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1 Introduction

Solving large sparse linear systems is an ubiquitous task in
the numerical solution of partial differential equations. In-
creasing demands of computationally challenging applica-
tions both in problem size and algorithm complexity have
lead to the development of parallel scalable solver libraries
for these tasks. Commonly used parallel iterative solver li-
braries are hypre, Falgout and Yang [2006], PETSc, Balay
et al. [1997], and Trilinos, Heroux et al. [2005]. Of these
only the last one provides a C++ interface.

In contrast to these libraries the parallel version of the
“Iterative Solver Template Library” (ISTL), Blatt and

Bastian [2007], is specifically designed for linear systems
stemming from Finite Element discretisations. Depending
on how systems of partial differential equations are dis-
cretised, e.g. using equation wise ordering or point wise
ordering, they may have a different natural hierarchical
block structures. As this structure is already known at
compile time it is exploited by ISTL using generic pro-
gramming techniques available in C++. The matrix and
vector classes, being template classes, support this struc-
ture and it is used in the generic iterative solver kernels
for efficiency.

All of the parallel solver libraries mentioned above work
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with distributed data structures (matrices and vectors)
which implicitly know the data distribution and commu-
nication patterns. In contrast to this, in our approach the
data distribution and communication is not built into the
linear algebra data structures. This leads to a clear separa-
tion of parallelisation aspects and sequential linear solver
components.

The information about the data decomposition and com-
munication interfaces is either provided by a parallel grid
implementation or by distributed index sets. With this
information an abstract consistency model is imposed on
the building blocks (scalar products, preconditioners and
parallel operators) of our iterative solvers. As a conse-
quence the framework is able to support overlapping and
non-overlapping domain decomposition methods as well as
data parallel implementations of standard linear solvers.
Furthermore it is easy to switch to other parallel program-
ming paradigms as the consistency model is only loosely
coupled with the current paradigm, MPI.

The paper is organised as follows: In Section 2 we de-
scribe the proposed domain decomposition together with
the parallel discretisation approach. This discretisation
approach is a prerequisite for our parallelisation approach.
After introducing the sequential version of ISTL in Sec-
tion 3 we devote Section 4 to the building blocks of our
parallel solvers. In Section 5 we outline the abstraction
and design of our communication interface, which greatly
eases the tasks of developing custom parallel precondition-
ers and solvers and is easily portable to other parallel pro-
gramming paradigms. In Section 6 we review related li-
brary approaches and point out the differences between
the ISTL approach. Finally we show numerical results in
Section 7 proving the scalability of the approach and its
applicability to real world problems.

2 Domain Decomposition

A crucial part in parallel solvers is the construction of the
operators from a given domain decomposition. The usage
of these operators is twofold: On the one hand they are
applied to vectors, e.g. to compute the current residual
in iterative methods, and on the other hand they are used
to construct preconditioners. In this section we will show
how we set them up to handle both tasks efficiently.

Let us consider a second order selfadjoint partial differ-
ential equation in 2D or 3D

−∇ · D(x)∇u(x) = f(x), x ∈ Ω (1)

α(x)u(x) + β(x)
∂u

∂n
= g(x), x ∈ ∂Ω (2)

where Ω ∈ Rn, n = 2, 3 is an open domain, D(x) > 0 is a
diagonal matrix and

|α(x)| + |β(x)| > 0 ∀x ∈ ∂Ω

holds.

We decompose the domain Ω into P (the number of pro-
cessors) non-overlapping subdomains Ωi with

Ω =

P−1⋃

i=0

Ωi, Ωi ∩ Ωj = ∅ (i 6= j) .

As we would like to be able to cover both overlapping
and non-overlapping domain decompositions we introduce
the additional domain Ω̃i, with

Ωi ⊆ Ω̃i ⊆ Ω .

Furthermore we define the border Bi = ∂Ωi.
Note that for a non-overlapping domain decomposition

Ω̃i = Ωi

and for the overlapping case

Ωi ( Ω̃i

holds.

2.1 Finite Element Spaces

Let Vh be a finite element space generated by a basis Φh =
{φ0, φ1, . . . , φN−1}. Then it is obvious that any u ∈ Vh can

be represented as u =
∑N−1

i=0 xiφi. The coefficients form a
vector x = (x0, . . . , xN−1)

T ∈ RN .
For any finite dimensional subset I ⊂ N we define RI

as the vectors x = (xk0
, xT

k1
, . . . , xkM

), where ki ∈ I and
M = ‖I‖−1. Assuming that Φh is a nodal basis, i.e. every
φi ∈ Φh is associated with some position zi ∈ Ω, we define
for every ω ⊂ Ω

Iw = {k ∈ {0, . . . , N − 1}|zk ∈ ω}

as the (not necessarily consecutive) index set Iω corre-
sponding to the domain ω for the nodal basis Φh.

Thus IΩi
denotes all indices of basis functions associated

with subdomain Ωi. Note that IΩ = {0, 1, . . . , N−1} holds.

2.2 Restriction

We define the following restriction operator for an arbi-
trary subdomain ω ∈ Ω:

Rω : RI
Ω → RIω

by
(Rωx)k = (x)k ∀k ∈ Iω

and the corresponding prolongation operator

RT
ω : RIω → RI

Ω

by

(RT
ωxω)k =

{
(xω)k k ∈ Iω

0 k 6∈ Iω
.

Note that Rω just selects the coefficients x that are as-
sociated with the subdomain ω and we have

RωRT
ω = Idω

where Idω denotes the identity on RIω .
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Theorem 2.1. (Partitioning of RI
Ω) There exists a (not

necessarily unique) disjoint partitioning

IΩ =

P−1⋃

i=0

Ii , Ii ∩ Ij = ∅ ∀i 6= j

with Ii ⊂ IΩi
.

Proof. Since ∪Ωi = Ω it is obvious that

P−1⋃

i=0

IΩi
= IΩ

is a possibly overlapping decomposition. This immediately
gives a constructive set

Ii = IΩi
\




i−1⋃

j=0

IΩj


 .

With RIi we associate the canonical restriction Ri :
RI

Ω → RIi and the prolongation RT
i : RIi → RI

Ω in the
same way as above.

2.3 Parallel Representations

In a parallel implementation x ∈ RI
Ω cannot be stored in

one process but is represented by individual pieces. As
there might be the need to store more entries than the
domain Ω̃i contains we introduce the superset Ĩi ⊇ IeΩi

denoting all indices for which process i stores values. Each

process i, 0 ≤ i < P , stores the piece xi ∈ R
eIi of the global

vector x.
The goal is to use purely sequential matrix and vector

data structures and operations and still be able to do paral-
lel computations reusing sequential linear algebra kernels.
Therefore one has to impose certain constraints onto the
local representations of global vectors when entering the
kernel methods as well as guarantee certain representa-
tions upon exit of the methods. These constraints will be
defined here.

Let P = {0, 1, . . . , P − 1} be the set of processes being
used.

Definition 2.2 (Valid representation of a vector). A vec-
tor x is stored in a valid representation if and only if

(xi)k = (ReIi
x)k ∀k ∈ Ii .

for all local pieces xi, i ∈ P.

This is the most weak assumption imposed on a par-
allel vector which should hold at any state of a parallel
computation.

Definition 2.3 (Consistent representation of a vector).
A vector x is stored in a consistent representation on the
decomposition Ji ⊆ Ĩi, i ∈ P and ∪i∈PJi = IΩ if and only
if for all of its components xi

(ReIi
x)k = (xi)k ∀k ∈ Ji ,

on all processes i ∈ P holds.

For the case Ji = Ĩi this means that all entries in the
local vector xi are the same as the corresponding entries in
the global vector x. In this case x is said to be consistent.

Definition 2.4 (Additive representation of a vector). A
vector x is stored in an additive representation if and only
if

x =

P−1∑

i=0

RT
eIi
xi .

It is obvious that if a vector x is stored in an additive
representation, it can easily be transformed into a consis-
tent representation on the decomposition Ĩi, i ∈ P, by

xi = ReIi

P−1∑

i=0

RT
eIi
xi .

A special case of the additive representation is the
unique representation of a vector:

Definition 2.5 (Unique representation of a vector). A
vector x is stored in a unique representation on the pro-
cesses of P if and only if

(ReIi
x)k = xi

k ∀k ∈ Ii and

(ReIi
x)k = 0 ∀k ∈ Ĩi \ Ii

holds for all processors i ∈ P.

Note that each vector x being stored in a valid represen-
tation can easily be transformed to a unique representation
by a local projection that sets all entries associated to in-
dices of Ĩi \ Ii to zero.

2.4 Operators

Assume we have an operator

A : RI
Ω → RI

Ω .

Then the application of the global operator A shall be rep-
resented by applying local operators Ai, to be defined later.

As we want to use purely sequential data structures
without knowledge of the parallel representation these op-
erators need to be carefully crafted to resemble the global
application and consistency constraints have to be imposed
on the vector it is applied to and onto the result of the ap-
plication. A second purpose of the local operators is for
the construction of preconditioners, which must not be ne-
glected. Our goal is to define the local operators in a way
such that the sequential preconditioners, e.g. SOR, can
still compute updates stored in a valid representation.

In order to define the finite element method the domain
Ω is partitioned into elements T (Ω) = {t0, . . . , tM−1}. We
assume that the mesh is compatible with the subdomains,
i.e.

T (ω) = {t ∈ T (Ω)|t ⊆ ω}

and ⋃

t∈T (ω)

t = ω ,
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where ω ∈ {Ωi, Ω̃i}, 0 ≤ i < P .
With each element t ∈ T (Ω) we associate the restriction

Rt : RI
Ω → RIt in the way defined above. The global

operator A in the finite element method is constructed
locally in an additive way

A =
∑

t∈T (Ω)

RT
t AtRt (3)

where At, the so-called local stiffness matrix, is associated
with the element t.

2.4.1 Non-overlapping case

Although we allow overlapping grids (Ωi ( Ω̃i) here, we
want to achieve local operators that only compute values
for the unique partition Ii.

Since the subdomains Ωi define a decomposition of Ω
and the mesh is compatible we have

A =

P−1∑

i=0

∑

t∈T (Ωi)

RT
t AtRt

=

P−1∑

i=0

∑

t∈T (Ωi)

RT

Ωi
RΩi

RT
t AtRtR

T

Ωi
RΩi

=

P−1∑

i=0

RT

Ωi




∑

t∈T (Ωi)

RΩi
RT

t AtRtR
T

Ωi




︸ ︷︷ ︸
=:A

Ωi

RΩi

=

P−1∑

i=0

RT

Ωi
AΩi

RΩi
.

(4)

The local operator AΩi
is a mapping AΩi

: R
I
Ωi → R

I
Ωi .

Thus we have obtained an additive decomposition of the
operator A where the application of the local operators
AΩi

can be computed in each processor i in parallel with-
out communication as long as the vector is stored in a
consistent representation on Ωi, i ∈ P.

Unfortunately, the result of the application of the local
operators AΩi

is not stored in a valid representation on Ωi

as the entries of the local matrix row might not be equal to
the corresponding entries in the global matrix representa-
tion. This means that before continuing any computations
a communication step is needed to store the vector in a
valid representation. In addition it is still not possible
to create preconditioners working directly on the operator
representation, like SOR, that are able to compute updates
that are consistent on IΩi

without additional communica-
tion or storing an additional representation of the operator
for the preconditioner.

A remedy to this situation is to store on process i for
each local matrix row corresponding to an index in Ii all
off-diagonal nonzero entries of the global matrix with the
corresponding global value. As this means that our vectors
might need to store additional values, due to the additional
matrix entries, the index set IΩi

needs to be augmented in
the following way:

Let G(V,E) be the graph of the matrix A, where the
set of vertices V = {0, 1, . . . , N − 1} represents the N un-
knowns and the set of edges E = {(i, j)|Aij 6= 0} repre-
sents the pairs of vertices coupled by a nonzero entry in A.
Then we set Îi = IΩi

∪ {j ∈ I|∃i ∈ IΩi
: (i, j) ∈ E} and

Ĩi = I
eΩi

∪ Îi.

Now we construct a local operator mapping AeIi
: ReIi

→
ReIi

as follows:

(AeIi
)αβ =





(
P−1∑
j=0

(RT

Ωi
AΩi

RΩi
)

)

αβ

if α ∈ Ii ∧ β ∈ Îi

δα,β if α 6∈ Ii

0 else

,

(5)
where

δα,β =

{
1 if α = β

0 else

denotes the Kronecker delta.

Graphically the operator AeIi
has the following structure

Ĩi





Îi





Ii



 Aii ∗ 0

0 I 0
0 0 I

where

(Aii)αβ =




P−1∑

j=0

RT

Ωi
AΩi

RΩi




αβ

= (A)αβ

are the entries of the sub matrix (principal sub matrix) Aii

of A with respect to the indices Ii.

Note that for the case Îi 6⊆ I
eΩi

, e.g. real non-overlapping

grids, computing this local operator requires communica-
tion. Using this local operator we are in position to com-
pute an update stored in a valid representation provided
that the vector is stored in a consistent representation on
the decomposition Îi, i ∈ P.

Using a modified local operator SiAeIi
, where Si =

ReIi
RT

i RiR
T
eIi

sets all entries xi, i 6∈ Ii, to 0, results in the

additive decomposition:

A =
P−1∑

i=0

RT
eIi
SiÃeIi

ReIi
.

Assuming that the vector to which the operator A is ap-
plied is stored in a consistent representation on the decom-
position Îi, i ∈ P, the application of the local operators
SiÃeIi

, results in a vector being stored in a unique repre-
sentation. Together with the mentioned constraints this
operation itself does not require any communication.
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2.4.2 Overlapping case

Next we consider the overlapping case Ωi ( Ω̃i, where we

want to construct an operator A
eΩi

: Ω̃i 7→ Ω̃i for using it

in additive overlapping Schwarz methods.
We construct it simply by adding up the local stiffness

matrices as described in equation (3) for the finite elements

belonging to the local domain Ω̃i and representing the en-
tries belonging to ∂Ω̃i as Dirichlet boundary conditions:

(A
eΩi

)αβ =

{ (∑
t∈T (eΩi)

RT
t AtRt

)

αβ
if α ∈ Ω̃i

δαβ else
.

Note that this is the classical definition of the overlapping
Schwarz operator.

To apply the operator in parallel we use the additive
decomposition

A =

P−1∑

i=0

RT

eΩi

SiÃeΩi

R
eΩi

,

where Si = R
eΩi

RT
i RiR

T

eΩi

sets all entries xi
k, k 6∈ Ii, to 0.

Note that applying the local operator SiÃeΩi

on a vector

stored in a consistent representation on the decomposition
Ω̃i, i ∈ P results in a vector being stored in a unique
representation. This is a local operation without any com-
munication.

3 The Sequential Iterative Solvers Template Library

The numerical solution of partial differential equations fre-
quently requires solving large and sparse linear systems.
When discretised using the Finite Element method the re-
sulting sparse matrice exhibit a natural block structure.

Assuming one is discretising a system of partial differen-
tial equations consisting of the variables v1, . . . , vn with a
nodal basis attached to the points z1, . . . , zk then two rep-
resentations of the resulting discretisation matrix resulting
in a block matrix become apparent.

• The resulting linear system Ax = b can be reordered
“unknown-wise” resulting in the system




A[11] · · · A[1n]

...
. . .

...
A[n1] · · · A[nn]







v[1]

...
v[n]


 =




b[1]

...
b[n]




where v[i] denotes the vector of variables associated
with the i-th unknown and A[i.j], i 6= j, the sparse
submatrices of A reflecting the coupling of the i-th
with the j-th unknown, see Figure 1(d).

As an example we mention the Stokes system. Itera-
tive solvers such as the SIMPLE, Patankar [1980], or
Uzawa algorithm, Arrow et al. [1968], use this struc-
ture.

• There is also the possibility of reordering the system
“point-wise” resulting in the system



A(11) · · · A(1k)

...
. . .

...
A(k1) · · · A(kk)







v(1)

...
v(k)


 =




b(1)

...
b(k)




where v(i) denotes the vector of all unknowns associ-
ated with the point zi. Now the matrix blocks A(i,j)

are (small) dense submatrices of size n×n, see Figure
1(a). It is straightforward and efficient to treat these
small dense blocks as fully coupled and solve them
with direct methods within the iterative method, Bas-
tian and Helmig [1999].

When using p-adaptive Discontinuous Galerkin discreti-
sations each finite element t ∈ T (Ω) has an associated
order pt, giving rise to O(pd

t ) unknowns associated to this
element in the scalar case. Here d represents the space di-
mension of the grid. Using the natural “element-wise” or-
dering of the unknowns results in a sparse matrix of dense
submatrices whose size varies with the order of the dis-
cretisation in each element. This case is depicted in Figure
1(b).

Other structures that can be exploited are the level
structure arising from hierarchic meshes, a p-hierarchic
structure (e.g. decomposition in linear and quadratic
part), geometric structure from decomposition in subdo-
mains or topological structure where unknowns are associ-
ated with nodes, edges, faces or elements of a mesh.

The “Iterative Solver Template Library” (ISTL), Blatt
and Bastian [2007], was designed to resemble the described
natural block structure of the discretisation matrices as
well as the vectors. Each matrix entry is itself either a
sparse or dense matrix and each vector entry is again a
vector. This natural hierarchic block structure is already
known at compile time and using generic programming
techniques ISTL exploits this structure to generate algo-
rithms adapted to it.

Currently there are three types of matrices and vectors
adhering to the ISTL interface:

• Small dense matrices, template<class T,int n,int

m> class FieldMatrix, and vectors, template<class

T,int n> class FieldVector, whose entries are of the
numeric type T, e.g. double or complex, and the di-
mensions n and m are specified at compile time via
template parameters. As the dimensions are already
known to the compiler it can apply optimisations such
as unrolling loops. Furthermore the dense systems can
be solved efficiently using direct methods.

• template<class T> class BCRSMatrix denotes a block
matrix stored in compressed row storage (CRS), each
matrix entry is itself a matrix adhering to the inter-
face. The type of the matrix block is given by the tem-
plate parameter T, e.g. FieldMatrix in Figure 1(a) and
BCRSMatrix in 1(c). The corresponding vector class is
template<class T> class BlockVector. Each entry is
itself a vector of type T.
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Figure 1: Block structure of matrices arising in the finite element method

• Although currently not implemented, template<class
T> class VariableBCRSMatrix, will be a CSR ma-

trix of dense block matrices whose dimensions can
vary from one entry to another like depicted in Fig-
ure 1(b). While it is possible to resemble this sit-
uation with a BCRSMatrix whose blocks are again
of type BCRSMatrix a specialised implementation will
be much more efficient as the entries can be stored
in consecutive memory. template<class T> class

VariableBlockVector<B> is the associated vector type,
where each entry is a vector with a variable number
of blocks of type B.

Note that the compiler can automatically apply inlining
as all the type information is available to it. This allows
ISTL to provide a fine grained interface, i.e. provide small
functions like access to individual matrix entries, and still
be comparable to hand crafted C code.

The block recursion can be exploited in the algorithms.
Most preconditioners can be modified to honour this recur-
sive structure for a specific number of block levels k. While
treating the off-diagonal matrix blocks as traditional ma-
trix entries a special treatment is applied to the diagonal
blocks: If k > 1 the diagonal is treated as a matrix itself
and the preconditioner is applied recursively on the matrix
representing the diagonal value D = Aii with block level
k − 1. For k = 1 the diagonal is treated as a matrix en-
try resulting in solving the represented linear system or an
identity operation depending on the algorithm.

4 Parallel Solver Components

While other parallel solver libraries, like PETSc, Balay
et al. [2004], use parallel data structures (matrices and
vectors) that (implicitly) know the data distribution and
communication patterns we decided to clearly separate the
parallelisation aspects from the data structures used. This
is done by imposing an abstract consistency model onto
our linear algebra.

The solvers only use methods of instances of
LinearOperator, ScalarProduct and Preconditioner, de-
scribed in this section. These are provided in the con-
structor. Therefore the parallelisation is hidden from the
solver algorithms in the parallel implementations of these
interfaces.

Based on the description of the domain decomposition
and according parallel discretisation we have everything
in place to introduce these building blocks of our parallel
solvers.

4.1 Scalar Products and Norms

One of the building blocks of Krylov methods is comput-
ing scalar products and norms on the underlying vector
spaces. The base class template<class X> ScalarProduct

provides methods field_type dot(const X& x, const X&

y) and double norm(const X& x) to calculate these in the
vector space described by the template parameter X.

Let x, y be vectors in a valid representation, then a par-
allel scalar product can easily be computed by calculating

x · y =
P−1∑

i=0

(RIi
x) · (RIi

y) .

Note that the projection can be done locally and the sum
requires one global communication. Therefore we do not
impose any additional prerequisites onto x, y.

4.2 Linear Operators

The base class template<class X, class Y>

LinearOperator represents linear maps. The template
parameter X is the type of the domain and Y is the
type of the range of the operator. A linear operator
provides the methods apply(const X& x, Y& y) and
applyscaledadd(field_type alpha, const X& x, Y& y)

performing the operations y = A(x) and y = y + αA(x),
respectively. The subclass template<class M, class

X, class Y> AssembledLinearOperator represents linear
operators that have a matrix representation. Conversion
from any matrix into a linear operator is done by the class
template<class M, class X, class Y> MatrixAdapter.

The prerequisites for both operations are that x is stored
in a consistent representation and y is valid. On com-
pletion of both functions y has to be stored in a unique
representation. Note that the discretisations described in
Section 2.3 fulfil these constraints.

4.3 Preconditioners

The template<class X, class Y> Preconditioner provides
the abstract base class for all preconditioners in ISTL. The
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Table 1: Preconditioners
class implements rec.

SeqJac Jacobi method x
SeqSOR successive over relaxation (SOR) x
SeqSSOR symmetric SSOR x
SeqILU incomplete LU decomposition (ILU)
SeqILUN ILU decomposition of order N
AMG algebraic multigrid method

template parameter X is the type of the domain and Y is
the type of the range of the operator it preconditions. The
method void pre(X& x, Y& b) has to be called once be-
fore applying the preconditioner. Here x is the left hand
side and b is the right hand side of the operator equation.
The method may, e.g. scale the system, allocate memory
or compute an (I)LU decomposition. The method void

post(X& x) should be called after all computations to clean
up allocated resources.

The method void apply(X& v, const Y& d) applies one
step of the preconditioner to the system A(v) = d. Here d

must contain the current residual in a unique representa-
tion and v must be 0. Upon exit of the method v contains
the computed update to the current guess, i.e. v = M−1d

where M is the approximate inverse of the operator A char-
acterising the preconditioner. It is stored in a consistent
representation.

See Table 1 for a list of available sequential precondition-
ers. In the list AMG can be used in sequential and parallel
mode. They have the template parameters M represent-
ing the type of the matrix they work on, X representing
the type of the domain and Y representing the type of the
range of the linear system. The block recursive precondi-
tioners are marked with an “x” in the last column. Their
recursion depth is specified via an additional template pa-
rameter.

The sequential preconditioners can be used to build par-
allel ones using the class BlockPrecondtioner. It repre-
sents a block Jacobi method on the blocks represented by
Ii. Instead of solving these blocks exactly, an arbitrary
number of iterations of a sequential method is performed
and the computed update is communicated to be in a con-
sistent representation. The sequential method is provided
in the constructor.

4.4 Solvers

All solvers are subclasses of the abstract base class
template<class X, class Y> InverseOperator. It repre-
sents the inverse of an operator from the domain of
type X to the range of type Y. The actual solving
of the system A(x) = b is done in the method void

apply(X& x, Y& b, InverseOperatorResult& r). The class
InverseOperatorResult stores some statistics about the so-
lution process, e.g. iteration count, achieved residual re-
duction, etc. All solvers only use methods of instances of
LinearOperator, ScalarProduct and Preconditioner.

See Table 2 for a list of available solvers. All solvers are

Table 2: ISTL Solvers
class implements

LoopSolver wrapper for looping over precondi-
tioner application

GradientSolver preconditioned gradient method
CGSolver preconditioned conjugate gradient

method
BiCGSTABSolver preconditioned bi-conjugate gradi-

ent stabilised method

template classes with a template parameter X specifying
the vector implementation.

With the parallel components fulfilling the prerequisites
posed in the previous subsection we can now transform
the sequential ISTL solvers into parallel solvers by plug-
ging in matching parallel operators, scalar products and
preconditioners.

5 Communication Software Components

In this section we will describe some implementational as-
pects of our communication interface. In parallel represen-
tations a random access container x, e.g. a plain C-array,
cannot be stored with all entries on each process because of
limited memory and efficiency reasons. Therefore it is rep-
resented by individual pieces xp, p ∈ P = {0, . . . , P − 1},
where xp is the piece stored on process p of the P processes
participating in the calculation. Although the global repre-
sentation of the container is not available on any process, a
process p needs to know how the entries of its local piece xp

correspond to the entries of the global container x, which
is used in a sequential program. In this section we describe
how the mapping of the local pieces to the global view and
the communication interfaces are implemented and set up
based on these mappings.

5.1 Index Sets

From an abstract point of view a random access container
x : I → K provides a mapping from an index set I ⊂ N0

onto a set of objects K. Note that we do not require I to
be consecutive. The piece xp of the container x stored on
process p is a mapping xp : Ip → K, where Ip ⊂ I. Due to
efficiency the entries of xp should be stored consecutively
in memory. This means that for the local computation the
data must be addressable by a consecutive index starting
from 0.

When using adaptive discretisation methods there might
be the need to reorder the indices after adding and/or
deleting and adding some of the discretisation points after-
wards. Therefore this index does not need to be persistent
and can easily be changed. We will call this index local
index.

For the communication phases of our algorithms these
locally stored entries must also be addressable by a global
identifier to be able to store the received values at and
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retrieve the values to be sent from the correct local index
in the consecutive memory chunk. To ease the addition
and removal of discretisation points this global identifier
has to be persistent but does not need to be consecutive.
We will call this global identifier global index.

5.1.1 IndexSet

Let I ⊂ N0 be an arbitrary, not necessarily consecutive,
index set identifying all discretisation points of the com-
putation. Furthermore let

(Ip)p∈P ,
⋃

p∈P

Ip = I

be an overlapping decomposition of the global index set
I into the sets of indices Ip corresponding to the global
indices of the values stored locally in the chunk of process
p.

Then the

template <typename TG , typename TL >

class IndexSet;

realises the one to one mapping

γp : Ip −→ Iloc
p := [0, np)

of the globally unique index onto the local index.
The template parameter TG is the type of the global in-

dex and TL is the type of the local index.
To be able to attach further information to the index the

only prerequisite for the type of the local index is that it
is convertible to std::size_t as it is used to address array
elements.

The pairs of global and local indices are ordered by as-
cending global index. Thus it is possible to access the
pairs via operator[](TG& global) in log(n) time, where n

is the number of pairs in the set. In an efficient code it is
advisable to access the index pairs using iterators.

Due to the ordering, the index set can only be changed,
i.e. indices added or deleted, in a special resize phase.
By calling the functions beginResize() and endResize()

the programmer indicates that the resize phase starts and
ends, respectively. During the call of endResize() the
deleted indices will be removed and the added indices will
be merged with the existing ones.

5.1.2 ParallelLocalIndex

When dealing with overlapping index sets in distributed
computing there often is the need to distinguish different
partitions of the index set, e.g. Ii and Ĩi \ Ii as introduced
in Section 2.

This is accomplished by using the class

template <typename TA >

class ParallelLocalIndex;

where the template parameter TA is the type of the at-
tributes used, e.g. Flags defined by

Figure 2: Index sets for array redistribution
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P1

IsIs
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enum Flags {owner , ghost };

where owner marks the indices k ∈ Ii owned by process
i and ghost the indices k 6∈ Ii which are owned by other
processes.

As the programmer often knows in advance which in-
dices might also be present on other processes there is the
possibility to mark an index as public.

As an example let us look at an array distributed be-
tween two processors. In Figure 3 one can see the array
a as it appears in a sequential program. Below there are
two different distributions of that array. The local views
s0 and s1 are the parts process 0 and 1 store in the case
that a is divided into two blocks. The local views t0 and
t1 are the parts of a that process 0 and 1 store in the case
that a is divided into 4 blocks and process 0 stores the first
and third block and process 1 the second and fourth block.
The decompositions have an overlap of one and the indices
have the attributes owner and ghost visualised by white
and shaded cells. The index sets Is and It corresponding
to the decompositions si and ti, i ∈ {0, 1}, are shown in
Figure 2 as sets of triples (g, l, a). Here g is the global in-
dex, l is the local index and a is the attribute (either o for
owner or g for ghost).

The following code snippet demonstrates how to set up
the index set Is on process 0:

// s h o r t c u t f o r index s e t t ype
typedef

IndexSet <int ,ParallelLocalIndex <Flags > >

PIndexSet;

PIndexSet sis;

sis.beginResize ();

for(int i=0; i<6; i++)

sis.add(i, ParallelLocalIndex(i, owner);

sis.add(6, ParallelLocalIndex (6, ghost);

sis.endResize ();

5.1.3 Remote Indices

To set up communication between the processes every pro-
cess needs to know which indices are also known to other
processes and which attributes are attached to them on
the remote side. As there might be scenarios where data
is exchanged between different index sets, e.g. if the data
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Figure 3: Redistributed array
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is agglomerated on lesser processes or redistributed, the
communication is allowed to occur between different de-
compositions of the same index set.

Let I ⊂ N be the global index set and

(Is
p)p∈P ,

⋃

p∈P

Is
p = I

and
(It

p)p∈P ,
⋃

p∈P

It
p = I

be two overlapping decompositions of the same index set I.
Then an instance of class RemoteIndices on process p ∈ P
stores the sets of triples

rp→q
s = {(g, (l, a), b) | g ∈ Is

q ∧ g ∈ It
p, l = γs

p(g),

a = αs
p(l), b = αt

q(γ
t
p(g))}

(6)

and

r
p→q
t = {(g, (l, a), b) | g ∈ Is

q ∧ g ∈ It
p, l = γt

p(g),

a = αt
p(l), b = αs

q(γ
s
p(g))} ,

(7)

for all q ∈ P. Here αs
p and αt

p denote the mapping of local
indices on process p onto attributes for the index set Is

p

and It
p as realised by ParallelLocalIndex. Note that the

sets rp→q
s and r

p→q
t will only be nonempty if the processors

p and q manage overlapping indexsetsets.
For our example in Figure 3 and Figure 2 the interface

between Is and It on process 0 is:

r0→0
s = {(0, (0, o), o), (1, (1, o), o), (3, (3, o), g), (5, (5, o), g),

(6, (6, g), o)}

r0→0
t = {(0, (0, o), o), (1, (1, o), o), (3, (3, g), o), (5, (4, g), o),

(6, (5, o), g)}

r0→1
s = {(2(2, o), g), (3, (3, o), o), (4, (4, o), o), (5, (5, o), o),

(6, (6, g), g)}

r0→1
t = {(5, (4.g), g), (6, (5, o), o), (7, (6, o), o), (8, (7, o), o),

(9, (8, g), o)}

This information can either be calculated automatically by
communicating all indices in a ring or set up by hand if

the user has this information available. Assuming that sis
is the index set Is and tis the index set It setup as in
the previous subsection and comm is an MPI communicator
then the simple call

RemoteIndexSet <PIndexSet > riRedist(sis , tis ,

comm);

riRedist.rebuild <true >();

on all processes automatically calculates this information
and stores it in riRedist. For a parallel calculation on the
local views s0 and s1 calling

RemoteIndexSet <PIndexSet > riS(sis ,sis ,

comm);

riS.rebuild <true >();

on all processes builds the necessary information in riS.

5.1.4 Communication Interface

With the information provided by class RemoteIndices

the user can set up arbitrary communication interfaces.
These interfaces are realised in template<typename T>

class Interface, where template parameter T is the cus-
tom type of the IndexSet representing the index sets with
attached attributes. Using these attributes attached to the
indices by ParallelLocalIndex the user can select subsets
of the indices for exchanging data, e.g. send data from
indices marked as owner to indices marked as ghost.

Basically the interface on process p manages two sets for
each process q it shares common indices with:

ip→q
s = {l|(g, (l.a), b) ∈ rp→q

s |a ∈ As ∧ b ∈ At}

and

i
p→q
t = {l|(g, (l, a), b) ∈ r

p→q
t |a ∈ At ∧ b ∈ As} ,

where As and At are the attributes marking the indices
where the source and target of the communication will be,
respectively.

In our example these sets on process 0 will be stored for
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communication if As = {o} and At = {o, g}:

i0→0
s ={0, 1, 3, 5}

i0→0
t ={0, 1, 3, 4}

i0→1
s ={2, 3, 4, 5}

i0→1
t ={5, 6, 7, 8} .

The following code snippet whould build the interface
above in infRedist as well as the interface infS to commu-
nicate between indices marked as owner and ghost on the
local array views s0 and s1:

EnumItem <Flags ,ghost > ghostFlags;

EnumItem <Flags ,owner > ownerFlags;

Combine <EnumItem <Flags ,ghost >,

EnumItem <Flags ,owner > > goFlags;

Interface <PIndexSet > infRedist;

Interface <PIndexSet > infS;

infRedist.build(riRedist , ownerFlags ,

goFlags);

infS.build(riS , ownerFlags , ghostFlags);

5.1.5 Communicator

Using the classes from the previous sections all informa-
tion about the communication is available and we are set
to communicate arbitrary data types. The only prereq-
uisite for the data type is that its values are addressable
via operator[](size_t index), which should be safe to as-
sume.

The main goal of our communicators is that we are not
only able to send one data item per index, but also different
numbers of data elements for each index (provided they
have the same type). This is supported in a generic way
by the traits class template<class V> struct CommPolicy

describing the the array-like data type V. The typedef

IndexedType is the atomic type to be communicated and
typedef IndexedTypeFlag is either SizeOne if there is only
one data item per index or VariableSize if the number is
variable.

The default implementation works for all array-like con-
tainers, which provide only one data item per index. For
all other containers the user has to provide its own custom
specialisation. For the vector classes of ISTL (up to two
block levels) those specialisations are already implemented.

Either template<class V> class DatatypeCommunicator

or template<class V> class BufferedCommunicator per-
form the actual communication. From the information
provided in RemoteIndices a custom MPI_Datatype for the
class V is created by DatatypeComunicator using the source
and target attribute sets. This directly tells MPI what
values of the containers to send and at what indices to
store the received data. Only plain send and receive
operations are supported. The interface information de-
scribed in the previous subsection is managed directly by
the MPI_Datatype. This means that it is tightly coupled to
the layout of the container and it is not possible to commu-
nicate values of containers represented by a different class
even if they have the same layout in terms of index access.

The template<class T> class BufferedCommunicator,
where T is the type of the RemoteIndices provides far more
flexibility. As the information about the communication
interface is managed separately by class Interface it is
possible to communicate data of arbitrary containers
without reconstructing the interface.

Before the communication can start one has to call the
build method with the data source and target containers
as well as the communication interface as arguments. As-
suming s and t as arrays si and ti, respectively, then

BufferedCommunicator <

RemoteIndices <PindexSet > > comm;

BufferedCommunicator <

RemoteIndices <PindexSet > > commRedist;

comm.build(s, s, infS);

commRedist.build(s, t, infRedist);

demonstrates how to set up the communicator commRedist

for the array redistribution and comm for a parallel calcu-
lation on the local views si. The build function calculates
the size of the messages to send to other processes and
allocates buffers for the send and receive actions. The rep-
resentatives s and t are needed to get the number of data
values at each index in the case of variable numbers of data
items per index. Note that, due to the generic program-
ming techniques used, the compiler knows if the number of
data points is constant for each index and will apply a spe-
cialised algorithm for calculating the message size without
querying neither s nor t. Clean up of allocated resources is
done either by calling the method free() or automatically
in the destructor.

The actual communication takes place if one of the
methods forward and backward is called. In our case in
commRedist the forward method sends data from the local
views si to the local views ti according to the interface
information and the backward method in the opposite di-
rection.

The following code snippet first redistributes the local
views si of the global array to the local views ti and per-
forms some calculation on this representation. Afterwards
the result is communicated backwards.

comm.forward <CopyData >(s,t);

// c a l c u l a t e on the r e d i s t r i b u t e d array
doCalculations (&t);

comm.backward <AddData >(s,t);

Note that both methods have a different template param-
eter, either CopyData or AddData. These are policies for
gathering and scattering the data items. The former just
copies the data from and to the location while the latter
copies from the location but adds the received data items
to the target entries. Assuming our data is stored in simple
C-arrays AddData could be implemented like this

struct AddData{

typedef typename double IndexedType;

double gather(const T* v, int i){

return v[i];

}

10



void scatter(T* v, double item , int i){

v[i]+= item;

}

};

Note that arbitrary manipulations can be applied to the
communicated data in both methods.

For containers with multiple data items associated with
one index gather and scatter must have an additional in-
teger argument specifying the subindex.

5.2 Collective Communication

While communicating entries of array-like structures is a
prominent task in parallel iterative solver codes one must
not neglect collective communication operations, like gath-
ering and scattering data from and to all processes, respec-
tively, or waiting for other processes. An abstraction for
these operations is crucial for decoupling the communica-
tion from the parallel programming paradigm used.

Therefore we designed template<class T> class

CollectiveCommunication which provides information of
the underlying parallel programming paradigm as well as
the collective communication operations as known from
MPI. See Table 3 for a list of all functions.

Currently there is a default implementation for sequen-
tial programs as well as a specialisation working with MPI.
This approach allows for running parallel programs sequen-
tially without any parallel overhead simply by choosing the
sequential specialisation at compile time. Note that the
interface is far more convenient to use than the C++ in-
terface of MPI. The latter is a simple wrapper around the
C implementation without taking advantage of the power
of generic programming.

Note that we do not attempt to replicate the complete
set of MPI functions using generic programming as done
in Boost.MPI, Gregor and Troyer [2006].

5.3 Use Case

Using the ISTL framework it becomes rather easy to de-
velop custom parallel preconditioners. As an example we
will implement the so-called parallel hybrid smoother, as
described in Yang [2004]. The main idea is to apply the
sequential smoother on each subdomain corresponding to
the indices of the unique partition. With the discretisa-
tion matrices in the non-overlapping case as described in
Section 2.4 this can be done rather easy. Note that all
matrix rows corresponding to indices k 6∈ Ii on process i

are set up as Dirichlet boundary conditions. Furthermore
the prerequisite of the preconditioner is that the vector the
preconditioner is applied to is stored in a unique represen-
tation. This means that entries of the vector corresponding
to indices k ∈ Ii are not influenced by those corresponding
to indices outside of Ii.

Let the index sets be set up and all indices corresponding
to Ii on process i be marked as owner and all other indices
as ghost. Furthermore let comm be a communicator set up

just like the one in Subsection 5.1.5 for the communication
between owner to ghost indices. Then the following code
snippet presents the apply method of our preconditioner.

void apply(X& v, const X& d){

// app l y s e q u e n t i a l p r e c ond i t i o n e r
seqPrec.apply(v,d);

// make v c o n s i s t e n t
comm.forward <CopyData >(v,v);

}

Here seqPrec can be an arbitrary sequential preconditioner
described in Table 1. Note that in the pre method one
could calculate a relaxation factor and apply it before the
communication in apply to get a smoother that is more
scalable.

6 Related Work

Naturally, there are many software packages out there for
solving large sparse linear systems. While many of them
provide full grown sparse linear algebra, few of them are
specifically designed for linear systems created by finite ele-
ment discretisations of systems of partial differential equa-
tions. Only approaches with a scope similar to ISTL are
discussed here. For a more general overview see Dongarra
[2006] and Eijkhout [1997].

Epetra of Trilinos Epetra provides the linear algebra
system used in the Trilinos project of Sandia National
Labs. Within the Trilinos project parallel solver algo-
rithms and libraries within an object-oriented software
framework for the solution of large-scale, complex multi-
physics engineering and scientific applications are devel-
oped.

Epetra supports block matrices of dense matrices, where
each entry can have a different size. Each matrix entry is a
dense matrix object of which the outer sparse matrix man-
ages a pointer to. For the case of constant block sizes Epe-
tra block matrices provide the possibility to copy the block
values to contiguous memory. Then they provide hand
coded loop unrolling in the matrix-vector-multiplication in
the case of of blocks with less than 5 entries per block row.
Still the operation to optimise the storage needs additional
memory which might be a problem for large systems. Even
if all blocks have the same size the information about the
block sizes is not available at compile time which prevents
the compiler from optimising code like it can be done in
ISTL.

All vector and sparse matrix data structures within Epe-
tra are distributed objects which know their data distribu-
tion. While this means that one does not need to impose
a special additive representation onto the local matrix en-
tries, like described in Section 2.4, Epetra has to initiate
communication for each global matrix-vector-operation to
always keep the vectors stored in consistent representation.
Unfortunately two additional vectors need to be allocated
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Table 3: Collective Communication Functions
Function Description

int rank() Get the rank of the process
int size() Get the number of processes
template<typename T> T sum (T& in) Compute global sum
template<typename T> T prod (T& in) Compute global product
template<typename T> T min (T& in) Compute global minimum
template<typename T> T max (T& in) Compute global maximum
void barrier() Wait for all processes.
template<typename T> int broadcast (T* inout, int len,

int root)

Broadcast an array from root to all other pro-
cesses

template<typename T> int gather (T* in, T* out, int

len, int root)

Gather arrays at a root process

template<typename BinaryFunction, typename Type> int

allreduce(Type* in, Type* out, int len)

Combine values from all processes on all
processes. Combine function is given with
BinaryFunction

temporarily for this and this approach results in more com-
munication steps then needed during iteratively solving a
linear system as the solver programmer is not given the
power to initiate the communication when he thinks it is
necessary.

PETSc The “Portable, Extensible Toolkit for Scientific
Computation” (PETSc), Balay et al. [2004] and Balay
et al. [1997], also supports parallel sparse block matrices
with square dense blocks of fixed size. The parallel sparse
matrices are partitioned by matrix rows. The partitioning
is non-overlapping. Internally two matrices are stored, one
square matrix with just the columns corresponding to the
local rows and another matrix with all off-diagonal values
that correspond to rows not owned by the process. This
allows PETSc to overlap the computation of the matrix-
vector-product with the communication needed to get val-
ues not owned by the process. Still as with Epetra this
means that the amount of communication needed is not
optimal for the scenario described here.

PETSc supports basic index sets which provide a map-
ping from local to global indices. These can be used to
scatter or gather floating point vectors. In contrast to
ISTL more complex communication schemes or communi-
cation of other numeric types or data structures cannot be
realised.

Hypre The parallel sparse matrix formats of the “high
performance preconditioners” (hypre), Falgout and Yang
[2006], do not support any kind of block structure although
some of its grid interfaces and the finite element interface
do so. The matrices are distributed row-wise and each
process can only manage a consecutive set of global matrix
rows.

Unfortunately all parallelisation aspects are hidden from
the user and application developer. This black box ap-
proach makes it very hard to supplement or customise the
library.

Figure 4: Time for one iteration of BlockPreconditioner

(4 · 106 unknowns per process)
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7 Numerical Results

The hybrid smoother described in the previous section
without outer relaxation factor is not really suitable as
preconditioner because of its h-dependency. Still it can
used to measure the overhead the parallel components of
ISTL pose. Figure 4 shows the time per iteration for dif-
ferent numbers of processors. The problem size is scaled
with the number of processes and each process performs
the computation of 4 · 106 unknowns. The Laplace equa-
tion discretised on a 2D tensor product mesh is solved with
the conjugate gradient method preconditioned with the
BlockPreconditioner with one sequential SSOR sweep as
the inner relaxation. The calculation was done on Helics
at IWR in Heidelberg, a Linux cluster of 256 AMD 1.4
Ghz dual processor nodes connected by 2 Gb/s Myrinet.
It shows that the parallel overhead of ISTL is negligible.

The next model application is a simulation of water infil-
tration into a macroporous soil. The problem is modelled
by the Richards equation, which is solved with an incom-
plete Newton method within a time stepping BDF scheme.
For a complete description of the scheme see Vogel et al.
[2006].

The resulting linear system of the first Newton step
in the first time step, discretised with cell centred Fi-
nite Volumes on a 3D tensor product mesh, is solved us-
ing the agglomeration AMG method available in ISTL
until a relative defect reduction of 10−5 is achieved. It
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Table 4: Water infiltration into macroporous soil
P grid setup solve no. of time / total

size time time its. iteration time

1 60 2.21 0.44 2 0.22 1.96
8 120 3.76 0.82 3 0.27 4.58
27 180 5.90 1.29 4 0.32 7.19

uses simple piecewise constant prolongation and restric-
tion. BlockPreconditioner with inner ILU0 relaxation is
used as a smoother. AMG serves as a preconditioner to
the bi-conjugate gradient stabilised method.

In Table 4 for all numbers of processes (P) the number
of cells in each grid dimension, the setup time, the solution
time, the number of iterations, the time per iteration and
the total time to solution are shown. The calculation was
done on the Linux cluster Mozart at IPVS in Stuttgart, a
64 node dual processor Intel Xeon (3.066 GHz, 1 MByte
Level 3 Cache) cluster with Infiniband 4x networking. This
shows that with our approach it is possible to create rea-
sonable scalable solvers for real world problems.

8 Conclusion

We have shown that it is possible to parallelise existing se-
quential linear solvers by imposing an abstract consistency
model upon the building blocks of preconditioned Krylov
methods. The operators constructed are suitable for being
used directly in preconditioners. With the approach pre-
sented here it is possible to reuse the existing sequential
algorithm for the parallel solvers.

Using the power of generic programming in C++ it is
possible to base the parallel communication on the abstrac-
tion of distributed index sets. This allows for decoupling
the communication methods from the actual parallel pro-
gramming paradigm used. Thus it is easy to switch to
other paradigms if necessary.

As currently the only abstraction of the communication
library is MPI, a next step is to support SMP systems
using OpenMP or POSIX threads.

The whole DUNE project, of which ISTL is only one
part, is licensed under the LGPL and can be obtained from
http://www.dune-project.org.
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