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Large scale parallel codes require the data to be decomposed between the set of processes
active in the computation. This data decomposition implies recurring communication schemes.

The paper introduces generic template classes in C++ for describing the data decompo-
sition. The aim is to store the data in arbitrary existent efficient sequential data structures.
Each entry in the sequential data structure corresponds to an entry in the virtual global view
of the container. Once the decomposition is setup the needed communication schemes can
be created automatically and can be used to communicate values from containers of various
types. Even containers with a varying number of values associated with an entry are possible.

The framework abstracts the decomposition information and the communication in the
client code from the eventual parallel paradigm choice. A prototype based on MPI is presented.
It relieves the user from specifying information that is already known at compile time.
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1. Introduction

When using the data parallel programming model a set of processes works collec-
tively on the same set of finite data objects. These might be elements of a finite
element grid or vector entries in a linear algebra computation. Each process works
on different partitions of the global data. Only for this partition it computes up-
dated values.

In large scale parallel codes it is advisable to store the data partition in a local
data structure directly in the local memory of the process. Due to data dependen-
cies the process needs to access data in the partition of other processes, too. This
can either be done by communicating these values on demand between the pro-
cesses whenever they are accessed. This results in data structures that are aware
of the data distribution. Or by augmenting the partition of the process such that
it additionally includes the data values that the other values depend on. Note that
now the partitioning is not disjoint any more but overlapping. Of course the values
other processes compute for need to be updated using communication at so called
synchronisation points of the algorithm

In the latter case the data structures do not need to know anything about the data
distribution. This demands more effort from the parallel algorithm designer to make
sure that the data used for computations is valid, i.e. contains an updated value if
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another process computes the data for it. Still it allows for fewer synchronisation
points in the algorithms as even in collective operations all input data may already
be updated from other processes due to a previous operation. Between the necessary
synchronisation points one can take advantage of the fast local memory access.

Consider representing a random access container x on a set of processes P =
{0, . . . , P − 1}. It is represented by individual pieces xp, where xp is the piece
stored on process p of the P processes participating in the calculation. Although
the global representation of the container is not available on any process, a process
p needs to know how the entries of its local piece xp correspond to the entries of
the global container x, which would be used in a sequential program.

In Sections 2 to 3 of this paper we present software components that are able to
describe this relation between the local data structures and global data distribu-
tion. These allow us to precompute the communication interfaces for synchronising
arbitrary data. Thus they can be used to easily trigger synchronisation in parallel
algorithms. Finally we will compare the performance of our approach to directly
using MPI in Section 4.

2. Communication Software Components

From an abstract point of view a random access container x : I → K provides a
mapping from an index set I ⊂ N0 onto a set of objects K. Note that we do not
require I to be consecutive. The piece xp of the container x stored on process p is
a mapping xp : Ip → K, where Ip ⊂ I. Due to efficiency the entries of xp should
be stored consecutively in memory. This means that for the local computation the
data must be addressable by a consecutive index starting from 0.

When using adaptive discretisation methods there might be the need to reorder
the indices after adding and/or deleting some of the discretisation points. Therefore
this index does not need to be persistent and can easily be changed. We will call
this index local index.

For the communication phases of our algorithms these locally stored entries must
also be addressable by a global identifier. It is used to store the received values
at and to retrieve the values to be sent from the correct local position in the
consecutive memory chunk. To ease the addition and removal of discretisation
points this global identifier has to be persistent but does not need to be consecutive.
We will call this global identifier global index.

2.1 ParallelIndexSet

Let I ⊂ N0 be an arbitrary, not necessarily consecutive, index set identifying all
discretisation points of the computation. Furthermore, let

(Ip)p∈P ,
⋃

p∈P

Ip = I

be an overlapping decomposition of the global index set I into the sets of indices
Ip corresponding to the global indices of the values stored locally in the chunk of
process p.

Then the class

template <typename TG , typename TL > class ParallelIndexSet ;
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realises the one to one mapping

γp : Ip −→ Iloc
p := [0, np)

of the globally unique index onto the local index.
The template parameter TG is the type of the global index and TL is the type

of the local index. The only prerequisite of TG is that objects of this type are
comparable using the less-than-operator <. Not that this prerequisite still allows
attaching further information to the global index or even using this information as
the global index. The type TL has to be convertible to std::size_t as it is used to
address array elements.

The pairs of global and local indices are ordered by ascending global index. It
is possible to access the pairs via operator[](TG& global) in log(n) time, where n

is the number of pairs in the set. In an efficient code it is advisable to access the
index pairs using the provided iterators over the index pairs.

Due to the ordering, the index set can only be changed, i.e. index pairs added
or deleted, in a special resize phase. By calling the functions beginResize() and
endResize() the programmer indicates that the resize phase starts and ends, re-
spectively. During the call of endResize() the deleted indices will be removed and
the added index pairs will be sorted and merged with the existing ones.

2.2 ParallelLocalIndex

When dealing with overlapping index sets in distributed computing there often is
the need to distinguish different partitions of an index set.

This is accomplished by using the class

template <typename TA > class ParallelLocalIndex;

as the type for the local index of class ParallelIndexSet. Here the template pa-
rameter TA is the type of the attributes used, e.g. an enumeration Flags defined
by

enum Flags {owner , ghost };

where owner marks the indices k ∈ Ip owned by process p and ghost the indices
k 6∈ Ip owned by other processes.

As an example let us look at an array distributed between two processes. In
Figure 2 one can see the array a as it appears in a sequential program. Below there
are two different distributions of that array. The local views s0 and s1 are the parts
process 0 and 1 store in the case that a is divided into two blocks. The local views
t0 and t1 are the parts of a that process 0 and 1 store in the case that a is divided
into 4 blocks and process 0 stores the first and third block and process 1 the second
and fourth block. The decompositions have an overlap of one and the indices have
the attributes owner and ghost visualised by white and shaded cells, respectively.
The index sets Is and It corresponding to the decompositions sp and tp, p ∈ {0, 1},
are shown in Figure 1 as sets of triples (g, l, a). Here g is the global index, l is the
local index and a is the attribute (either o for owner or g for ghost).

The following code snippet demonstrates how to set up the index set Is on process
0:

// s h o r t c u t f o r i nde x s e t t y p e
typedef ParallelLocalIndex <Flags > LocalIndex;
typedef ParallelIndexSet <int , LocalIndex > PIndexSet;
PIndexSet sis;
sis.beginResize ();
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Figure 1. Index sets for array redistribution
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Figure 2. Redistributed array

for(int i=0; i<6; i++)
sis.add(i, LocalIndex(i, owner));

sis.add(6, LocalIndex(6, ghost));
sis.endResize ();

2.3 Remote Indices

To set up communication between the processes every process needs to know which
indices are also known to other processes and which attributes are attached to them
on the remote side. There are scenarios where data is exchanged between different
index sets, e.g. if the data is agglomerated on lesser processes or redistributed.
Therefore communication is allowed to occur between different decompositions of
the same index set.

Let I ⊂ N be the global index set and

(Is
p)p∈P ,

⋃

p∈P

Is
p = I, and (It

p)p∈P ,
⋃

p∈P

It
p = I

be two overlapping decompositions of the same index set I. Then an instance of
class RemoteIndices on process p ∈ P stores the sets of triples

rs
p→q = {(g, (l, a), b) | g ∈ Is

q ∧ g ∈ It
p, l = γs

p(g), a = αs
p(l), b = αt

q(γ
t
q(g))} (1)

and

rt
p→q = {(g, (l, a), b) | g ∈ Is

q ∧ g ∈ It
p, l = γt

p(g), a = αt
p(l), b = αs

p(γ
s
p(g))} , (2)

for all q ∈ P. Here αs
p and αt

p denote the mapping of local indices on process p
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onto attributes for the index set Is
p and It

p as realised by ParallelLocalIndex. Note

that the sets rs
p→q and rt

p→q will only be nonempty if the processes p and q manage
overlapping index sets.

For our example in Figure 2 and Figure 1 the interface between Is and It on
process 0 is:

rs
0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, o), g), (5, (5, o), g), (6, (6, g), o)}

rt
0→0 = {(0, (0, o), o), (1, (1, o), o), (2, (2, o), o), (3, (3, g), o), (5, (4, g), o), (6, (5, o), g)}

rs
0→1 = {(2(2, o), g), (3, (3, o), o), (4, (4, o), o), (5, (5, o), o), (6, (6, g), g)}

rt
0→1 = {(5, (4, g), g), (6, (5, o), o), (7, (6, o), o), (8, (7, o), o), (9, (8, g), o)}

This information can either be calculated automatically by communicating all in-
dices in a ring or set up by hand if the user has this information available. Assuming
that sis is the index set Is and tis the index set It set up as described in the pre-
vious subsection and comm is an MPI communicator then the simple call

RemoteIndices <PIndexSet > riRedist(sis , tis , comm);
riRedist.rebuild <true >();

on all processes automatically calculates this information and stores it in riRedist.
For a parallel calculation on the local views s0 and s1 calling

RemoteIndices <PIndexSet > riS(sis ,sis , comm);
riS.rebuild <true >();

on all processes builds the necessary information in riS.

2.4 Communication Interface

With the information provided by class RemoteIndices the user can set up arbi-
trary communication interfaces. These interfaces are realised in template<typename

T> class Interface, where the template parameter T is the custom type of the
ParallelIndexSet representing the index sets. Using the attributes attached to the
indices by ParallelLocalIndex the user can select subsets of the indices for ex-
changing data, e.g. send data from indices marked as owner to indices marked as
ghost.

Basically the interface on process p manages two sets for each process q it shares
common indices with:

isp→q = {l|(g, (l, a), b) ∈ rs
p→q|a ∈ As ∧ b ∈ At}

and

itp→q = {l|(g, (l, a), b) ∈ rt
p→q|a ∈ At ∧ b ∈ As} ,

where As and At are the attributes marking the indices where the source and target
of the communication will be, respectively.

In our example these sets on process 0 will be stored for communication if As =
{o} and At = {o, g}:

is0→0 = {0, 1, 3, 5} it0→0 = {0, 1, 3, 4}

is0→1 = {2, 3, 4, 5} it0→1 = {5, 6, 7, 8} .
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The following code snippet would build the interface above in infRedist as well
as the interface infS to communicate between indices marked as owner and ghost

on the local array views s0 and s1:

EnumItem <Flags ,ghost > ghostFlags;
EnumItem <Flags ,owner > ownerFlags;
Combine <EnumItem <Flags ,ghost >, EnumItem <Flags ,owner > >

allFlags;

Interface <PIndexSet > infRedist;
Interface <PIndexSet > infS;

infRedist.build(riRedist , ownerFlags , allFlags);
infS.build(riS , ownerFlags , ghostFlags);

2.5 Communicator

Using the classes from the previous sections all information about the communica-
tion is available and we are set to communicate data values of arbitrary container
types. The only prerequisite for the container type is that its values are addressable
via operator[](size_t index). This should be safe to assume.

An important feature of our communicators is that we are not only able
to send one data item per index, but also different numbers of data elements
(of the same type) for each index. This is supported in a generic way by the
traits class template<class V> struct CommPolicy describing the container type V.
The typedef IndexedType is the atomic type to be communicated and typedef

IndexedTypeFlag is either SizeOne if there is only one data item per index or
VariableSize if the number of data items per index is variable.

The default implementation works for all array-like containers which provide
only one data item per index. For all other containers the user has to provide its
own custom specialisation.

The class template<class T> class BufferedCommunicator performs the actual
communication. The template parameter T describes the type of the parallel index
set. It uses the information about the communication interface provided by an ob-
ject of class Interface to set up communication buffers for a container containing
a specific data type. It is also responsible for gathering the data before and scat-
tering the data after the communication step. The strict separation of the interface
description from the actual buffering and communication allows for reusing the
interface information with various different container and data types.

Before the communication can start one has to call the build method with the
data source and target containers as well as the communication interface as argu-
ments. Assuming s and t as arrays si and ti, respectively, then

BufferedCommunicator <PIndexSet > bComm;
BufferedCommunicator <PIndexSet > bCommRedist;
bComm.build(s, s, infS);
bCommRedist.build(s, t, infRedist);

demonstrates how to set up the communicator bCommRedist for the array redistri-
bution and bComm for a parallel calculation on the local views si. The build function
calculates the size of the messages to send to other processes and allocates buffers
for the send and receive actions. The representatives s and t are needed to get the
number of data values at each index in the case of variable numbers of data items
per index. Note that, due to the generic programming techniques used, the com-
piler knows if the number of data points is constant for each index and will apply
a specialised algorithm for calculating the message size without querying neither s
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nor t. Clean up of allocated resources is done either by calling the method free()

or automatically in the destructor.
The actual communication takes place if one of the methods forward and

backward is called. In our case in bCommRedist the forward method sends data
from the local views si to the local views ti according to the interface information
and the backward method in the opposite direction.

The following code snippet first redistributes the local views si of the global
array to the local views ti and performs some calculation on this representation.
Afterwards the result is communicated backwards.

bCommRedist.forward <CopyData <Container > >(s,t);
// c a l c u l a t e on t h e r e d i s t r i b u t e d ar ray

doCalculations (t);
bCommRedist.backward <AddData <Container > >(s,t);

Note that both methods have a different template parameter, either CopyData or
AddData. These are policies for gathering and scattering the data items. The former
just copies the data from and to the location. The latter copies from the source
location but adds the received data items to the target entries. Assuming our data
is stored in simple C-arrays AddData could be implemented like this:

template <typename T>
struct AddData{

typedef typename T:: value_type IndexedType;

static double gather(const T& v, int i){
return v[i];

}

static void scatter(T& v, double item , int i){
v[i]+= item;

}
};

Note that arbitrary manipulations can be applied to the communicated data in
both methods.

For containers with multiple data items associated with one index the methods
gather and scatter must have an additional integer argument specifying the sub-
index.

3. Collective Communication

While communicating entries of array-like structures is a prominent task in scien-
tific computing codes one must not neglect collective communication operations,
like gathering and scattering data from and to all processes, respectively, or waiting
for other processes. An abstraction for these operations is crucial for decoupling
the communication from the parallel programming paradigm used.

Therefore we designed template<class T> class CollectiveCommunication

which provides information of the underlying parallel programming paradigm as
well as the collective communication operations as known from MPI. See Table 1
for a list of all functions.

Currently there is a default implementation for sequential programs as well as
a specialisation working with MPI. This approach allows for running parallel pro-
grams sequentially without any parallel overhead simply by choosing the sequential
specialisation at compile time. Note that the interface is far more convenient to
use than the C++ interface of MPI. The latter is a simple wrapper around the C
implementation without taking advantage of the power of generic programming.
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Function Description

int rank() Get the rank of the process
int size() Get the number of processes
template<typename T> T sum (T& in) Compute global sum
template<typename T> T prod (T& in) Compute global product
template<typename T> T min (T& in) Compute global minimum
template<typename T> T max (T& in) Compute global maximum
void barrier() Wait for all processes.
template<typename T> int broadcast

(T* inout, int len, int root)

Broadcast an array from root to
all other processes

template<typename T> int gather (T*

in, T* out, int len, int root)

Gather arrays at a root process

template<typename BinaryFunction,

typename Type> int allreduce(Type*

in, Type* out, int len)

Combine values from all pro-
cesses on all processes. Com-
bine function is given with
BinaryFunction

Table 1. Collective Communication Functions

The collective communication classes were developed before the release of
Boost.MPI [8]. In contrast to Boost.MPI it was never meant as a full generic im-
plementation of all MPI functions. Instead it is restricted to the most basic subset
of collective operations needed to implement finite element methods and iterative
solver using the previously described components. This lean interface should make
it possible to easily port this approach to thread based parallelisation as well as
other parallelisation paradigms. This would allow code to easily switch between
different paradigms

4. Performance Analysis

The performance of the library was compared to direct usage of MPI on the cluster
“Helics II” consisting of 156 nodes with two dual core AMD Opteron 2220 2.8 GHz
processors interconnected by a 10G Myrinet high speed interconnect.

The test case simulates a parallel finite element computation on a structured
parallel tensor product grid in two and three dimension, respectively, with one cell
overlap. In each communication step all processes exchange data with their 4 and 6
neighours, respectively, in a forward communication. Now all cells in the ghost cells
have consistent data. After this communication step the data at the ghost indices is
consistent with the corresponding data owned by other processes. Now each process
adds a random value to all data items and initiates a backward communication. In
Figure 3 the average time for this operation is depicted for growing message sizes
(implied by growing grids).

The version labelled “MPI” uses a custom MPI_Datatype based on
MPI_Type_hindexed modelling our interface information on the sending and receiv-
ing side. The version labelled “index set” in the graphs uses the software compo-
nents as described above. At each communication step the size of the buffers is
calculated and the buffers are allocated. After the communication they are freed
again. In the third version the buffers are allocated only once for each message size
and reused at all communication steps.

We see that the presented approach poses no performance penalty on parallel
code. In contrast due to the added flexibility of using persistent communication
buffers it can even outperform raw MPI code.
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Figure 3. Performance Test

5. Related Work and Conclusion

In contrast to the presented template based approach the PROMOTER program-
ming model [7] is realised as a language extension to C++ together with a library
which abstracts the communication schemes. The data partitioning and distribu-
tion is done at the language level. Unfortunately this does not allow adaptively
changing or redistributing the data as needed for finite element computations on
adaptively refined meshes.

The TACO (topologies and collections) framework [9] overcomes this problem. It
uses global object pointers underneath and lets the user specify the data distribu-
tion at runtime using distributed linked objects. This allows dynamically adding
new objects at runtime. Still this means that all parts of a simulation software,
e.g. linear algebra and grids, need to either all use TACO directly or at least use
the same data distribution. Especially when using third party software components
resembling the data distribution with TACO might be cumbersome.

The Janus framework [6] follows a similar approach to the presented one. The
basic abstraction is a mapping of a finite set of distributed objects onto consecutive
global indices starting at 0. This abstraction is called a domain. In the parallel case



December 24, 2008 3:46 The International Journal of Parallel, Emergent and Distributed Systems
parallel˙indexset

10 REFERENCES

the domain is distributed onto p, the number of processes, mutually disjoint subdo-
mains. In addition each object is mapped onto a local consecutive index starting at
0 on each process. This results in a strided distribution of the collection of objects
and according global indices. Adaptively adding new objects calls for renumbering
both local and global indices. Furthermore due to the mutually disjoint distribu-
tion all operations dependent on objects of other subdomains, e.g. sparse matrix
vector products, require communication.

In the presented approach the subdomains need to be augmented to overlapping
subdomains according to the data dependencies. This allows for minimising the
communication phases. E.g. in Krylov solvers not every matrix vector product
requires communication using this data distribution. Such overlapping subdomains
are either provided by parallel grid managers or directly by the user. As in Janus
each object is identified by a global index. This is mapped to a local index and an
attribute used for identifying different partitions of the local domain and to set up
communication. Once this mapping is set up the user can define communication
interfaces based on the attributes and perform communications for arbitrary data
types. Even if MPI is used underneath the user is relieved from directly using
MPI routines and setting up communication by hand. Furthermore he can take
advantage of the better performance offered by the presented approach if he has
to deal with often recurring communication schemes.

The presented approach was used to implement the data-parallel iterative solver
template library (ISTL module) [3, 4] of the distributed and unified numerics en-
vironment (DUNE) [1, 2, 5]. Currently it is used to develop an efficient parallel
adaptive grid manager.

It is licenced under the GNU General Public License (GPL) with “runtime ex-
ception”. Is available as part of the ISTL model of DUNE which is available for
download from the DUNE project home page [5].
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