DYNAMIC LOAD BALANCING FOR PARALLEL
ADAPTIVE MULTIGRID METHODS ON
UNSTRUCTURED MESHES

P. Bastian
Interdisziplindres Zentrum fiir Wissenschaftliches Rechnen, Universitit Heidelberg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Federal Republic of Germany,
bastian@iuwr.uni-heidelberg. de

Abstract

In this paper we consider parallel adaptive multigrid methods on unstructured
meshes using MIMD computers with distributed memory. We present two load
balancing algorithms designed for additive (BPX) and multiplicative multigrid.
Both methods will be compared in terms of parallel and numerical efficiency and
we also compare uniform with adaptive computation including the overhead in-
troduced by load balancing and load migration.

1 Introduction

We consider solution adaptive strategies on parallel computers with distributed memory
in order to solve linear elliptic boundary value problems of the form

div(r(z,y)u — e(z,y)Vu) = f(z,y) in @ C R? (1)
u = g(z,y) on 09 . (2)
Our adaptive strategy consists of the following steps:

1. Start with an intentionally coarse grid T, since the grid is coarse this can be done
on a single processor. Set j = 0.

2. Discretize the b.v.p. on all grid levels T, ..., T}, yielding systems of linear equa-
tions Az = bg. The discretization is of finite volume type, based on the ideas of
[12].

3. Solve the discrete equations with a multigrid procedure. Here we have the choice of
an additive multigrid method (also called BPX method) or the usual multiplicative
multigrid scheme. Both methods are of optimal complexity for arbitrary local grid
refinement but differ in communication granularity and the way load balancing
can be done. For details of the methods see [15],[4],[5],[6],[1],[2]-

4. Estimate the discretization error. Here we employ either a residual based error
estimator for the diffusion dominated case or the gradient of u scaled with local
mesh size for the convection dominated case (see [13]). If the error criterion is met
then STOP else flag elements for further refinement.

5. Determine a new mapping m of elements 7j,...,T; to Processors P that will
balance the load in each processor after grid refinement.

6. Migrate the elements to their new destination.

7. Refine the grid structure. Note that grid levels 7}, £ > 0 do in general not cover the
whole domain €2, therefore more than one grid level may change during refinement.
The result is a new grid hierarchy Ty, 77, ..., T}, with j' € {j,j + 1}. Set j = j',

8. Goto step 2.

This concept is well suited for parallel computation since it avoids also serial bot-
tlenecks in grid generation and post-processing. All steps of the method, except part of
step 5, are carried out fully in parallel. Parallel graphical postprocessing (e.g. contour
lines) has also been implemented. Note that the order of operations is important: Load
balancing is done before grid refinement in order to move less data in step 6. The main
objectives of the paper are the following:

e Presentation of two load balancing algorithms for additive and multiplicative
multigrid.

e Evaluation of parallel and numerical efficiencies of the multigrid methods. Espe-
cially we answer the question whether the superior parallelizability of the additive
method can outweigh the faster convergence of the multiplicative method.

e Evaluation of total efficiency for the fully adaptive procedure. This is the ultimate
test since steps 5 and 6 of theadaptive procedure above must be considered as
overhead compared to the single processor case.

2 Load Balancing

2.1 Single Grid Case

Let us first consider the case of a single grid level T'. If there are no data dependencies
between the grid points (e.g. as in defect computation or jacobi smoothing) the load
balancing problem is to assign each ¢t € T' to a processor m(t) € P such that

1. Each processor has the same number of elements.

2. “Communication cost” > (1 = Opm(t)m(r)) should be minimal.
t,# are neighbors

This problem is known in various formulations as the graph mapping problem and
many heuristc procedures have been developed for the approximate solution of this NP-
hard problem. We want to mention variants of the recursive bisection method [9],[11],
[14],[8] and the Kernighan-Lin algorithm ([7], [10]).

The situation gets more difficult when we consider multigrid methods on a hierar-
chy of grids Ty, ...,Tj. In addition to the communication in the smoother (intra grid
communication) we have also communication in the grid transfer when the father of an
element is not mapped to the same processor (inter grid communication). Secondly we
cannot ignore the data dependencies between the grid levels (also in additive multigrid
). Especially the latter point changes the type of the problem completely: Instead of
a graph mapping problem we now have to solve a scheduling problem. The first step
towards the solution of these problems is the introduction of a clustering strategy.

2.2 Clustering

Let a grid hierarchy 7 =Ty U ... UTj of depth j + 1 be given. A cluster c is simply a
subset of 7: ¢ C T. A clustering C' = {cy,...,cn} is a decomposition of T into disjoint
subsets:

UC:T, CiﬂCj:(Z) VZ;A_] .

ceC

Instead of computing a destination m(t) for each individual element ¢ € T we will
compute a mapping of clusters to processors. m : C' — P. If ¢t has been assigned to
cluster ¢(t) then ¢ will be mapped to m(t) = m(c(t)). This has a number of advantages:

e The complexity of the load balancing problem is reduced. The clustering process
itself will be cheap and highly parallelizable. If the number of clusters is large
compared to the number of processors then the error in load balance will be
negligible.

e Memory requirements for load balancing are reduced. This is a prerequisite in
order to employ a central load balancing strategy (one processor would not be
able to store information about each individual element).

e The construction of the clusters via the element hierarchy will result in a tradeoff
between inter and intra grid communication.

Before explaining the clustering process we introduce some notation. For ¢ € C
define T as the level k elements mapped to cluster c:

T¢ = {t € Tyle(t) = ¢}

and the functions

bottom(c) = mkin(T,f # ()
top(e) = max(Zg #0)
wi(c) = |Tif |
w(c) = kz_: we(c)

For the individual element ¢ € Ty itself we denote by s(t) C Tyy1(k < j) the
successors of ¢ on the finer grid level and by f(t) € Ty_1(k > 0) the predecessor of ¢ on
the coarser level. The subtree S(¢) C 7 defined by an element ¢ is given by

S(t) =tU{SE)[t' € s(t)}

and z(t) = |S(t)| is the size of this subtree. Subsequently we will use only clusters
with the following properties:

(i) For i = bottom(c) we have w;(c) = 1. The element T = {t} is called the root
element of the cluster and can be obtained by ¢ = root(c).

3

(ii) Vk > i,t € T : f(t) € T¢ ;. This conditions ensures that all elements in a cluster
form a tree (a subtree of the element tree).

The idea of the following clustering algorithm ist to start at some given grid level
assigning each element to a seperate cluster. Then the successors of an element are
assigned to the same cluster until a given depth is reached.

Algorithm 1 Clustering. The basic clustering algorithm is controlled by three pa-
rameters b,d and Z. The baselevel b determines the level where the clustering process
starts. If the coarsest grid T; has very few elements we will refine it uniformely until 7}
which is supposed to contain more than Const|P| elements with Const depending on
the hardware used. All elements below level b are then only load balanced once at the
beginning. The depth d is the maximum depth of a cluster, i.e. top(c) — bottom(c) < d
and Z is the minimal size of a cluster, i.e. w(c) > Z.

cluster (C,T,7,b,d,7Z) {
C = 0;
for (k=0,...,7)
for (t € Ty) {
if ((2(t) > Z) A ((k—Db)mod(d+1)=0)) Vv (k=0b) {
create new ¢; C = C' U {c};
bottom(c) = top(c) = k; root(c) = t;
Vi : w;(c) = 0; w(c) = 0;
} else ¢ = c(f(t));
c(t) = ¢; top(c) = max(top(c), k);
wi(c) = wi(c) +1; w(e) = wlc) + 1;

[N

P
O 00 ~J O Ot = W
— — N S S S S S N

—
—_
=)

SN—

Once the clusters have been constructed we can derive a clustering of finer gran-
ularity by assigning the subtrees defined by the sons of the root element to seperate
clusters.

Algorithm 2 Splitting of clusters. The following algorithm splits a cluster set C' into
smaller clusters. The result is placed in two cluster sets L' and C’. L' are clusters that
can not be subdived further without violating the minimum size condition w(c) > Z.
C' are clusters that may be subdivided further.

split(C,C", L', Z) {

-~

for (1=2,...,n){
create new c;;
G =8(s)Ner; e =e1 \ ¢

(1) C'=L =0

(2) for each (c € C) {

(3) r = root(c);

(4) if (s(r) Z0)A(Vses(r):[S(s)ne| > 2Z) {
(5) Assume s(r) = {s1, 892, --, 8n};

(6) create new c;; ¢; = ¢; root(cy) = s1;

(7)

(8)

(9)

© 0o

4

(10) root(c;) = s;;

}

(11) for (1=1,...,n)
(12) if (s(s:) #0) A (Vs € s(si) 1 [S(s) N > Z)
(13) C'=C"Ug;
else
(14) L'=LUuU Ci;
(15) }else L' = L' Ug;

}

2.3 Load Balancing for Multiplicative Multigrid

The basic idea of load balancing for multiplicative multigrid is to map each grid level
Ty evenly onto all processors. This is necessary since the processors will synchronize
(locally) on each level before going to the next corser grid. Algorithm cluster will provide
a compromise between inter and intra grid communication since communication may
occur at most at the “surface” of clusters.

Algorithm 3 Multiplicative Load Balancing. Assume a clustering C' has been con-
structed with algorithm cluster. Then procedure lbmul calculates a mapping m : C' — P
using procedure m_partition. Parameter M in lbmul is used to determine the number of
processors to use on a certain level of the grid structure.

m_partition (k, C, P,load) {
if (P = {p}) {for (c € C) m(c) = p; return;}
Divide P into P, Pi;

[\)

3 for (i =0,1) I; = X loadyy;
PEFR;
W=l+l+ ¥ wc);

ceC

Find order for C: a: {1,...,|C|} = C;
Determine i € {0, ..., |C|} such that

2 = (i + 3 wn(a(n))| > min

AN NN AN SN SN
O Ot
N N N N N e N

-~

i IC]
® o= U} = 0 (o)
9) m_partition(k, Cy, Py, load);
(10) m_partition(k, Cy, P, load);

}

Ibmul (C, P,b, j, M) {
for (pe Pk=b,...,7) loady,, = 0;
for (k=34,7—1,...,b) {
Cr = {c € Cltop(c) = k};
if (Cy = () continue;

Iy =Y loady, + > wi(c);
pEP ceC

Determine P’ C P with |P'| max(1, < ly/M);

\)

(@3]

AAA,.\,.\,.\
(@] = W
— O S

5

(7) m_partition(k, Cg, P, load);
(8) for (c € Cy)
9) for (i=bottom(c), ..., top(c)) load; m() = load; m() + wi(c);

Procedure lbmul works from level j down to baselevel b (line 2). On each level Cy
are the clusters that have no elements above level k. These clusters are now mapped as
evenly as possible to the processors by procedure m_partition. Lines 5 and 6 of Ibmul
determine a subconfiguration that is suitable for the number of elements available on
level k. After the clusters have been mapped, the load in each processor on each level
is updated in line 9. Note that since £ = top(c) and usually bottom(c) < top(c) we
already assign some elements of levels below & in step (7). This has to be considered in
procedure m_partition.

Procedure m_partition is a general recursive bisection procedure which has been
extended to handle arbitrary processor numbers and to take into account that some
load has already been assigned to the processors. The type of bisection procedure is
determined by the ordering computed in line 5 of algorithm m_partition. Currently we
sort, alternatingely by x and y coordinates of the cluster root element. It is also possible
to impose a neighborship relation on the clusters and use more sophisticated bisection
methods at this point, which is currently beeing investigated.

2.4 Load Balancing For Additive Multigrid

In the additive multigrid method we have no synchronization in the smoother before
going to the next coarser level, the defect form the finest grid is simply restricted to
all coarser levels. This has the consequence that only the number of elements in each
processor must be equal no matter how the elements are distributed over the levels. So
the ideal case would be to take the elements ¢ of some level b and define the subtrees
S(t) as clusters. In the case of adaptive refinement it may happen, however, that some
clusters become to large to get a load balance of sufficient quality. The idea is now
to subdivide the clusters adaptively in this case with procedure split from above. The
algorithm reads as follows:

Algorithm 4 Additive Load Balancing. We assume that a clustering C' has been
computed by calling cluster(C, T, 4, b, j, Z) (Note that depth d = j is used). The set L
is initially empty, £ = 0 is used in the first call and tol is the maximum relative error
in load balance at the first subdivision level (a typical value is 0.15) and is reduced by
a factor o (typically 0.5) in each recursive call.

Ibadd (C, L, P, b, Z, tol, k) {

(1) if (P = {p}) {Ve € C:m(c) =p; VIl € L : m(l) = p; return; }
(2) Divide P into Py, Pi;
while (true) {
(3) We =Y w(c); W, =3 w(c);
ceC leL
(4) Wopt = %(WC + WL);
(5) if We < W) {

(6) Cy = C; 012@;
(7) Find order for L: ay, : {1,...,|L|} — L;
(8) Determine ¢ € {0,..., |L[} such that
) Wt — (WC ‘3 w(aL(n)))‘ s min;
i o
(10) Lo= Ufat} Li= U {am@)
} else {
(12) Find order for C: ac : {1,...,|C|} = C;
(13) Determine i € {0,...,|C|} such that
(14) Wop = 2 wlac(n))| - min
n=1

U fac(}

|
n=1i+

(15) Co = Ufac(n)}; i =
}

(16) for (1 =0,1) W, = X we)+ ¥ w(l);
ceC; leL;

(17) if (max(Wo, W) < (1 4+ tol)Wop) V (C = 0) break;
(18) split(C,C", L', Z);
(19) C=C3L=LUL;k=k+1,

}
(20) Ibadd(Co, Lo, Py, b, Z, tol - o, k);
(21) lbadd(Cl,Ll,Pl,b, Z,tOl‘O’, k),

Procedure lbadd is recursive in the number of processors. In each call the processor
configuration is divided into two halves (which need not be of the same size) in step (2).
In the while loop we try to map the clusters C' and L onto the processors. The mapping
step explicitly considers whether the clusters are divisible (large) or indivisible (small).
The smaller of the two sets C' and L is mapped to one part of the configuration and the
larger set is subdivided onto both halves. If the relative error in load balance is below
tol or no clusters can be subdivided further, the mapping is accepted (step (17)). If
load balance is inacceptable procedure split is used to generate smaller clusters allowing
better load balance. Steps (20,21) now call the algorithm recursively for each of the two
subconfigurations. Note that the tolerance is reduced by a factor ¢ in each recursive
call. The reason is that we want to keep large clusters at the beginning and refine the
clustering only in the higher stages where we have smaller subconfigurations.

3 Experimental Results

All computations reported been done on a Parsytec Supercluster SC-128 with 25MHz
T800 processors and 4MB of memory per processor. The operating system was PARIX
Version 1.2.

3.1 A Model Example

The first test has been designed to study the influence of different locality of refinement
on the load balancing quality and parallel efficiencies of the multigrid methods. Therefore
we solve

“Au = 0, in Q= (0,1)2
u(z,0) = iz, z €[0,1]
u(ly) = 1+3v y €[0,1] : (3)
u(z,1) = 5+ 3(1—2), z €[0,1]
u(©,y) = 1+3(1-y), yeEo

The initial triangulation 7; consists of 4 quadrilaterals with one unknown. Re-
finement is uniform up to some prescribed baselevel b and beginning with level b re-
finement is such that the grid on level k is restricted to the rectangle [0, s;]? with
sk = (vVw/2)¥7% (k > b). The factor w is called the “growth factor”, since the number
of elements on level k£ + 1 is defined recursively by |Tyy1| = w|Tk|. With w = 4 one gets
uniform refinement and w = 1 indicates a case where there is no geometric growth in
the number of unknowns. Figure 1(a) shows the grid and solution for w = 2 and j = 8.
Table 1 shows the results for w = 1,2, 3,4 and additive and multiplicative multigrid.
Note that the problem size is increased with the number of processors. However it is not
possible to get always the same number of unknowns NV per processor for different values
of w. This makes it difficult to compare results for different w and the same number of
Processors.

The conclusions drawn from this test are:

e The additive method has always better or equal (only one case) efficiencies than
the multiplicative method. This is due to coarser grained parallelism and the
possibility of using decompositions with smaller interfaces. The latter is the more
important point which can be seen by considering the results for P = 64 and
comparing efficiencies for different w. For w = 4 both load balancing methods yield
the same decomposition and efficiencies differ not much. For w getting smaller the
differences become greater. Figure 1(b) shows the load distribution on 8 processors
for the additive method and (c) for the multiplicative method. The figures show
only the position of the “topmost” elements.

e The solution time is always smaller for the multiplicative method than for the
additive method, except the case of w = 1, P = 64. This is not a result of the
small number of unknowns per processor. In contrary to the case w > 1, one can
observe for w = 1 that efficiencies do not increase with problem size above level
10 for a fixed number of processors. This is due to the fact that the unknowns do
not grow geometrically with the number of levels (no decrease of the surface to
volume ratio).

e In the case where additive multigrid is equal or better than multiplicative multi-
grid in terms of total computation time, both methods have to be considered as
inefficient. Since additive multigrid needs twice as many iterations as multiplica-
tive multigrid, parallel efficiency for multiplicative multigrid must be below 50% in
order to allow additive multigrid to be better. Since there are also losses in the lat-
ter method, the break even point happens to be at 25% efficiency for multiplicative
and 50% efficieny for additive multigrid in this example.

4+
=

EHH

i
II|

N i N

Figure 1: Grids and load distribution for the two numerical examples.

The parallel efficiency E;r is identical to the total efficiency in the solver for this
example since the number of iterations needed are the same for serial and parallel
computation. An important question is where the losses come from. Considering one
multigrid cycleone can identify three sources for inefficencies:

e Idle times: Nonoptimal load balance results in idle times where a processor must
wait for data from another processor.

Table 1: Results for different locality of refinement (w, see text) and a varying number
of processors. Tsor, is total time for a 108 reduction in residual norm on the finest level
J after a nested iteration. Ep 1s the parallel efficiency of one iteration, including the
cg method in the additive case. Multigrid data: v = vy = 1, V-cycle for multiplicative
multigrid, one smoothing step for additive multigrid, smoother was point-jacobi in both
cases. Refinement was uniform up to level 4 (h = 1/32) except for cases w = 1 and
P > 1 where refinement was uniform up to level 5.

w multiplicative mg +jac cg+ additive mg +jac
P 1 4 16 32 64 1 4 16 32 64
4 3 4 5 6 7 7 4 5 6 7 7
N 1089 4225 16641 66049 66049 1089 4225 16641 66049 66049
Tsor 5.95 5.87 6.55 12.49 6.83 9.33 10.17 11.04 20.98 11.43
Err 85 75 7 71 88 79 82 76
3 5 6 7 7 8 5 6 7 7 8

N 3553 10657 31656 31656 94440 3553 10657 31656 31656 94440
Tsor 18.14 15.59 13.09 799 1546 31.38 2581 21.44 1197 17.85
Err 86 76 71 47 90 80 71 71
2 g 5 7 8 9 10 5 7 8 9 10
N 2768 12223 24767 49974 99638 2768 12223 24767 49974 99638
Tsor 15.59 19.06 11.77 12.60 13.44 26.00 2843 18.68 19.77 20.92
Err 78 64 59 55 86 71 74 63
1 g 6 6 10 13 15 6 6 10 13 15
N 2753 7425 20225 29825 36225 2753 7425 20225 29825 36225
Tsor 1539 11.13 10.17 10.69 11.14 2437 1849 15.68 13.93 9.96
Err 78 60 41 24 85 64 53 45

Double computations: The unique mapping of elements to processors results in
multiple computations on the overlapping nodes.

Cost of communication: There may be considerable non nearest-neighbor asyn-
chronous communication.

The obtainable efficiency when counting only the double computations can be easily
computed. For the case P = 64,w = 1 we determined a theoretical efficiency of 44%
for the multiplicative method and 75% for the additive method. The differences to the
measured values must be due to communication cost and idle times.

3.2 Comparison of Uniform and Adaptive Computation

The purpose of this test is to compare parallel adaptive computation with parallel uni-
form computation. To that end, an exact solution showing local behaviour is prescribed
in order to be able to compare the discretization error on different grids. The b.v.p. is
again Laplace’s equation in the unit square, here with the exact solution

1
U= T e2oeosy "7 Vet -+ (4)

Figure 1(d) shows the locally refined grid (residual based error estimator) and load
distribution on 8 processors for the additive (e) and multiplicative case (f). Table 2

10

Table 2: Results for example with prescribed exact solution. Reported are total com-
putation times for reaching a solution with the same discretization error in the L.
norm. Multigrid data: multiplicative multigrid with symmetric Gaufi-Seidel smoother,
v, = vy = 1, 107 reduction per level in the adaptive scheme. The initial grid used 4
square elements to cover the unit sqare.
uniform adaptive
j=8,N=263169, || — up|loo = 1.54-1073 =8 N=29262,||u — up||oc = 1.65- 1073
CRIMSON P=80 P=96 P=128 CRIMSON P=8 P=16 P=20
TjoB 468 109 98 84 77 176 123 107
Trg 17.9 17.3 17.8 21.9 242 22.6

shows total computation times for the full adaptive method for a number of parallel
configurations and a large workstation (Silicon Graphics Crimson). The results can be
summarized in:

e The gain in the number of unknowns was a factor of 9 in the final grid hierarchy.
Since savings were smaller on coarser grids the total gain was 6 on the (single
processor) workstation.

e In the parallel case the gain was a factor of 4 in the number of processors, i.e. 20
processors needed the same time with adaptive computation as 80 processors with
uniform computation. However it should be noted that the uniform version also
spent a relatively large part of computation time for load balancing. This is due
to load balancing required when grids get finer in the nested iteration and more
processors can be used efficiently (The coarsest grid was h = 1/2 in all tests!).

e Of course the comparison above used the unstructured code for the uniform calcu-
lations although the grid was structured and rectangular. A traditional structured
code would be about 2 to 4 times faster than the unstructured code but this
comparison would not be fair since there is big difference in functionality.

4 Conclusions

It has been shown in the present work that the parallelization of adaptive multigrid
methods on unstructured grids is possible with acceptable efficiencies. Parallel efficiency
usually ranges from 50% on 64 processors to 75% on 16 processors over several examples
with different locality of refinement and shape of the refinement region (see [3] for more
examples).

Emphasis has been put on a comparison of multiplicative and additive multigrid
methods, since they differ in granularity and especially in the way the grid hierarchy can
be mapped onto the processors. Additive multigrid allows partitions with much lower
inter- and intra-grid communication. Therefore parallel efficiencies are usually higher
and scalability is better. However, the gain is usually not sufficient to compensate the
worse numerical efficiency for the processor numbers considered.

Acceptable efficiencies for the full adaptive computation are currently limited to
not more than 16 processors. This is due to the load migration algorithm, which is
comparable in complexity to the solution of the simple linear b.v.p. considered (but

11

does not scale as well). The problem will be less important as soon as the time between
two load balancing steps becomes larger, i.e. when more complicated equations are to
be solved. In this case it will be also advantageous to use more sophisticated (and more
time consuming) mapping algorithms to increase the quality of the load balance.

References

[1] P. BASTIAN: Locally Refined Solution of Unsymmetric and Nonlinear Problems, Pro-
ceedings of the 8" GAMM Seminar, Kiel, NNFM, Vieweg Verlag, Braunschweig, 12-21,
1993.

[2] P. BasTIAN, G. WITTUM: On Robust and Adaptive Multigrid Methods, Proceedings
of the 4" European Multigrid Conference, Amsterdam, July 1993, to appear.

[3] P. BASTIAN: Parallel Adaptive Multigrid Methods, IWR Report 93-60, Universitit
Heidelberg, October 1993.

[4] J. H. BRAMBLE, J. E. PasciAk, J. Xu: Parallel Multilevel Preconditioners, Math.
Comput., 55, 1-22 (1990).
[5] J. H. BRAMBLE, J. E. PasciAk, J. WANG, AND J. XU, Convergence estimates for

multigrid algorithms without reqularity assumptions, Math. Comp., 57, (1991), pp. 23—
45.

[6] W. HACKBUSCH: Multi-Grid Methods and Applications, Springer, Berlin, Heidelberg
1985.

[7] B. W. KERNIGHAN, S. LIN: An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, 49, 291-307, 1970.

[8] B. HENDRICKSON, R. LELAND: An Improved Spectral Load Balancing Method, Proc. of
the 6" SIAM Conference on Parallel Processing for Scientific Computing, March 1993.

[9] A. PorHEN, H. SimON, K. Liou: Partitioning Sparse Matrices with Eigenvectors of
Graphs, STAM J. Matrix Anal. Appl., 11, 430-452, 1990.

[10] P. SADAYAPPAN, F. ERCAL, J. RAMANUJAM: Cluster Partitioning Approaches to Map-
ping Parallel Programs onto a Hypercube, Parallel Computing, 13, 1-16, (1990).

[11] H. SmMON: Partitioning of Unstructured Problems for Parallel Processing, Computing
Systems in Engineering, 2(2/3), 135-148, (1991).

[12] G. E. SCHNEIDER, M. J. Raw: A Skewed, Positive Influence Coefficient Upwind-
ing Procedure for Control-Volume-Based Finite-Element Convection-Diffusion Compu-
tation, Numerical Heat Transfer, 9, 1-26 (1986).

[13] T. SONAR: Strong and Weak Norm Refinement Indicators Based on the Finite Element
Residual for Compressible Flow Computation, IMPACT of Computing in Science and
Engineering, 5, 111-127 (1993).

[14] R. D. WiILLIAMS: Performance of Dynamic Load Balancing Algorithms for Unstructured
Mesh Calculations, Report C3P 913, California Institute of Technology, Pasadena, CA.,
(1990).

[15] J. Xu: Iterative Methods by Space Decomposition and Subspace Correction: A Unifying
Approach, STAM Review, 34(4), 581-613, (1992).

12

