID METHODS: THE UG CONCEPT

P. Bastian
G. Wittum
Interdisziplindres Zentrum fur Wissenschaftliches Rechnen, Universitat Heidelberyg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Federal Republic of Germany,
wittum @Qiwr. uni-heidelberg. de

Abstract

In the present paper we discuss the development and practical application of
a flexible software toolbox for multigrid methods on unstructured and locally
refined grids. Our first aim is to combine modern optimal multigrid methods
with the robustness strategies developed for structured grids and in the second
part we discuss a parallel implementation of the programming environment on
multiprocessors with distributed memory. The various techniques are illustrated
with many practical experiments.

1 Introduction

In the first part of this paper we discuss the development and practical application of
robust multi-grid methods to solve partial differential equations on adaptively refined
grids. Since a couple of years multi-grid methods are well established as fast solvers
for large systems of equations arising from the discretization of differential equations.
However, it is still a substantial unresolved question to find robust methods, working effi-
ciently for large ranges of parameters e.g. in singularly perturbed problems. This applies
to diffusion-convection-reaction equations, arising e.g. from modelling of flow through
porous media, the basic equations of fluid mechanics and plate and shell problems from
structural mechanics.

Multi-grid methods are known to be of optimal efficiency, i.e. the convergence rate k
does not depend on the dimension of the system, characterized by a stepsize h. Following
[28] we call a multi-grid method robust for a singularly perturbed problem, if

k(h,e) < kg <1, Ve >0, h >0, (1)

€ denoting the singular perturbation parameter. Up to now multi-grid methods
satisfying (1) have been studied in the literature only for special model cases using
structured grids, see [24], [25], [17], [27], [28], [29].

Problems of the type mentioned, typically show degenerations in hyperplanes. To
resolve these zones special dynamic grid adaptation techniques are necessary. Here it
is necessary to rethink standard multi-grid techniques. In §2 we classify several multi-
grid approaches for adaptively refined grids. On the one hand adaptively refined grids
can substantially weaken the robustness requirement (1) as outlined in §3. On the other
hand the unstructured grids generated by adaptive refinement require special numbering
techniques so that the smoother does a good job on the problem. It is one of the main

objectives of the present paper to present a strategy to combine the techniques of robust
multi-grid and adaptivity.

The practical use of the techniques mentioned so far requires a substantial pro-
gramming effort. Compared with traditional approaches on structured uniformely re-
fined grids in logically rectangular domains, code complexity is at least an order of
magnitude higher according to our experience. It is the aim of the ug code described
in §4 to find proper programming abstractions that allow reuse of the code for many
different applications. This is especially important in the parallel version (§5), where
the dynamic management of the distributed data structure complicates the code sub-
stantially. It should be noted here that most of the robustness techniques described in
the first part of the paper are very hard to parallelize efficiently, so the parallel version
uses only simpler parallelizable smoothers at the moment.

Several practical examples illustrating the robustness techniques in the serial version
and speedup results for the parallel version are presented in §6.

2 Multi-Grid Strategies

2.1 Basic Multi-Grid Techniques

Let the linear boundary-value problem

Ku = fin Q (2)

u = ug on OS2

with a differential operator K : U — F' between some function spaces be given
on a domain Q C R% Let (2) be discretized by some local discretization scheme on a
hierarchy of admissible grids (cf. [14])

Ql , lZO,...,lma$ (3)
G C Y CO

We use nested grids only for ease of presentation. Most of the methods discussed be-
low can readily be applied to general loosely coupled grids violating (3). The discretized
equations on {; are denoted by

Klul = fl in Ql, for [=]_, .. -;lmum 5 (4)
U = Ugry O an
with
K:U—-F |, (5)

U, F; denoting the discrete analoga of U and F with finite dimension n. We assume
that the discretized equations are sparse. Further let some “smoother”

SliUl—>Ul fOI"l:O,...,lmaz , (6)

and “grid transfer operators”

pi—1:U_1—=U, r_1:F—>F_ forl=1,...,lpne (7)

be given.

Multi-grid methods are fast solvers for problem (4). We basically distinguish be-
tween additive and multiplicative multi-grid methods. The multiplicative method is the
well-known classical multi-grid (cf. [13]) as given in algorithm 2.1:

Algorithm 2.1 Multiplicative multi-grid method.

mmgm(l, u, f)

integer [; grid function u, f;

{ grid function v, d; integer j;
if (1=0)u:=K 'f;

else {
u =8 (u, f);
d:=r_1(Ku— f);
v 1= 0;

for j:=1 step 1 to v do mmgm(l — 1, v, d);
U= U — p1v;

u = 8% (u, f);

The additive multi-grid method is given by the following algorithm.

Algorithm 2.2 Additive multi-grid method.

amgm(l, u, f)
integer /; grid function v[l], d[l];
{ integer j;
dll] :== K — f; v[l] :==0;
for j:=l step -1 to 1 do { d[j — 1] := rj_1d[j]; v[j — 1] := 0;}
for j:=1 step 1 to I do v[j] := S (v[j]. d[4]);
v[0] := K, 'd[0];
for j:=1 step 1 to I do v[j] :=v[j] + pj—1v[j — 1];
u = u — v[l];

The structure of both algorithms can be seen from Figs. 1(a) and 1(b). The main
difference between these two variants is that in the multiplicative method smoothing
and restriction of the defect to the next coarser level are performed on one level after
the other sequentially, while in the additve method smoothing on the different levels
can be performed in parallel. Restriction and prolongation, however, are sequentially in
the additive method too. Usually, the additive methods are applied as preconditioners,

3

(b)

S: Smoother

P D: Defect

R: Restriction
P: Prolongation
+: Sum

Figure 1: Outline of the V-cycle multiplicative multigrid algorithm mmgm (a) and of
the additive multigrid algorithm amgm (b).

since acceleration methods like cg directly pick an optimal damping parameter, the
multiplicative methods are used as solvers and as preconditioners. According to [31],
these methods can be formulated as additive Schwarz methods.

Applying multi-grid methods to problems on locally refined grids one has to think
about the basic question, how to associate grid-points with levels in the multi-grid
hierarchy. Consider the hierarchy of grids {,l = 0,..., e} from (3). Early multi-
grid approaches smooth all points in €2;,. This may cause a non-optimal amount of
work and memory of O(nlogn) per multi-grid step. This problem was the starting
point for Yserentant , [32], and Bank-Dupont-Yserentant, [1], to develop the method of
hierarchical bases (HB) and the hierarchical basis multi-grid method (HB/MG). These
were the first multi-grid methods with optimal amount of work per step for locally refined
grids. This is due to the fact that on level [only the unknowns belonging to points in
Q\ 1 are treated by the smoother. However, the convergence rate deteriorates with
logn. For the first time this problem was solved by the introduction of the additive
method by Bramble, Pasciak and Xu, [9], (BPX). There on level [the smoother treats
all the points in ; \ €,—; and their direct neighbours, i.e. all points within the refined
region.

Table 1 gives an overview of the multi-grid methods used for the treatment of
locally refined grids and classifies the variant we call “local multi-grid”. The methods
mentioned above differ in the smoothing pattern, i.e. the choice of grid points treated
by the smoother. The methods in the first two lines are of optimal complexity for such
problems. The amount of work for one step is proportional to the number of unknowns
on the finest grid. However, only the methods in the second line, BPX and local multi-
grid converge independently of h for scalar elliptic problems. The basic advantage of the
multiplicative methods is that they do not need cg-acceleration and thus can be directly
applied to unsymmetric problems, further they show a better convergence rate and on
a serial computer the additive process does not have any advantage. The local multi-

Table 1: Multi-grid methods for locally refined grids.
basic structure

smoothing pattern additive multiplicative
1 BB gk Dugont
(_) new Yserentant, 1984, ank, Lupont,
points only /32 Yserentant, 1987,
1]
BPX
(2) refined Bramble, local multi-grid,
region only Pasciak, Xu, [21], [10], [6]
1989, [9]
(3) all parallel multigrid classical
: Greenbaum, .
points 1986, [12] multi-grid, [11]

grid scheme is the natural generalization of the classical multi-grid method to locally
refined grids, since in case of global refinement, it is identical with the standard classical
multi-grid method.

The local multi-grid has first been introduced by Rivara in [21] and first been
analyzed in 1991 by Bramble, Pasciak, Wang and Xu, [10]. They considered it as a
multiplicative variant of their so-called BPX-method, [9]. However, they did not consider
robustness. Without knowledge of this, the authors developed this method as a variant
of standard multi-grid based on the idea of robustness (cf. [6]). The main advantage
of this approach is that the application to unsymmetric and non-linear problems is
straightforward (cf. [6]). Robustness for singularly perturbed problems is achieved by
combining local multi-grid with robust smoothers (cf. [6]), as explained in the next
section.

3 Robustness Strategies

3.1 Robust Smoothing

Already in 1981, Wesseling suggested the first robust multi-grid method for singularly
perturbed problems discretized on structured grids [24], [25]. The main idea is to apply
a smoother which solves the limit case exactly. This is possible e.g. for a convection-
diffusion equation using a GauB-Seidel smoother and numbering the unknowns in con-
vection direction. Wesseling however, suggests to use an incomplete LU-smoother, since
this handles the convection dominated case as well as the anisotropic diffusion (cf. [17],
[28]). Main ingredients, however, are the use of structured grids and a lexicographic
numbering.

A simple analysis of the hierarchical basis methods (HB, HB/MG) shows that the
smoothing pattern is too poor to allow robust smoothing.

Remark 3.1 The hierarchical basis method and the hierarchical basis multigrid method
do not allow robust smoothing for a convection-diffusion equation. The smoothing pattern

used in these methods does not allow the smoother to be an exact solver for the limit
case. This holds for uniformly as well as for locally refined grids.

Based on this observation, we extended the smoothing pattern, adding all neigh-
bours of points in §2; \ €;_;. This allows the smoother to solve the limit case exactly,
provided the grid refinement is appropriate. This is confirmed by numerical evidence
given in Chapter 5.

Up to now some theory is contained in [28],[29] and the new papers by Stevenson
[22], [23] for uniformly refined grids. This theory shows that the basic requirement that
the smoother is an exact solver in the limit case is not sufficient to obtain robustness.
Additionally it must be guaranteed that the spectrum of the smoother is contained in
[—9,1] for 0 < ¥ < 1. This can be achieved by modification (cf. [28], [23]).

3.2 A Robust Smoother for Convection-Diffusion Problems

The construction of a robust smoother, which is exact or very fast in the limit, is the
kernel of a robust multigrid method and makes up the main problem when applying
this concept to unstructured grids. Here we need special numbering strategies.

In the following we present a strategy for the convection-diffusion equation

—cAu+c-Vu=f, (8)

with the convection vector ¢, and € > 0. Discretizing the convection term by means
of an upwind method, we can assign a direction to each link in the graph of the stiffness
matrix. If the directed graph generated by this process is cycle-free, it defines a partial
ordering of the unknowns. This partial ordering can be used to construct an algorithm
for numbering of the unknowns, which brings the convective part of the stiffness matrix
to a triangular form. The following numbering algorithm performs such an ordering on
general unstructured grids, provided the convection graph is cycle-free.

Algorithm 3.1 downwind_numbering.

1. Assign the downwind direction from the discretization of the convective term to
each link in the stiffness martix graph. Indifferent links are marked by O.

2. Put n = number of unknowns.
3. Find all vertices with minimal number of incoming links and put them in a fifo F'.

4. Derive a total order from the directed acyclic graph

For all vertices L initialize Index(L) = 0;
While (F' not empty) do
get E from F
(4a) Put Index(E) := 1; Put E in fifo FP; i := 1;
(4b) While (FP not empty) and (i < n) do
Get K from FP;
For all neighbors L of K do
If (L downwind from K) and (Index(L)< Index(K))

6

i := Index(L);
Index(L) := Index(K)+1;
Put L in F'P;

5. Call quicksort with the vertex list and the criterion Index(L) < Index(K) = L <
K. Output: Ordered vertex list.

Remark 3.2 If the edge graph is cycle-free, loop (4b) terminates in O(n)-steps with
FP = (. Loop (4) has complezity O(q - n) where q is the number of minimal elements
in the edge graph, which is small. Because of calling quicksort in (5) the complexity of
the whole algorithm equals O(q - nlnn).

If loop (4b) terminates with FP # () and i > n, the edge graph contains a cycle.

This method has been used for the computations described in Section 5 . Meanwhile
it has been improved by Bey (cf. [7]). Cycles in the matrix graph may occur, if there
are vortices in the convection c. If ¢ is vortex-free, cycles can occur if several triangles
with sharp angles are neighbouring each other and are almost perpendicular to the flow
direction (cf. [7]). These numerically caused cycles, however, can be simply eliminated
by finding and cutting elementwise cycles. This is possible with O(n) work count.

3.3 Semi-coarsening

Another strategy to obtain a robust multi-grid method is the so-called semi-coarsening
approach (cf. [8]). The basic idea is to improve the coarse grid correction instead of
the smoother. Starting with a fine and structured grid, coarsening is performed only in
those co-ordinate directions, in which the scale of the equation is already resolved. E.g.
for the anisotropic model problem

(€0 + By)u=f, mQ=(0,1)x (0,1) 9)

with corresponding boundary conditions one would coarsen an equidistant cartesian
grid in case of small € as shown in Figure 2(a).

Remark 3.3 Such a sequence of coarse grids yields a robust multi-grid method for the
anisotropic model problem (9) without using a special smoother, since the coarse grid
resolves the scale in the direction where the smoother does not work.

This semi-coarsening approach, however, is based on the use of fine grids which do
not resolve the differential scale, otherwise there would be no semi-coarsening. Conse-
quently this approach is not applicable as soon as the finest grid resolves the problem
scale, which is crucial when solving differential equations.

This does not apply to so-called multiple semi-coarsening approaches [20], since
these methods are able to construct sequences of coarse grids from any structured fine
one, no matter if the scale is resolved. Solving practical problems we mainly have to
look for an approach which allows to adapt the grid to the differential scale by adaptive
refinement and to solve efficiently on the hierarchy of grids generated this way.

Semi-coarsening (a) anisotropic refinement (b)
IO RTCCRCRTERTRERRTARAOAR

A good
approximation

bad
approx.

isotropic
refinement

good
A approximation

now way down anisotropic
refinement

bad
approx.

Figure 2: Illustration of semi-coarsening (a) and anisotropic refinement (b).

3.4 Anisotropic Refinement

Instead of starting with a fine grid andtonstructing the gridhierarchy by coarsening
we start with a coarse grid and refine that anisotropically in order to resolve the scale
successively. Such a refinement process is given e.g. by th¢blue refinement strategy”
due to Kornhuber,[18]. The basic idea is just to refine quadrilaterals with a “bad aspect
ratio” by halving the longer edge. Bad aspect ratios can be introduced either by element
geometry or by anisotropic coefficients in the equation. This is shown for the anisotropic
model problem (9) in Fig. 2(b). Note that the discretizatiorerror is balanced on the
coarsest grid for semi-coarsening, while it is balanced on the finest grid for the anisotropic
refinement approach. Kornhuber described how to generalize this approach to triangular
unstructured grids. Following this process we finally obtain a grid €2; which resolves the
scale of the problem.

From this grid on we refine regularly andso the multi-grid process will obviously
work without problems.

Remark 3.4 A proof of robust multi-grid convergence is straightfaward since the asymp-
totic behaviour is determined by the isotropic problenfo we need a robust method only
for a finite sequence of grids upto a fized h > 0, weakening the robustness requirement
(1) to the relative robustness:

k(h,e) < ko<1, VE>e>e>0,Vh>h>0, (10)

(" application level)

main program, geometry, boundary conditions, problem coefficients
script files gridfiles
- J
4 problem classlibrary)
discretizations error estimators solvers
user data layout definition (format)
S ~/
(" uglibrary)
interface manager
grid1/0 load balancing user interface device independent
grid refinement load transfer command interpreter graphical output
low level grid management, multigrid data structure
interfaces * message passing if utilities * memory management
* graphics device drivers ‘ f'f9
« basic 1/0 * miscellaneous
e communication
- J

Figure 3: Overview of the internal structure of the ug code.

which makes the job much easter. Thus it is sufficient in many cases to use just a
lexicographically numbered ILUg, since we do not need the property that the smoother is
exact in the limit case. It is sufficient that it reasonably accounts for the “main connec-
tions” up to a fired range of € > 0 and for finite h.

Since this process improves the approzimation of the differential problem at the same
time, this will be the appropriate approach to follow.

An example of that type is the skin problem described in §5.

4 The Software Toolbox ug

A big problem in practice with the modern adaptive multigrid methods introduced
above is code complexity when implementing these methods in a computer program.
Especially on the parallel computer this is an important point since the dynamic parallel
management of the data structure is very complicated. Therefore we developed the
software environment ug (“unstructured grids”) as a problem independent “toolbox”
for (parallel) unstructured adaptive multigrid applications. It is a layered construction
of several libraries, see Fig. 3 for an overview. The bottom layer contains all components
that are totally independent of the PDE to be solved, e. g. grid I/O, grid refinement,
device independent graphical output, user interface and dynamic grid management with
load balancing in the parallel version. The next layer is the so-called problem class library

that implements discretization, error estimators and solvers for a whole class of PDEs,
e. g. a scalar conservation law or incompressible, stationary Navier-Stokes equations. On
top of that resides the user’s application that provides the domain, boundary conditions
and problem coefficients for the lower layers.

The relative code size of these layers indicates that the proper abstractions (inter-
faces) have been chosen: The ug layer typically makes about 75-80% of the executable,
the problem class layer takes 15-20% in the convection-diffusion case (with many differ-
ent solvers) and a main program typically is only 5%. This means in practice:

e Modularization and hierarchical code design is the major tool to get a reliable
piece of software.

e 75-80% of the code can be reused without any change when switching to more
complicated equations. This has been proved already for incompressible Navier-
Stokes equations in the serial version of the code.

e The user interested in implementing new numerical algorithms (a problem class
library) will never be concerned with low level programming.

e As a consequence of that his code is portable since machine dependencies typically
arise only in the ug layer. Message passing interfaces are available for several
parallel machines (Parsytec, Intel Paragon, PVM).

e The final aim is to have a consistent software environment in 2 and 3 space di-
mensions on serial and parallel machines.

5 Parallelization

Here we will only cover briefly some basic aspects of the parallel implementation, for a
more detailed discussion we refer to [5]. The primary parallelization approach is data
partitioning, i.e. the parallelism inherent to multigrid methods is exploited. This poses a
restriction on the smoother that can be used in the parallel code. Robustness strategies
such as ILU or the special numbering strategies presented in paragraph 3.2 can not be
parallelized efficiently, at least on unstructured grids (for structured rectangular grids
see [3]). Therefore the parallel implementation currently uses either point Jacobi or
inexact Block-Jacobi smoothers (with one or several steps GS or ILU as inner solver).

The data partitioning uses a unique mapping of the elements (of all levels) to the
set, of processors. For each element ¢ assigned to a processor p, this processor holds
also a copy of the nodes of ¢t and of the father element of ¢ and its nodes. This leads
to an overlapping storage scheme, where e.g. several copies of one node are stored in
different processors. The parallel data management module provides high level routines
for exchange of data between these copies.

The stiffness matrix is only assembled per processor and is fully parallel and does not
need any communication. Restriction and prolongation proceed without communication
as long as each son of an element ¢ is mapped to the same processor as ¢. The nested
grid refinement algorithm can also be parallelized efficiently if there is a refinement rule
for each edge refinement pattern possible. In this case the iteration in the green closure
of the triangulation can be avoided.

10

Theoretical investigations and practical experience shows that multiplicative multi-
grid methods are twice as efficient as additive multigrid methods in terms of computer
time on a single computer, since the number of iterations to reach a convergence crite-
rion is doubled, but one iteration of amgm costs not much less than one of mmgm. On
a parallel machine the picture may be different for two reasons: First the granularity
of amgm is coarser. In the smoother amgm can send all updates for levels 1,...,7 in
one large message, while mmgm must send the updates on all levels seperately, i.e. j
smaller messages. The second and more important point is, that different load balancing
methods can be used for both methods. In mmgm each grid level must be distributed
equally onto all processors while in amgm it is sufficient that the number of elements on
all levels is about the same for each processor (if there is no communication in restriction
and prolongation).

The most complicated part of the parallelization is the load balancing module which
is divided into two parts: The load balancer determines only the new assignment of
elements to processors while the load transfer part actually moves the parts of the
data structure to their new position. The basic idea for the load balancing part is
to first assign the elements to clusters (subsets of elements) and then to assign the
clusters to the processors. The clustering process reduces the complexity of the load
balancer dramatically, the number of clusters is only proportional to the number of
processors. Since the clusters are built via the element hierarchy, they are the key to
find a compromise between inter- and intragrid communication. The central element of
the cluster assignment algorithm is currently a recursive coordinate bisection strategy.
More elaborate techniques will be tested in the future when nonlinear systems are to be
solved. Due to the high efficiency of the multigrid method for the simple scalar elliptic
problems, care must be taken that the load balancer does not dominate the computation
time.

6 Numerical Results

The first four problems show applications of the serial ug version, the last two examples
give some insight into the performance of the parallel version (more examples can be
found in [5]).

6.1 The Skin Problem

As a first test problem we take the following one which is used to model the penetration
of drugs through the uppermost layer of the skin (stratum corneum). The stratum
corneum is made up of corneocytes which are embedded in a lipid layer. The diffusion
is described by the diffusion equation

—V(D(z,y)Vu) + % = 0 inQ (11)
u = 1 onl,
U 0 onl,
8_u = 0 onl',UIj
on

11

| I |
lipid layer ———] I I

|| corneocyte ||

corneocyte t 1 | | |
Hm I I

<4— 30pm —P
i | I |

0.05 um | ||

Figure 4: Right hand side: Structure of skin made up from corneocytes (white) and lipid
layers (gray/black). The considered block of stratum corneum is 11um by 60.2um. Left
hand side: Elementary cell consisting of a corneocyte surrounded by one half of the lipid
layer.

Table 2: Convergence rate of a (1,1,V)-mmgm applied to the stationary skin problem
for various values of Dy (D; = 1). The number of unknowns was 54385 on level 5 (6
grid levels).

D, 1 10! 1072 10% 10* 10° 106
p 008 022 039 041 045 0.45 0.43

where €2 is the unit square and the diffusion coefficient D(z,y) is given by

| Dy if (z,y) € lipid
D(z,y) = { D, if (z,y) € corneocyte

i.e. it may jump by some orders of magnitude across the corneocyte edges. The
corneocytes are very flat and wide cells which in a two-dimensional cross-section are
approximated by thin rectangles as shown in Fig. 4.

From Fig. 4 we see that the lipid layer is 0.1pm thick while the corneocytes are 1 by
30um of size. Since the permeability may jump by some orders of magnitude between
lipid and corneocyte, we must align the coarse-grid lines with the interfaces. So we just
take the corners of the corneocytes as points for the coarse grid connecting them to form
a tensor product grid. Thus we get rid of the problems induced by jumping coefficients.
However, we obtain highly anisotropic grid cells in the lipid layer with an aspect ratio of
approx. 1:150. Since such an aspect ratio makes the approximation strongly deteriorate
and the multi-grid method as well, we use the anisotropic (“blue”) refinement strategy
to derive a robust multi-grid method and to create a grid which after 5 levels of blue
refinement has elements not exceeding an aspect ratio of 1:5. Above that level we refine
uniformly. To obtain a robust method on the coarser grids we use an ILUg-smoother,
cf. [28]. Average convergence factors for a (1,1,V)-cycle are given in Table 2. For more
details on this problem see [19].

12

Table 3: Robustness of a (1,1,V)-mmgm with ILU-smoother and downwind numbering.
The method used 8 locally refined grids to discretize problem the convection-diffusion
problem with over 10.000 unknowns on level 8. The convergence rate k(10) is averaged
over 10 steps and refers to the finest grid.

€ 1 10t 102 107* 10=* 10=°® 10°% 1077
k(10) 0.068 0.067 0.075 0.102 0.092 0.068 0.033 0.018

6.2 Convection-Diffusion Equation

As a second example we show results for the convection-diffusion equation

—Au+c-Vu=f (12)

in the unit square with Dirichlet boundary conditions. We choose ¢ as follows

1

c= (1 —sin(a) |2 (a: + %) - 1] + 2 cos(a) [y - ZD4 (cos(a),sin(a))” (13)

where « is the angle of attack. The boundary conditions are: v = 0 on {(z,y) : x =
0,0<y<1}U{(z,y):0<z<1l,y=1}U{(z,y) : 2 =1,0<y <1} U{(z,y) :
0 <z <05y=0}andu=1o0n{(r,y) : 0.5 <z < 1,y = 0}. The jump in
the boundary condition is propagated in direction a. We have dive = 0 and c varies
strongly on €2 such that the problem is convection dominated in one part of the region
and diffusion dominated in another part. As discretization we use a finite volume scheme
with first order upwinding for the convective terms on a triangular grid. The grid is
refined adaptively using a gradient refinement criterion. As smoother we took a Gaufl-
Seidel scheme with downwind numbering using algorithm 3.1 in a (1,1,V)-cycle mmgm.
It is important to note that the smoother itself is not an exact solver. Thus we should
see the benefit of multi-grid in the diffusion dominated part and of the robust smoother
in the convection dominated one. This is confirmed by the results given in Table 3.
There we show the residual convergence rate averaged over 10 steps for problem (12) on
adaptively refined unstructured grids versus .

For the same problem with ¢ = 107 the same mmgm but without downwind
numbering shows a convergence rate of 0.95 averaged over 40 steps and taking the
smoother with downwind numbering but without coarse grid correction as a solver, we
end up with a convergence rate of 0.949 as well. This confirms the outlined concept of
robust multi-grid. Results of 3d computations can be found in [7].

6.3 Drift Chamber

This problem solves the Laplacian —Awu = 0 in the domain given by Fig. 5. The boundary
conditions are of Dirichlet and Neumann type as indicated in the figure. The feature
of this problem are the small wires with Dirichlet boundary conditions that must be
resolved on the coarse grid. The smallest wire has a radius of 0.005 mm, while the whole
chamber is 4 mm wide and 1 mm thick. So one has to trade off between a coarse grid with

13

- 4 mm |

Dirichlet 0.0
N N
/N
D N N DN D N D N

Zoom \

> | | < N: Neumann b.c. between wires /
D: Dirichlet 1.0

0.01 mm at "wires'
[b]

Figure 5: Problem definition, coarse grid and zoom for the drift chamber problem.

few unknowns but a large aspect ratio in grid cells and a coarse grid with equal sized
triangles but a large number of unknowns. The grid in Fig. 5 is a reasonable compromise
with 85 nodes and 112 triangles but still aspect ratios are large and a robust smoother
is required.

Table 4 shows the results of multiplicative and additive multigrid with several dif-
ferent smoothers applied after 3, 4, 5 and 6 levels of uniform refinement. Specifically the
smoothers were damped Jacobi with w = 2/3 (djac), (symmetric) Gauf-Seidel (gs, sgs)
and ILU without modification and with § = 0.35 (ILU, ILUs). We make the following
remarks:

1. h independent convergence is only achieved with the ILUg smoother. The optimal
value was 8 = 0.35 but the choice is not very sensitive and good results are
achieved with values between 0.2 and 0.5. This corresponds nicely with the theory
in [28].

2. The additive method shows qualitatively the same behaviour as the multiplicative
multi-grid method but has worse numerical efficiency.

3. Multiplicative multi-grid with a symmetric Gau-Seidel smoother used as pre-
conditioner in a conjugate gradient method is the only combination giving also
relatively satisfactory results, being only a factor 3 slower in computation time
than the ILUg smoother.

4. The diverging iteration for ILU without modification can be explained by accu-
mulating roundoff errors. Since the global stiffness matrix is symmetric positive
definite but not an M-matrix due to obtuse angles the diagonal elements in the
ILU decomposition can become very small which leads to instabilities. The modi-
fication helps in this case too, since it enlarges the diagonal.

14

Table 4: Results for different solver/smoother combinations for the drift chamber prob-
lem. Multigrid data: (2,2,V) cycle for Jacobi smoother, v =1 for amgm, (2,2,V) cycle
for all other smoothers, nitial solution u = 0, numbers are iterations for a reduction
of the residual by 107% in the euclidean norm. The grid nodes have been ordered lex-
icographically, iteration numbers exceeding 100 are marked with an asterisk, diverging
iterations are marked with 1.

highest level 3 4 3 6
grid nodes 3809 14785 58241 231169
mmgm djac * * * *
gs 79 99 * *

sgs 48 59 66 70

ILU 33 0 0 1

ILUg 9 9 9 9

mmgm+-cg djac 31 38 43 43
sgs 13 16 17 18

ILU 10 1 1 1

ILUg 6 6 6 6

amgm+cg djac 74 99 * *
sgs 36 46 53 a7

ILU 62 0 0 0

ILUg 20 24 25 26

6.4 A Shape Design Problem

A nonlinear example computed with ug is the following shape design problem. An in-
finitely long bar consisting of two different materials (hard and soft) and square cross
section is to be designed. The ratio of the two materials in a cross section is prescribed
and the torsional rigidy is to be maximized. The materials may be mixed at the in-
terface, for details see [16]. The differential equation modelling this situation is given
by

—div(o(||Vul|*)Vu) = 1 in(0,1)? (14)
u = 0 on 02
where ¢ is given by
P if z > 2;\%
p(z) = (/2L if % <z < 2;\%
M2 if z < 2;\%

and the constants are: A = 0.008, p; =1, po = 2.

The problem has been solved with global and local grid refinement using either
a damped fixed point iteration or a nonlinear multigrid method (with a fixed point
iteration as smoother). Table 5 shows the average reduction rates per iteration for the
four different methods and different refinement depths.

15

Figure 6: Left picture shows the function o(||Vu||) for the shape design problem. Regions
labeled with (1) consist of the soft material, regions labeled with (2) consist of the hard
material. The right picture shows a zoom into the local refinement in the corner.

Table 5: Average convergence rates over 10 iterations for the nonlinear shape design
problem using multiplicative multigrid with Gauf-Seidel smoother, and a (2,2,V) cycle.

J global refinement, local refinement

j nonlinear MG fixed point nonlinear MG fixed point
1 0.05 0.36 0.01 0.1
2 0.40 0.49 0.49 0.1
3 0.73 0.87 0.52 0.57
4 0.62 0.85 0.72 0.76
5 0.78 0.92 0.59 0.62
6 0.65 0.72
7 0.71 0.65

6.5 German Bight

This example is intended to show that multigrid methods on unstructured grids can be
parallelized as efficiently as on structured grids. The scalar, time-dependent convection-
diffusion equation is solved in the domain given in Fig. 7. The flow field is fixed but
nonuniform (it is taken from measurements by the BSH, Hamburg). The coarse grid is
already very fine (about 1200 triangles) and is mapped to the processors via orthogonal
recursive coordinate bisection [26] (Fig. 7 uses a 3 by 3 processor array).

All parallel results reported below have been computed on a Parsytec transputer
system with PARIX 1.2 and 4 MBytes RAM per processor.

Table 6 shows iteration times for a multiplicative multigrid method for up to three
levels of refinement (4 grids) and various processor numbers. Execution time increases

16

e e e m p— e wm P e

Figure 7: Triangulation of the German Bight and mapping onto 3 by 3 processors.

Table 6: [teration times in seconds for a (2,2,V) multiplicative multigrid cycle with
Block-Jacobi smoother with 2 steps symmetric Gaufl-Seidel as inner solver. The residual
in the level 0 equation has been reduced by 107,

Processors
j Elements 1 2 4 5 10 16 20
1 5956 7.3 3.8 25 19 13 09 0.8
2 23824 164 88 7.0 3.9 26 2.2
3 95296 13.8 89 7.3

from 7.3 seconds to 8.9 seconds (22% increase) when going from one to 16 processors
with problem size also increased by a factor of 16. Table 7 shows a computation of 50
timesteps on level 2 with various processor numbers from 2 to 20. The computation on
20 processors is 7.1 times faster than on two processors for a fixed problem size.

6.6 A Simple Locally Refined Example

This example illustrates the case of local grid refinement and gives a comparison of addi-
tive and multiplicative multigrid in terms of numerical efficiency. The Laplace equation

17

Table 7: Total solution time in seconds for 50 steps with implicit euler time integration.
Three grid levels have been used with 23824 triangles on the finest grid (fized problem
size for all processor numbers). Within each timestep the residual has been reduced by
10=° with the multigrid method from the previous table.

Processors
2 4 5 10 20 SGI Crimson
Time 3610 1913 1668 964 510 1310
Speedup 1 1.9 22 37 71
1o
A - V.- N o
level b+1 N
wa| [
0.0 b+3f |
oo I ! ! 1.0

Figure 8: Grid refinement for the locally refined model problem with w = 1.

0.125 0.25 0.5

with Dirichlet boundary conditions is to be solved in the unit square:

—Au
u(z,0)
u(1,y)
u(z,1)
u(0,y)

= 0, in Q=(0,1)?
= iz, T €10,1]
= ;+1v y € [0,1]
= %-f—i(l—x), z € [0,1]
= $+:(1-y), ye€o,1]

The initial triangulation 7; consists of 4 quadrilaterals with one unknown. Re-
finement is uniform up to some prescribed level b and beginning with level b refine-
ment is such that the grid on level k is restricted to the rectangle [0, s;]? with s, =
(vVw/2)¥7 (k > b) (see Fig. 8). The factor w is called the “growth factor”, since the
number of elements on level k£ + 1 is defined recursively by #7171 = w#T}. With w =4
one gets uniform refinement and w = 1 indicates a case where there is no geometric
growth in the number of unknowns. Table 8 shows the results for w = 1,2,3,4 and
additive and multiplicative multigrid. Note that the problem size is increased with the
number of processors. However it is not possible to get always the same number of
unknowns per processor for different values of w.

The conclusions drawn from this test are:

18

Table 8: Results for different locality of refinement (w, see text) and a varying number
of processors. Tsor, (total solution time) is for a 107° reduction in residual norm on
level j after a nested iteration. Multigrid data: vi = vo = 1,7 =1 for mmgm, v =1 for
amgm with a point Jacobi smoother. Refinement was uniform up to level 4 (h = 1/32)
except for cases w = 1 and P > 1 where refinement was uniform up to level 5. N 1is
the number of unknowns after j adaption steps, Err is the parallel efficiency in one
multigrid iteration.

w mmgm-+-jac cg+amgm+-jac
P 1 4 16 32 64 1 4 16 32 64
4 g 4 5 6 7 7 4) 6 7 7
N 1089 4225 16641 66049 66049 1089 4225 16641 66049 66049
Tsor 5.95 5.87 6.55 12.49 6.83 933 1017 11.04 20.98 11.43
Err 85 75 7 71 88 79 82 76
3 J 5 6 7 7 8 5 6 7 7 8
N 3553 10657 31656 31656 94440 3553 10657 31656 31656 94440
Tsor 18.14 1559 13.09 7.99 1546 31.38 25.81 2144 1197 17.85
Err 86 76 71 47 90 80 71 71
2 g 5 7 8 9 10 5 7 8 9 10
N 2768 12223 24767 49974 99638 2768 12223 24767 49974 99638
Tsor 1559 19.05 11.77 12.60 13.44 26.00 28.43 18.68 19.77 20.92
Err 78 64 59 55 86 71 74 63
1 6 6 10 13 15 6 6 10 13 15
N 2753 7425 20225 29825 36225 2753 7425 20225 29825 36225
Tsor 1539 11.13 10.17 10.69 11.14 24.37 18.49 15.68 13.93 9.96
Err 78 60 41 24 85 64 53 45

e The additive method has always better or equal (only one case) efficiencies than
the multiplicative method. This is due to coarser grained parallelism and the
possibility of using decompositions with smaller interfaces. The latter is the more
important point which can be seen by considering the results for P = 64 and
comparing efficiencies for different w. For w = 4 both load balancing methods yield
the same decomposition and efficiencies differ not much. For w getting smaller the
differences become greater.

e The solution time is always smaller for the multiplicative method than for the
additive method, except the case of w = 1, P = 64. This is not a result of the
small number of unknowns per processor. In contrary to the case w > 1, one can
observe for w = 1 that efficiencies do not increase with problem size above level
10 for a fixed number of processors. This is due to the fact that the unknowns do
not grow geometrically with the number of levels (no decrease of the surface to
volume ratio).

e In the case where additive multigrid is equal or better than multiplicative multi-
grid in terms of total computation time both methods have to be considered as
inefficient. Since additive multigrid is a factor of two (roughly) more expensive on
a serial computer, parallel efficiency for multiplicative multigrid must be below
50% in order to allow additive multigrid to be better. Since there are also losses
in the latter method, the break even point happens to be at 25% efficiency for
multiplicative and 50% efficieny for additive multigrid in this example.

19

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

R. E. BAnk, T. F. DupoNT, H. YSERENTANT: The Hierarchical Basis Multigrid
Method , Numer. Math., 52, 427-458 (1988).

R. E. BANK: PLTMG: A software package for solving elliptic partial differential equa-
tions. Users Guide 6.0. SIAM, Philadelphia, 1990.

P. BASTIAN, G. HORTON: Parallelization of Robust Multigrid Methods: ILU Factoriza-
tion and Frequency Decomposition Method. SIAM J. Sci. Stat. Comput., 12, No. 6, pp.
1457-1470, 1991.

P. BASTIAN, G. WITTUM: On Robust and Adaptive Multigrid Methods. In: Proceedings
of the 4'h European Multigrid Conference, Amsterdam, July 1993, to appear.

P. BASTIAN: Parallel Adaptive Multigrid Methods. TIWR Report 93-60, Interdisziplinares
Zentrum fir Wissenschaftliches Rechnen, Universitit Heidelberg, 1993.

—: Locally Refined Solution of Unsymmetric and Nonlinear Problems. In: Hackbusch,
W., Wittum, G. (eds.): Incomplete Decompositons - Theory, Algorithms, and Applica-
tions, NNFM, vol. 41, Vieweg, Braunschweig, 1993.

J. BEY, G. WITTUM: A Robust Multigrid Method for the Convection-Diffusion Equa-
tion on locally refined grids. In: Adaptive Methods, Proceedings of the Ninth GAMM
Seminar, Notes on Numerical Fluid Mechanics, Vieweg Verlag, Braunschweig, 1993, to
appear.

A. BRANDT: Guide to Multigrid Development. in Hackbusch W., Trottenberg U. (eds.):
Multigrid Methods. Proceedings Koln-Porz, 1981. Lecture Notes in Mathematics, Bd.
960, Springer, Heidelberg, 1982.

J. H. BRAMBLE, J. E. PASCIAK, J. XU: Parallel Multilevel Preconditioners, Math.
Comput., 55, 1-22 (1990).

J. H. BRAMBLE, J. E. PaAsciak, J. WANG, AND J. XU, Convergence estimates for

multigrid algorithms without reqularity assumptions, Math. Comp., 57, (1991), pp. 23—
45.

R. P. FEDORENKO: Fin Relazationsverfahren zur Ldsung elliptischer Differentialgle-
ichungen. (russ.) UdSSR Comput Math Math Phys 1,5 1092-1096 (1961).

A. GREENBAUM: A Multigrid Method for Multiprocessors. Appl. Math. Comp., 19, 75-88
(1986).

W. HACKBUSCH: Multi-grid methods and applications. Springer, Berlin, Heidelberg
(1985).

—: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart, 1986.

—: The Frequency Decomposition Multi-grid Method. Part I: Application to Anisotropic
Equations. Numer. Math., 1989.

B. KAWOHL, J. STARA, G. WITTUM: Analysis and Numerical Studies of a Shape Design
Problem., Archive for Rational Mechanics, 114, 349-363, 1991.

20

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

R. KETTLER: Analysis and comparison of relaxation schemes in robust multi-grid and
preconditioned conjugate gradient methods. In: Hackbusch,W., Trottenberg,U. (eds.):
Multi-Grid Methods, Lecture Notes in Mathematics, Vol. 960, Springer, Heidelberg,
1982.

R. KORNHUBER, R. ROITZSCH: On Adaptive Grid Refinement in the Presence of Bound-
ary Layers. Preprint SC 89-5, ZIB, Berlin, 1989.

R. LieckrELDT, G. W. J. LEE, G. WIiTTUM, M. HEISIG: Diffusant concentration

profiles within corneocytes and lipid phase of stratum corneum. Proceed. Intern. Symp.
Rel. Bioact. Mater., 10 (1993) Controlled Release Society, Inc.

W. A. MULDER: A New Multigrid Approach to Convection Problems. J. Comp. Phys.,
83, 303-323 (1989).

M. C. R1VARA, Design and data structure of a fully adaptive multigrid finite element
software, ACM Trans. on Math. Software, 10 (1984), pp. 242-264.

R. STEVENSON: On the robustness of multi-grid applied to anisotropic equa-
tions: Smoothing- and Approzimation-Properties. Preprint Rijksuniversiteit Utrecht,
Wiskunde, 1992.

—: New estimates of the contraction number of V-cycle multi-grid with applications
to anisotropic equations. In: Hackbusch, W., Wittum, G. (eds.) : Incomplete Decom-
positions, Algorithms, theory, and applications. NNFM, vol 41, Vieweg, Braunschweig,
1993.

P. WESSELING: A robust and efficient multigrid method. In: Hackbusch, W., Trotten-
berg, U. (eds.): Multi-grid methods. Proceedings, Lecture Notes in Math. 960, Springer,
Berlin (1982).

—: Theoretical and practical aspects of a multigrid method. STAM J. Sci. Statist. Comp.
3, (1982), 387-407.

R. D. WiLLiAMS: Performance of Dynamic Load Balancing Algorithms for Unstructured
Mesh Calculations, Report C3P 913, California Institute of Technology, Pasadena, CA.,
(1990).

G. WritTUuM: Filternde Zerlegungen - Schnelle Loser fir grofie Gleichungssysteme. Teub-
ner Skripten zur Numerik Band 1, Teubner, Stuttgart, 1992.

—: On the robustness of ILU-smoothing. STAM J. Sci. Stat. Comput., 10, 699-717
(1989).

—: Linear iterations as smoothers in multi-grid methods. Impact of Computing in Sci-
ence and Engineering, 1, 180-215 (1989).

J. Xu: Multilevel theory for finite elements. Thesis, Cornell Univ., 1988.

—: TIterative Methods by Space Decomposition and Subspace Correction: A Unifying
Approach, STAM Review, 34(4), 581-613, (1992).

H. YSERENTANT: Uber die Aufspaltung von Finite-Element-Raumen in Teilrgume ver-
schiedener Verfeinerungsstufen. Habilitationsschrift, RWTH Aachen, 1984.

21

