LOAD BALANCING FOR ADAPTIVE MULTIGRID METHODS
PETER BASTIAN*

Abstract. This paper presents two algorithms solving the load balancing problem arising in a data
parallel implementation of multigrid methods on unstructured, locally refined meshes. The differences
between additive and multiplicative multigrid and their influence on the load balancing procedure are
discussed in detail. The quality of the proposed algorithms is assessed by numerical experiments on
several parallel computers.

Key words. multigrid, unstructured grids, adaptive local grid refinement, MIMD computer,
message passing, distributed memory, dynamic load balancing.

AMS(MOS) subject classifications. 65F10, 65N55

1. Introduction. The self-adaptive solution of elliptic partial differential equa-
tions (pdes) showing local solution phenomena is becoming increasingly popular. The
basic components of such a procedure - solver, error estimator and grid refinement -
have been studied extensively in recent years and a number of implementations already
exist [1], [8], [11]. The most efficient solvers used in this context are multigrid methods
(see [9]) since they are optimal with respect to the number of iterations and work count
per cycle. Specifically the BPX method [6] and its multiplicative counterpart [7] will
be used in connection with various smoothers, see also [2],[3],[4] on this topic.

As a model problem, the pde

(1) =V - (e(2)Vu) = f(z)

is solved in the open domain Q@ C R? and 0 < a < €(z) < M holds throughout the
domain. Eq. (1) is supplemented with the boundary conditions

(2) u(z) = 0on Iy
(3) (e(x)Vu,n) = go on I'y =002\ T} ,

where n is the unit outer normal and I'; #) (for simplicity of presentation homogeneous
Dirichlet boundary conditions are imposed on I').

For the discretization of eq. (1) a standard conforming finite element method is
used. The mesh consists of triangular elements and V}, denotes the space of continuous
functions that are linear on each triangle and zero on I';. The discrete solution u, € V},
then solves

(4) a(up,v) = f(v) = (f,v)a + (92, v)r, Vo € Vj

* Institut fiir Computeranwendungen III, Universitdt Stuttgart, Pfaffenwaldring 27, D-70569
Stuttgart, Federal Republic of Germany (peter@ica3.uni-stuttgart.de)

1

with

(5) a(u,v) = /e(z)Vu-Vvdx, (f,v)a = /fvdx, (g,v)r, = /gvds.

Q

The complete parallel adaptive solution strategy then reads as follows:

(1) Start with an initial unstructured and coarse mesh that resolves the basic
details of the geometry.

(2) Discretize the pde and solve the resulting system of linear equations up to a cer-
tain accuracy. If the grid hierarchy contains more than one level a fixed number
of multigrid cycles is sufficient (nested iteration). Additive and multiplicative
multigrid variants as preconditioners in a conjugate gradient algorithm will be
used.

(3) Estimate the discretization error. For our model problem eq. (1) the error is
estimated in the H'-norm. If the error is below a given tolerance then exit.

(4) Tag an element for refinement when its local error contribution is above some
tolerance level derived from all local contributions (average or maximum).

(5) Compute a new mapping of the grid hierarchy to the processors of the parallel
computer that minimizes computation time (approximately). Load balancing
will be different for additive and multiplicative multigrid variants.

(6) Migrate the data according to the new mapping. It is important to do this
before the subsequent refinement step since less data must be moved and load
will already be balanced for the refinement step (at least in the multiplicative
case).

(7) Refine the mesh in parallel according to the element tags.

(8) Interpolate the solution to the new mesh points. Goto step (2).

The rest of the paper concentrates on step (5) of the adaptive procedure and is orga-
nized as follows. The next section describes the construction of the multigrid hierarchy
and the two multigrid variants. The subsequent section presents the load balancing
problem for multigrid hierarchies in comparison to load balancing for single-grid meth-
ods. The following two sections contain the load balancing algorithms for multiplicative
and additive multigrid variants. Then numerical results are presented in order to eval-
uate the algorithms and the last section draws some conclusions.

2. Local multigrid. In this section a method for the construction of locally re-
fined mesh hierarchies is described. This hierarchy will then be used in the additive
and multiplicative multigrid methods.

2.1. Grid hierarchy. The multigrid method works on a sequence of successively
finer meshes. The initial mesh is intentionally coarse but should be fine enough to
resolve important details of the geometry. The sequence of finer meshes is constructed
with the refinement algorithm of BANK that is also used in the codes PLTMG (see [1])
and KASKADE (see [8]).

copy element

irregular el.

regular el.

Rp=Dp=No tagged for / / /
refinement

FiG. 1. Nested local grid refinement

The refinement algorithm is explained with the help of Fig. 1. The elements of the
coarsest grid level T; are defined to be regular elements. Then a refinement rule can be
applied to each element resulting in the generation of new elements on the next finer
level. Each refinement rule is either of type regular, irregular or copy (see Fig. 2 for all
possible rules), producing regular, irregular or copy elements on the next finer level. An
irregular or copy element allows only the application of copy rules, whereas all types of
rules can be applied to regular elements. This strategy generates meshes satisfying a
minimum angle criterion since irregular refinement rules can only be applied once.

A /@A /<DA Reguarrules
—>

A Aég% Aé% Irregular rules
—>

A A sopre

Fic. 2. Complete set of refinement rules

3

The refinement algorithm is responsible for generating a conforming mesh on each
level, i.e. the intersection of two different elements is either empty, a node or an edge.
In practice it will also happen frequently that the error estimator decides to refine
irregular elements or a regular element with an irregular neighbor. In that case the
irregular refinement is removed and replaced by a regular refinement rule.

2.2. Subspace decomposition. Both multigrid methods are based on the same
decomposition of V}, into suitable subspaces Vj. In order to define V) and its decompo-
sition from a given grid hierarchy let us denote by

(6) Ty ={ti,t5,...}, Ne={nf,n3,...}

the set of triangles and the set of nodes on level k. We will also need the following
two subsets of the nodes NVj:

(7)Rk = {n € Ni| nis a corner of a regular element ¢t € Ty },
Dy = {n € Ni| nis acorner of t € T and ¢ has at least one corner m € Dy }.

By construction we have R, C Dy C N. Fig. 1 illustrates these definitions for a
two level hierarchy. On level 0 we have Ry = Dy = Nj since all elements are regular.

Assume now that a grid hierarchy 7y, 7}, ...,T; with J 4 1 levels is given. For the
definition of the finite element space V}, we introduce the “finest mesh”:

J
(8) Th=|J {t € Tk| tis not refined further}
k=0

with the corresponding set of nodes

9) Ny ={nl,nk ..}

V}, is then generated by the standard nodal basis

where ¢} is linear on each t € T, and nf,nf & T'y.
Each grid level T}, defines a subspace Vi C V},. A basis & of Vj is given by

o= {t

Note that only the nodes corresponding to Ry are used in the definition of ®;. By
construction we have that Vj, = U{_,V; and the subspaces are overlapping, i.e. the
representation v, = Z/{:o Uk, Vg € Vi is, in general, not unique.

For the implementation (see below) also the basis functions corresponding to nodes
in N, are occasionally needed. They are denoted by @

4

©% is the standard nodal basis function corresponding
to node nf € Ry and n¥ ¢ T, '

2.3. Additive multigrid. Expanding all functions in equation (4) with respect
to the basis ®; of V}, results in a system of linear equations

(12) Ah.’Eh = bh

with (Ag)i; = a(@},), (bn): = f(¢}). Eq. (12) is solved with the help of the linear
systems

(13) Apxy = by, kE{O,l,...,J}

that are defined with respect to the subspaces Vj. In fact the system (12) is never
assembled explicitely, only the systems with respect to the subspaces are needed.

Given a current iterate z}, the iteration error is defined as e} = x5, — 2. The
iteration error is the solution of the defect equation

(14) Aheﬁ = dﬁ = bh — Ah.’lfz

The additive multigrid method computes approximations vy, to e} on each grid level
stmultaneously by solving a linear system of the form Ayv, = d}} approrimately with a
linear iterative method. The right hand side d} in this equation can only be computed
efficiently by a recursive process from level J down to level 0. Similarly the final update
step :UZH = z} + v, will require a recursive interpolation procedure as in standard

multigrid. The complete algorithm for additive multigrid is now given:

ALGORITHM 2.1. Additive multigrid method. Uses vectors xy, by, vx and dy,
ke {0,1,...,J}, of dimension |Ni|. The matriz Ay is needed in all rows corresponding
to nodes in Dy. On entry xp contains the current iterate on all levels. Further we have

(bk)i = f(F), and (Ap)y; = a(eF, %), oF, ok € @F.
amg (J) {
for (k € {0,1,...,J}) {
dy = by — Agzy; /* on Dy */
v = 0; /* on Ny, */

~_~ A~~~
w N =
—

}
for (k=J;k>1,k=k—1)
dy_1=r1F |dyg; /¥ only on Ny 1N Dy, */
Solve Ao’UO = d();
for (k€ {1,2,...,J})
v = 8§ (Uk, di); /* only on Ry ! */
for(k=1Lk< J;k=k+1)
) Vg = vk + pi_jvk_1; /¥ on Ny */
) for (k€ {0,1,...,J}) xp =z + vg; /* on N */

~ O Ot i~

NN N N N N N
© oo
— O — — — — — —

—_ =

In line (2) the defect is computed at all nodes Dy and vy, is set to zero everywhere.
The restriction operator ¥ _, from level k to k — 1 (line 5) changes only values in nodes
Ni 1N Dy, on the coarse grid. Besides that, 7¥_, is transposed to the prolongation p¥_,
defined below. In line (8) v iterations of a standard iterative method like Jacobi or
GaufB-Seidel are applied to the system Aiv, = dj with the exception that only values
in nodes Ry are allowed to be changed. This corresponds to an approximation of the
iteration error in the space Vi. In line (10) standard linear interpolation pf_; is used
to prolongate the correction in all nodes Ny. The update step (11) is also applied to all
nodes Ni. This ensures that the correct values in x; are available on all grid levels at
the beginning of the next iteration.

2.4. Multiplicative multigrid. In the multiplicative multigrid method the cal-
culation of correction v, on level k takes into account the corrections calculated on pre-
viously visited levels. The algorithm uses the same ingredients as the additive multigrid
method:

ALGORITHM 2.2. Multiplicative multigrid method. Vectors i, by, v, dr and

matriz Ay, k € {0,1,...,J}, are the same as in additive multigrid.
mmg (J) {
(1) for (k€ {0,1,...,J}) {
(2) dy = by — Agzy; /* on Dy */
(3) v = 0; /* on Ny, */
}
(4) for (k=J;k>1k=k—-1) {
(5) v, = St (vk, di); /* only on Ry, ! */
(6) dk—l = T’,:_l(dk — Ak’Uk); /* only on Nk—l M Dk */

}

(7) Solve Agvy = dy;
(8) for(k=Lk< J;k=k+1){
9) v = Vg + PF vk _1; /¥ on Ny */
(10) v = Sp2 (vg, di); /* only on Ry */
}
(11) for (k€ {0,1,...,J}) xx = 2 + vg; /* on N, */

In difference to algorithm 2.1 smoothing (step 5) is done before restriction (step
6). Also the restriction takes into account the previously computed correction vg. As
usual in standard multigrid a post-smoothing step has been added (step (10)). Note
that algorithm 2.2 is a standard multigrid V-cycle adjusted for the locally refined grid
hierarchy. A W—cycle is not used here since it would not have optimal work count for
arbitrarily refined grids.

A remarkable difference between algorithms 2.1 and 2.2 is that multiplicative multi-
grid can be made robust for singular perturbation problems by using a smoother that
is an exact solver in the limit case. This strategy is not applicable to additive multigrid
which is shown in [4]. For additive multigrid it does usually not pay off to use a good

6

smoother or more than one smoothing step. In the experiments reported below both
methods are used as preconditioners in a conjugate gradient algorithm.

The computational effort of amg and mmg is approximately equal if the same
smoother is used but the multiplicative method has better convergence properties.
Therefore on a serial computer the additive method has no advantage. However on
a parallel machine the algorithms show different synchronization behavior and allow for
different load balancing strategies which will be explained in the subsequent sections.
For a mathematical analysis of both algorithms we refer to the excellent papers by XU,
[16], and YSERENTANT, [17].

3. Data partitioning and the load balancing problem. The parallelization
of all components of the adaptive multigrid method is based on a distribution of the
data onto the set of processors. The assignment of elements to processors is used to
determine also the mapping of the remaining parts of the data structure (nodes, edges,
etc.) to the processors. Overlapping storage of objects on processor boundaries, as
shown in Fig. 3, is used for an efficient implementation.

horizontal vertical

Fic. 3. Horizontal and vertical overlap in data partitioning

The left part of Fig. 3 shows the situation on one grid level (intra-grid). The node
in the center is stored in three copies on the three processors p;, p» and p3. The right
part of Fig. 3 shows the vertical or inter-grid situation. The white triangle ¢ on level
k —1 has four son triangles on level £ which are assigned to 4 other processors. Then the
rule is that for every element assigned to a processor also a copy of the father element
must be stored on that processor including all its nodes. Consequently 4 additional
copies of triangle ¢ will exist on level £ — 1. Of course it is the aim of the load balancer
to avoid this situation as often as possible.

The task is now to determine the mapping of elements to processors such that work
is equally balanced between any two synchronization points and communication is min-
imized. This problem is (even after some abstractions) in the class of NP-complete
problems and therefore only heuristic methods are acceptable (remember that multi-
grid has linear complexity!). Load balancing for single-grid methods like preconditioned
conjugate gradient or explicit time-stepping schemes can be abstracted as a graph par-
titioning problem, where the nodes of a graph must be partitioned into equal sized
subsets with a minimum number of inter-partition edges. A number of algorithms and

7

software packages are available to solve this problem, see [13], [10], [12]. Load balanc-
ing for multigrid methods, however, is more complicated since one iteration consists of
several alternating computation and communication steps. Moreover there is communi-
cation in the smoother and in the coarse grid correction whose minimization is usually
contradictory.

In the following a clustering strategy based on the multigrid hierarchy is proposed
that will achieve a compromise between communication in the smoother and in the
coarse grid transfer. The outline of the load balancing strategy is as follows:

(i) Combine elements into clusters using the multigrid hierarchy. This step can be
done in parallel.

(ii) Transfer all cluster information to the master processor.

(iii) Assign clusters to processors such that each processor has (approximately) the
same number of elements on each grid level and communication on each level
is low. This is done on a single processor.

(iv) Transfer mapping information back to cluster owners.

(v) Redistribute the data structure in parallel.

Note that the optimization problem of mapping clusters to processors is solved on a
single processor. As will be shown below, this is acceptable for todays parallel machines

consisting of a moderate number of powerful processors (e.g. up to 256 processors of
the CRAY T3D have been used in [3]).

4. Load balancing for multiplicative multigrid. Multiplicative multigrid re-
quires smoothing on each grid level before going to the next grid level. This effectively
synchronizes all processors on each level, except if the grid on some level breaks up
into several disconnected parts. Therefore the aim of the load balancing scheme for
multiplicative multigrid must be to assign the elements of each level equally to the
processors. In addition the mapping of two subsequent grid levels must somehow be
related in order to reduce inter-grid communication. This is achieved by the following
clustering strategy.

4.1. Clustering. For the clustering algorithm a tree-based (local) refinement
strategy, as was described above, is required. Let 7' = Uj_ T, denote the set of all
elements (J is the finest level). Since the refinement is based on subdividing individual
elements there exists a natural father relationship:

(15) F, C Ty x Ty1, (t,t') € Fy & t' is generated by refinement of .

If J is the highest level then set F' = Ui F);. Since the father of an element is
unique one can express the relation also in a functional form, i.e. f(t') =t < (t,t') € F.
The sons of an element are defined by

(16) s(t) = {t' € T|(t,t') € F).
8

All successors of a given element are given recursively by

{t} s(t) =0
(17) S(t) = { {t}u U S(t') else
t'es(t)
and z(t) = |S(t)| defines the number of elements in S(¢).
In the mesh T} two triangles sharing a common edge are said to be neighbors. This
relation is formalized by:

(18) NB, C Ty, x Ty, (t,t') € NBy < t,t' share common edge.

Again we sum over all grid levels, which gives NB = Uy<;NBy.
Now the clusters can be defined. In general a clustering C' = {cy,...,¢,} is a
partitioning of the set T, i.e.

(19) T= ch7 Ciﬂ0j2®<:>7;7éj, Ci,ngT.

CjEC
The partitioning defines a mapping ¢ : 7' — C' from elements to clusters that will
also be denoted by ¢: ¢(t) = ¢ & t € ¢. Some additional quantities can be derived from

the partitioning. First the lowest and highest level of any element in a cluster are given
by:

(20) bot(c) = mkin{k|c NT, #0}, top(c) = m]?X{k|c NTy # 0}.

Also the number of elements in a cluster on each level is needed:

(21) we(c) = {t e Tilt e c}|, wl(c)=N{teTltec},

where |A| denotes the number of elements in set A. In the following it is required that
the clustering has the following important properties:

(i) Whote) (¢) = 1 for all clusters ¢ € C. The unique t € Thotey N ¢ is called the
root element of the cluster and is denoted by root(c).
(ii) For all clusters ¢ € C and ¢ > t # root(c) we require that f(t) € c.

This definition ensures that the elements in a cluster form a subtree of the ele-
ment tree structure. The following algorithm constructs a clustering with the desired
properties.

ALGORITHM 4.1. Clustering of an element set. The following algorithm cluster

receives a multigrid hierarchy T (with highest level J) as input and delivers a partition-

ing into clusters C' as output. The parameters b, d, Z control the algorithm. Parameter
9

b is the baselevel since in practice partitioning is started on a level higher than zero if
the coarse grids are very coarse or in the dynamic situation where one does not like to
rebalance the coarsest levels. Parameter d is the desired depth of the clusters and Z is
the minimal size of the clusters.

cluster (J,C,T,b,d, Z) {
C =0
for (k=10,...,J)
for (t € T) {
if ((2(t) > Z) A ((k — b) mod (d+ 1) == 0)) {
create new ¢; C = C' U {c};
bot(c) = top(c) = k; root(c) = t;
VZ B U)Z(C) = 0; w(c) = O;
} else ¢ = (£ (1))
c(t) = ¢; top(c) = max(top(c), k);
wi(c) = wy(e) + 1; w(e) = w(c) + 1

}

The algorithm proceeds as follows: It runs over all levels from b to J and over all
elements within each level. If the subtree defined by the current element is large enough
and the level relative to b is a multiple of d + 1 the current element will be the root of a
new cluster else it will be in the cluster of its father element. In the dynamic situation,
when the multigrid structure is already distributed over the processors, algorithm cluster
can be run in parallel. If the parameters b, d, Z are not changed within one run then only
the computation of z(¢) requires communication (comparable to a restriction from the
finest to the coarsest mesh). In the current implementation the parallel grid refinement
algorithm imposes an additional constraint that excludes some elements from becoming
the root of a new cluster. Since this constraint will be removed in a new version of the
program see [5] for details.

4.2. Balancing the Clusters. After the clustering step, the clusters have to be
assigned to processors. This assignement problem is solved on a single processor in
the current implementation. The assignment heuristic is given by the following two
algorithms mmg_assign and assign.

ALGORITHM 4.2. Algorithm mmg_assign maps a set of clusters C' to a set of processors
P by repeatedly solving smaller assignment problems with particular subsets of C. As
parameters it receives b the baselevel used in the clustering algorithm, J the highest
level of the multigrid hierarchy and M the minimum number of elements desired per
processor. The number M usually depends on the hardware. In parameter map the
resulting mapping of clusters to processors will be returned. Algorithm mmg _assign
uses another algorithm assign that solves the smaller assignment problems.

mmg_assign (C, P, J,b, M, map) {
for (pe Pk=b,...,J) loadlk,p] = 0;

10

(1) for (k=J,J—1,...,b) {

Cr = {c € Cltop(c) = k};

if (Cy == 0) continue;

Iy = X load[k, p] + ce% wi(c);

ep
Deteimine P’ C P with |P'| < max(1,l;/M);
assign(k, Cy, P, load, map);
for (c € Cy)
for (i=bot(c), ..., top(c)) load[i,map(c)] = load[i, map(c)] + w;(c);

—~
DO
~

w

NN SN SN /S
St
— N N N N

-~

[=2)

}
}

Algorithm mmg_assign proceeds as follows. It uses a two-dimensinal array load|k, p]
to store the number of level-k-elements that have been assigned to processor p. Then it
proceeds from level J to level b (loop in line 1) and selects the clusters with the currently
highest level that have not yet been assigned (line 2). Line 3 computes the number of
elements on this level and line 4 determines the number of processors that will be used
for that level. Lines 3 and 4 implement a strategy that uses fewer processor when the
grids get coarser (controlled by the parameter M). In line 5 algorithm assign is called
to assign the clusters C}, to the (sub-) set of processors P’. Since some level-k-elements
have already been assigned in previous iterations, algorithm assign receives also the
array load to take this into account. Finally lines 6 and 7 update the load array.

The following algorithm assign is a modification of the recursive bisection idea
that is able to take into account that some elements already have been assigned to
some processors.

ALGORITHM 4.3. Algorithm assign assigns a given set of clusters C' to a given set of
processors P such that the work on level k£ of the multigrid hierarchy is balanced. In
order to take into account that the processors are already loaded with some elements on
level k it receives the array load. The output of the algorithm is given by the mapping
map : C — P.

assign (k,C, P,load, map) {

1 if (P == {p}) {Vc € C : set map(c) = p; return;}
2 Divide P into P, P;;
3 lo =X loadlk,pl; L = ¥ load[k, p|;
PER pEP;
4 W:lo+l1+ ;ka(c);

ot

Determine Cy, C; C C,CoUC, = C,Cy N C; = P such that
[Pl W — <l0 =+ Z U)]AC))‘ — min;

|Pol|+|P1] ceClo
assign(k, Cy, Py, load, map);
assign(k, C1, P, load, map);

=2}

~J

co
N— S N— N— SN— SN N N

o~~~ —_ ~ o~ o~~~

}

Algorithm assign proceeds as follows. If P contains only one processor the re-
cursion ends and all clusters in C are assigned to this processor (line 1). Else the set
11

of processors is divided into two halves P, and P; (line 2). Line 3 then computes the
load that has already been assigned to the two processor sets (on level k) and line 4
computes the total load that is available on level k. Now the cluster set C' must be
divided into two halves Cy and C} such that the number of level-k-elements is equal in
both processor sets Py and P; (lines 5 and 6). Note that P, and P; are not required
to contain the same number of processors. Finally lines 7 and 8 contain the recursive
calls that subdivide the new cluster sets again. In this paper only orthogonal coordinate
bisection (see e.g. [13]) is used for the bisection step in lines (5-6). The coordinate of
a cluster is the center of mass of its root element. In [3] results with more elaborate
graph partitioning schemes are reported.

5. Load balancing for additive multigrid. In the case of additive multigrid the
communication in smoother and coarse grid correction is not interleaved. Therefore, if
a complete subtree S(t) is assigned to one processor, communication during restriction
and prolongation is only necessary for the root element ¢ if its father f(¢) is assigned to
a different processor. Furthermore the communication in the smoother can be delayed
after all nodes on all levels have been processed and at most one message has to be
exchanged between any pair of processors. Additive multigrid (with one smoothing
step) thus can be implemented with the same communication requirements as non-
overlapping domain decomposition (but slightly larger messages).

The idea of the additive load balancing algorithm is to find a set of root elements
RT such that Uycgpr S(t) contains most of the total work and the assignment of subtrees
S(t),t € RT to processors allows good load balancing. Note that the elements in RT
need not be of the same grid level!

In order to find the set RT one starts with subtrees (which are clusters in the sense
of the previous section) that are as large as possible. This is accomplished by algorithm
cluster when d > J is used (then one has RT = T, b being the baselevel). In a second
step the subtrees are divided into smaller clusters when needed (see below). A simple
way to break up a cluster into smaller clusters is to define the sons s(t) of the root
element as roots of new clusters. This is done by the following algorithm split.

AvLGORITHM 5.1. Split clusters into smaller clusters. Algorithm split takes all
clusters in C' and uses the sons of the root elements as new cluster roots. Since this will
be done on the master processor a minimal cluster size Z is required due to memory
restrictions. Therefore the results are two cluster sets: C' the set of (smaller) clusters
that still can be subdivided further and L' the set of clusters that cannot be subdivided
further. In order to avoid clusters containing less than Z elements the definition of a
cluster is generalized such that also elements below the root element are allowed to be
in a cluster (see explanation of algorithm below).

split (C,C",L", Z) {
Cl — LI — (D’
for each (c € C) {
r = root(c); i = 0;
for (s € s(r)) {

NN SN
=W N
—

12

(@3

if (IS(s) el > 2) {
1=1+1;
create new c;;

AN N AN N N
-~ O
— N N S N

8 ¢ =S(s)N¢; ec=c)\ ¢ root(c;) = s;
9 C'"=C"Ug;
}
}
(10) if (je,=1A7>0)
(11) ¢ =cUg
(12) else C' = C'Ug;

}
for each (c € C") {

r = root(c); i = 0;
for (s € s(r))
if (|S(s)Nel<Z)i=1i+1;
} if (i =|s(r))) { C'=C"\; ' = ' Uc};

N AN SN N N
—_
ot

~— N N e

}

Lines (1-9) of algorithm split subdivide each cluster ¢ of C at its root by assigning
a son (and all successors of it) to a new cluster if the new cluster is large enough. Lines
(10-12) assigns the old root element to the first new cluster if it would be the only
remaining element in cluster c. Note that the old root element will not be the root
element of cluster ¢; (the root of ¢; is defined in line (8))! In a second loop through
all new clusters in lines (13-17) those clusters are detected that cannot be subdivided
further.

The following algorithm assigns clusters to processors for additive multigrid. It
uses algorithm split in order to subdivide clusters when necessary.

ALGORITHM 5.2. Load balancing for additive multigrid. The input of algorithm
amg_assign consists of C, the set of divisible clusters, L the set of indivisible clusters,
P the set of processors available to compute elements in C and L, Z the minimum
size of a single cluster, tol a parameter controling the load balancing quality and %k the
current subdivision level. Algorithm amg_assign is called recursively. In the initial call
C is assumed to be a clustering obtained with algorithm cluster using an appropriate
baselevel b and a depth d > J. In addition all clusters in C' are assumed to be divisible.
The output of the algorithm is given by the mapping map : C' — P.

amg-assign (C, L, P, Z, tol, map) {

(1) if (P = {p}) {Vc € C : map(c) = p; VI € L : map(l) = p; return; }
(2) Divide P into Py, Pi;
while (true) {
(3) We =Y wie); W =3 w(l);
ceC leL
Po
(4) Wopt = e (Wo + W)
(5) if We < W) {

13

(=)

N SN SN
oo
~— N N N

Co=0C;C =10
Find order for L: ar, : {1,...,|L|} — L;
Determine i € {0, ..., |L|} such that

-3

9 Wopt — (W(; + Xijlw(aL(n)))‘ — min;
i L]
(10) Lo = L:JI{GL(N)}; L= :U+1{aL(")}3
} else {
(12) Find order for C: ac : {1,...,|C|} — C;
(13) Determine i € {0,...,|C|} such that
(14) Wopt — 2; w(ac(n))‘ — min;
i IC|
(15) Co= Udac(n)}; Ci = :LZJ+1{GC(7”L)};

}

(16) for 0=0,1) W, = X we)+ ¥ w(l);
ceCy leL;

(17) if (max(Wo, W) < (1 +tol)Wop) V (C = 0) break;
(18) split(C,C", L', Z);
(19) C=C"L=LuUlL

}
(20) amg_assign(Cy, Ly, Py, Z, tol - o, map);
(21) amg assign(Cy, Ly, Pi, Z, tol - o, map);

}

Algorithm amg_assign is a recursive bisection strategy. If P contains more than
one processor it subdivides P, C' and L into two parts each and calls itself recursively.
Line (2) bisects the processor set P. The while loop in lines (3-19) bisects C' and L
until the load balancing tolerance is satisfied or the clusters can not be subdivided
further. It starts by computing the number of elements in C' and L (line (3)) and the
optimal number of elements that should be assigned to processor set Py (line (4)). In
the following cluster bisection step either C' or L is bisected, depending on line (5). The
bisection is implemented such that the clusters are ordered by their z-coordinate (or y
alternatingly) and then a linear search is performed that optimizes load balance. Note
that more complicated methods, e.g. spectral bisection, could be used in the ordering
step as well. Now the total load for processor sets Py and P, is computed in line (16).
If load balance is good enough or the clusters can not be subdivided further the while
loop is exited (line (17)). If the load balancing criterion is not fulfilled the cluster size
is decreased by calling algorithm split and a new bisection is computed. Lines (20,21)
contain the recursive call that now maps Cy, Ly to Py and C, L; to P;. Note that the
load balancing tolerance tol is multiplied with o < 1 (usually o = 0.5 is used). This
allows one to start with a relatively large tolerance (e.g. tol = 0.2) and avoids excessive
cluster splitting in the first bisection steps.

6. Numerical results.
14

6.1. Uniform refinement of an unstructured mesh. The first example solves
the Laplace equation (¢ = 1 in Eq. (1)) on the mesh given in Fig. 4. The coarse
mesh (level 0) consists of 210 triangular elements and the finer meshes are obtained by
uniform refinement (i.e. no local refinement is employed). Grid level 0 is assigned to
one processor, for grid level 1 (840 elements) up to 16 processors are used and grid levels
2 (3360 elements) and higher are allowed to use all processors. The mapping of levels 1
and 2 is done only once before further refinement (with orthogonal coordinate bisection),
which means that communication in the coarse grid correction is only possible between
levels 0/1 and 1/2. The same mapping is used for multiplicative and additive multigrid.

Fic. 4. Unstructured mesh used in the uniformely refined example.

Table 1 shows iteration times Tj(p) (in seconds), efficiency per iteration defined as
E; = Tﬁ’ég?p and iteration numbers for a 107% reduction of the residual in the euclidean
norm. The iteration times Tj;(1) for the larger problems have been obtained by simple
multiplication with a factor 4. Method mmg was a multiplicative multigrid V-cycle with
one symmetric Gau-Seidel step used for pre- and post-smoothing. Method amg was an
additive multigrid cycle with two symmetric Gauf}-Seidel sweeps used as a smoother.
Both multigrid cycles were used as preconditioner in a conjugate gradient iteration. The
Gaufl-Seidel smoother has been parallelized by ignoring data dependencies between
processors, i.e. it is better described as a Block-Jacobi-Smoother with inexact inner
iteration. The nodes on processor boundaries have been assigned arbitrarily to one of
the processors. On the coarsest level the residual is always reduced by a factor of 1074
with an ILU-iteration.

The table shows that additive multigrid needs about twice the number of iterations
of the multiplicative multigrid method (a result expected from theory). The time per
iteration is about the same for both methods (The results of [4] suggest that using only
one smoothing step for amg would be more efficient but this would not change the overall
conlusion). The efficiency per iteration is only slightly better for additive multigrid
although less messages have to be sent. The bad efficiencies for 27457 unknowns on
64 processors are due to high surface to volume ratio (less than 500 unknowns per
processor) and large serial overhead (level 0 is solved on one processor). If the number
of unknowns per processor is constant (scalability) the efficiencies are very good and
reach almost 90% on 64 processors. Since iteration times and parallel efficiency are
comparable for additive and multiplicative multigrid the overall solution time is less for
multiplicative multigrid in this example.

15

TABLE 1

Efficiency per iteration and iteration count for uniformely refined example on Cray T3D.

Levels 6 7 8
Unknowns 27457 108673 432385 1724929
Method mmg amg mmg amg mmg amg mmg amg
|P|=1 T; 3.39 2.9 13.56 11.6 54.24 46.4 | 216.96 185.6
#1IT 10 21
|P| =4 T; 0.952 0.802 3.56 3.03
E; 89 90 95 96
#IT 10 21 10 23
|Pl=16 T; 0.318 0.266 1.00 0.844 3.74 3.18
E; 67 68 85 86 91 91
#IT 11 24 12 25 12 26
|Pl=64 T; 0.150 0.113 0.338 0.278 1.03 0.862 3.85 3.26
E; 35 40 63 65 82 84 88 89
#IT 13 26 12 26 12 27 12 28
TABLE 2

Comparison of time per multigrid iteration (in seconds) on different machines for constant load
per processor in the uniformely refined example (about 27500 unknowns per processor).

Levels 5 6 7 8
Processors 1 4 16 64
Cray T3D 3.39 3.56 374 3.85 (1.14)
Intel Paragon 5.26 5.73 6.10 6.27 (1.19)
Parsytec GC PowerPlus 4.46 4.93 5.37 5.56 (1.25)

Table 2 compares scaled iteration time per multigrid iteration (only multiplicative
multigrid, same parameters as above) on different parallel machines. The last column of
the table shows the scalability factor from one to 64 processors. In conclusion the Cray
T3D has the fastest processor and the best scalability due to its fast communication

network.

6.2. A fixed-size adaptive example. As a first adaptive example Laplace’s
equation —Awu = 0 is solved in the L-shaped domain Q = (0,1)?\ {(z,y)|z > 0.5 Ay <
0.5} with Dirichlet boundary conditions taken from the exact solution

(22)

u(r, @) = (f) ; sin(

4

The error is estimated in the H'-norm:

(23)

= gl < 0(

teT
16

(1)

>%

with

() = hi||f+ Ve Vullj,
+ Z he”g2 —eVuy, - ne”%,e

eEE(t)ﬂEN

1
+ Y SheleVull,,

GEE(t)ﬁEQ

where E(t) is the set of edges of triangle ¢, Ey are the Neumann boundary edges, Fq
are the interior edges, h:, he is the size of triangle ¢ and edge e and || - |los, || - ||o,e are
the L, norms over triangle ¢ and edge e. A triangle is flagged for refinement if

24 ’(t) <0. (t).
(24) (1) < 0.27 maxn“(t')

The adaptive procedure is run until

(25) (Z 772(t)>% < 0.006

teT

is reached. The final finite element space has 25375 degrees of freedom and the multigrid
hierarchy contains 70327 triangles distributed over 17 grid levels. The finest grid levels
contain only several hundred triangles each in the vicinity of the reentrant corner.

Fig. 5 shows the load distribution for additive and multiplicative multigrid on
16 processors. The picture clearly shows the smaller surface to volume ratio for the
additive multigrid load balancer.

Table 3 shows the efficiency per multigrid iteration on the final mesh, E;;, the time
spent in the multigrid solver for a 10~* reduction of the residual, T}, and the total
computation time 7}, starting from the initial mesh with 6 triangles. On a single
processor the multiplicative multigrid method with 2 Gauf}-Seidel post-smoothings is
clearly faster than additive multigrid with Jacobi smoothing. Starting with 16 pro-
cessors the time Ty, is smaller for additive multigrid and for 64 processors even total
computation time is better for additive multigrid. The overall efficiency however is
very poor for both methods in this extreme example with less than 400 unknowns per
processor on 17 grid levels in the 64 processor case. It is not advisable to use more than
16 processors in this example which still runs on a small workstation (20 MB storage).

6.3. A scaled-size adaptive example. In the example of this section the prob-
lem size is increased with the number of processors by choosing an appropriate tolerance
in the error estimator. Eq. (1) is solved in the unit square with the coefficient function
e given by the left picture in Fig. 6. This coefficient function varies over four orders of
magnitude. The right part of Fig. 6 shows the adaptively refined mesh after 10 levels
of refinement. The same error estimator as in the previous example has been used.

17

F1G. 5. Load mapping on 16 processors using multiplicative (left) and additive multigrid (right)
for the fized-size example.

TABLE 3
Efficiency, solution time and total computation time for fized-size adaptive example (Intel Paragon).

Processors cg+mmg+gs(0,2) cg+amg—+djac(1)

Ez't Tsol ,I;total Eit Tsol T’tota.l
1 100 14.0 123 100 23.5 154
2 88 7.97 81 97 12.1 88
4 65 5.34 56 90 6.56 o7
16 38 2.28 39 65 2.25 25
32 26 1.66 24 95 1.34 25
64 15 1.44 24 38 0.97 18

Table 4 shows efficiencies per multigrid iteration, E;, and time spend in the solver,
T,o1, on the finest mesh with the given number of unknowns. Symmetric Gauf3-Seidel
was used as a smoother for both multigrid variants. The table shows that multiplicative
multigrid is preferable in all cases, although the efficiency per iteration is again better
for additive multigrid.

Table 5 now compares total computation time and estimated global errors for uni-
form and adaptive computations. In the given example a solution with comparable
quality can be computed on 48 processors of the Intel Paragon in 159 seconds with
uniform refinement or with only 4 processors in 135 seconds with adaptive refinement.

7. Conclusions. In this paper two load balancing algorithms for adaptive multi-
grid methods have been proposed, one for multiplicative multigrid and one for additive
multigrid. Both methods use the grid hierarchy information in order to achieve a com-
promise in communication in the coarse grid transfer and in the smoother.

The synchronization behavior of additive multigrid allows a load distribution with

18

FiG. 6. Coefficient function e(z) (left) and adaptively refined mesh (right) for the scaled-size
adaptive example.

TABLE 4
Efficiency per iteration and solution times (in seconds) for the scaled-size adaptive example on
Intel Paragon.

Unknowns 18174 48448 155999 551162
Est. Error 0.681 0.36 0.19 0.095
Processors 1 4 12 48
cg+mmg+sgs(2,2) E; 100 79 73 67

Tsor 36.3 29.4 33.2 26.5
cg+amg+sgs(2) E; 100 88 82 76

Tsol 102.0 74.3 83.0 72.9

much smaller surface to volume ratio. This results in superior parallel efficiencies per
iteration for small problems. However, additive multigrid needs more iterations than
multiplicative multigrid. The experiments show that if the problems are reasonably
large, multiplicative multigrid has the smaller overall computation time.

The question whether parallel adaptive computation pays off compared to parallel
uniform computation is of course very problem dependent. In general one can conclude
that if adaptive computation pays off on a sequential computer then it will also be
efficient on a parallel computer as long as the problems are reasonably large.

Finally it should be noted that both load balancing schemes can be extended im-
mediately to the three-dimensional situation. The techniques presented in this paper
can also be used to solve more complicated equations. They have, e.g., been used
successfully for computations in nonlinear structural mechanics.

A. Notation. This appendix recapitulates the most frequently used symbols.

19

TABLE 5

Comparison of total computation time for uniform and adaptive calculation (Intel Paragon).

Processors uniform adaptive
time est. error time est. error

1 78 2.76 183 0.681
4 91 1.29 135 0.36
12 116 0.63 135 0.19
48 159 0.31 135 0.095

Q open domain in IR?

Vi, fine grid finite element space

028 nodal basis generating V},

T, set smallest triangles covering € (“finest mesh”)

Ny, set of nodes of T},

J finest level in multigrid hierarchy (J + 1 levels)

Ty set of triangles on level k

Ny, set of nodes on level &

Dy, Ry, subsets of N}, defined in (7)

Vi finite element space on level &

D nodal basis for V}, corresponds to nodes Dy

N nodal basis corresponding to nodes Ni on level k

T union of all grid levels T

Fy C Ty x Ty, father relationship from level £ + 1 to k&

FCTxT union of all Fj

f(t) father element of t € T

s(t) set of elements having ¢ as father (the sons)

S(t) set of descendants of ¢

z(t) number of elements in S(t)

NBy, C Ty x T, neighbor relationship on level-k—elements

NBCTxT union of all NB,

C cluster set, i.e. a partitioning of T’

c(t) cluster of element, ¢

bot(c) smallest k such that ¢ Ty # ()

top(c) largest k such that ¢ N Ty # ()

wi(c) number of level-k—elements in cluster ¢

w(c) number of elements in cluster ¢

root(c) unique element in ¢ whose father is not in ¢

P processor set,

[1] R. BANK: PLTMG Users Guide Version 7.0. STAM, Philadelphia, 1994.

REFERENCES

20

[2]
3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

Q X

J.

. BAsTIAN, G. WITTUM: On Robust and Adaptive Multigrid Methods, Proceedings of the

4th European Multigrid Conference, Amsterdam, July 1993.

. BastiaN, K. ECKSTEIN, S. LANG: Parallel Adaptive Multigrid Methods in Structural

Mechanics, submitted to Numerical Linear Algebra with Applications.

. BASTIAN, W. HACKBUSCH, G. WITTUM: Additive and Multiplicative Multi-Grid: a Com-

parison, submitted to Numerische Mathematik.

. BASTIAN: Parallele adaptive Mehrgitterverfahren, Teubner Skripten zur Numerik, Teubner-

Verlag, Stuttgart, 1996.

H. BRAMBLE, J. E. PASCIAK, J. XU: Parallel Multilevel Preconditioners, Math. Comput.,
55, 1-22 (1990).

H. BRAMBLE, J. E. PAsciak, J. WANG, AND J. Xu, Convergence estimates for multigrid
algorithms without regularity assumptions, Math. Comp., 57, (1991), pp. 23-45.

. DEUFLHARD, P. LEINEN, H. YSERENTANT: Concepts of an Adaptive Hierarchical Finite

Element Code, IMPACT of Computing in Science and Engineering, 1, 3-35 (1989).
. HACKBUSCH: Multi-Grid Methods and Applications, Springer, Berlin, Heidelberg 1985.

. HENDRICKSON, R. LELAND: The Chaco User’s Guide Version 1.0, Technical Report

SAND93-2339, Sandia National Laboratory, October 1993.

. ErRikSsoN, D. EsTEp, P. HANSBO AND C. JOHNSON: Introduction to adaptive methods for

partial differential equations. Acta Numerica, (1995).

. KArYP1s, V. KUMAR: A fast and high quality multilevel scheme for partitioning irregular

graphs. Technical Report 95-035, University of Minnesota, Department of Computer Science,
(1995).

. SIMON: Partitioning of Unstructured Problems for Parallel Processing, Computing Systems

in Engineering, 2(2/3), 135-148, (1991).

. WitTtuM: On the Robustness of ILU Smoothing, SIAM J. Sci. Statist. Comput., 10, 699-717

(1989).

. WITTUM: Linear Iterations as Smoothers in Multigrid Methods: Theory with Applications

to Incomplete Decompositions, IMPACT of Computing in Science and Engineering, 1, 180-
215 (1989).

Xu: [Iterative Methods by Space Decomposition and Subspace Correction: A Unifying Ap-
proach, SIAM Review, 34(4), 581-613, (1992).

H. YSERENTANT: Old and new convergence proofs for multigrid methods, Acta Numerica,

(1993).

21

