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Abstract

1 Introduction

Multiphase multicomponent models for the simulation of processes in the subsurface are widely
used in different fields of technical application. Characteristic for such models is that they
consider flow of more than one fluid phase (e.g., water, oil, gas, alcohol) and transport of com-
ponents in the fluid phases. Many multiphase multicomponent processes are strongly affected by
nonisothermal effects, in particular when processes like evaporation/condensation play a domi-
nant role. Since the 1970s numerical models are developed in the petroleum industry (e.g., Aziz
and Settari, 1979 [3]; Aziz et al, 1987 [2]; Coats et al., 1976 [17]; Coats, 1974 [16]), e.g., in or-
der to help optimizing tertiary oil production by steam flooding. In environmental engineering
since the 1980s an increasing number of problem tasks shows needs of numerical simulations
(e.g., Bear, 1972 [8]; Looney and Falta, 2000 [33]; Helmig, 1997 [25]); Kueper and Frind, 1990
[29]; Panday et al., 1995 [34]), mainly motivated from groundwater protection or groundwater

management.

For the description of temperature dependent processes, in addition to a consideration of the
flow of the individual phases, transitions of components between the phases, coupled with an
exchange of thermal energy, have to be taken into account. Temperature dependent multiphase
multicomponent flow and transport processes are given, e.g., during thermally enhanced reme-
diation of contaminated sites. In PAPER II a more detailed description of thermally enhanced
soil vapor extraction is given. This technique represents a potentially effective means for in-situ
remediation of soils contaminated by nonaqueous-phase liquids (NAPLs) such as halogenated
organic solvents or hydrocarbon fuels (e.g., Udell and Stewart, 1989 [43]; Betz et al., 1998 [9];
Class, 1999 [14]). Another risk for groundwater contamination arises from leaking disposal sites.

E.g., the clay sealing at the bottom of municipial landfills may dry up such that cracks can



develop, through which leachate may seep. The drying processes are caused by high tempera-
tures inside the landfill as a result of microbiological decomposition. Modeling these processes
therefore requires a multiphase multicomponent model concept as well (Bielinski, 2001 [10]).
The production of steam in geothermal reservoirs (e.g., Pruess and Narasimhan, 1982 [39]) or
in the near-field of nuclear waste disposals (e.g., Bastian et al., 2000 [6]) is also an important

task for the application of nonisothermal multiphase multicomponent models.

Sophisticated numerical modeling capabilities are needed to simulate such complex physical
processes. In recent years several models have been developed for simulating multiphase flow
in porous media. Still only a few of them take into account nonisothermal processes including
mass transfer between the phases. Based on a control volume finite element method, Forsyth
(1993) [22] developed a model for simulating steam flushing for DNAPL-contaminated sites.
Well known in the literature is the multiphase multicomponent simulator TOUGH2 (Pruess,
1987 [37]; Pruess, 1991 [38]). This code uses an integral finite difference method. TOUGH2
also builds the basis for some further developments, e.g., a code for the simulation of steam
injection into NAPL contaminated soils by Falta et al. (1995) [19], or a model for simulating the
transport of multiple organic components by Adenakan et al. (1993) [1]. Still, the validation of
all these models using measurements or experimental data is incomplete and therefore a field of
intensive research. Emmert (1997) [18] was able to identify individual processes and to reproduce
experimental data for steam injection in a laboratory sand column. He used a nonisothermal
twophase twocomponent model, which was based on the multiphase simulator MUFTE (Helmig
et al, 1996 [26]; Helmig, 1993 [24]).

With the physics described by the multiphase multicomponent models getting increasingly com-
plex, this yields large systems of coupled partial differential equations with large numbers of
unknowns. Thus, the development of fast and efficient solution methods becomes an important
or even essential task in order to reduce computing time. Parallelization strategies and improved
iterative solution and discretization methods are possible options to achieve this goal. A good
survey of the current state of the art in this field give Bastian (1999) [5] and Helmig (1997)
[25]. Bastian and Helmig (1999) [7] describe the application of a multigrid preconditioner as
an efficient strategy for the solution of the fully coupled twophase flow equations. They used
the program system MUFTE_UG (Helmig et al., 1998 [27]), which is designed as a research
code to combine the modeling of the relevant physical processes with the application of new
discretization techniques and solution methods along with, e.g., multigrid and parallelization

strategies.

The intention of this work covers different tasks. First, a sophisticated physical model concept
was elaborated that allows the description of nonisothermal multiphase multicomponent systems
with variable phase states (see Section 2). Therefore we developed an algorithm that is capable
of an adaptive switching of the primary variables according to the local phase state. Then,

we extended the multigrid method implemented in the numerical simulator MUFTE_UG in



order to allow its application together with the primary variable substitution algorithm. Within
this paper, the physical and thermodynamical model concept for a nonisothermal threephase
threecomponent system including the fluid phases water, NAPL, and gas, the concept of primary
variable switching, as well as the therefore necessary extension of the multigrid method are
explained in detail (Sections 2, 3, and 4). At the end of this paper, an example is given
that shows the performance of the extended multigrid preconditioner (Section 5). The physical
problems, on which we focus our interest of modeling, deal mainly with the remediation of NAPL
contaminated sands by injection of steam or steam-air mixture and simultaneous extraction of
the gas phase. This is the motivation for a further important part of our work, which is the
validation of the model by means of experimental data, presented in PAPER II. Therefore we used
a laboratory experiment with a NAPL contaminated sand column that was cleaned up by a steam
injection and monitored by temperature measurements. Further we present a numerical study
of different remediation scenarios by isothermal and thermally enhanced soil vapor extraction
in a two-dimensional container. Thereby, the fundamental processes affecting the success of the
chosen remediation method can be identified, which enables to use the simulator for supporting

optimization strategies in practical applications.

2 Physical and Thermodynamical Model Concept

The formulation of a mathematical/numerical model requires an idealization of the physical
processes in a way that the natural systems are simplified but at the same time the characteristic
properties of the processes in a system be maintained. In this section, we present the model
concept we use for the simulation of nonisothermal water—gas—NAPL systems at low pressures
(in the magnitude of the atmospheric pressure). The considered temperature range reaches up

to 200°C (473 K). We start with clarifying some terms, definitions, and assumptions.

Phases and components: The term 'phase’ describes matter that has a homogeneous chemical
composition and physical state. Solid, liquid, and gaseous phases can be distinguished. While
there can be several liquid phases present in a porous medium, only one gas phase can exist.
The phases are separated from each other. The term ’component’ stands for constituents of the
phases, which can be associated with a unique chemical species. In this work we consider air
simplifying as a single pseudo-component and neglect its composition of Ny, Oy, and COy. We
assume that our water-gas—NAPL systems be composed of the phases water (Subscript w), gas
(9), and NAPL (n). These are composed of the components water (Superscript w), air (a), and

the organic contaminant (c) (see Fig. 1).

Thermal, chemical, and mechanical equilibrium: For the considered nonisothermal mul-
tiphase processes in porous media we state that the assumption of local thermal equilibrium is

valid since flow velocities are small. We neglect chemical reactions and biological decomposition
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Figure 1: Mass and energy transfer between the phases

and assume chemical equilibrium. Mechanical equilibrium is not valid in a porous medium since

discontinuities in pressure can occur across a fluid-fluid interface due to capillary effects.

Phase states and mass transfer between phases: The number of phases existing in a given
control volume is not necessarily constant. The phase state’ indicates which phases are locally
present in the control volume (Tab. 2). Displacement processes or mass transfer between the
phases may cause appearance or disappearance of fluid phases. Mass transfer processes which
we take into account in our model concept are dissolution, degasing, evaporation, condensation,
and in some cases also adsorption (Bielinski, 2000 [10]). As a simplification we say that the
NAPL phase contains no dissolved components (Fig. 1). For the water phase we assume that
the concentrations of the dissolved components air and organic contaminant are low. Thus,
dissolution can be described by Henry’s Law. Evaporation and condensation allow mass transfer
between the phases water and gas or NAPL and gas respectively. This kind of processes is
strongly coupled with an exchange of thermal energy, at which the latent heat of vaporization
for the water component (= 2258 kJ/kg at 100°C, 1 bar) is about a factor of 5 higher than for
the NAPL (organic contaminant).

In the following the functions and simplifications used for the computation of secondary variables

are given. Their functional dependence on the primary variables is summarized in Tab. 1. Note
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that some variables may represent secondary or primary variables dependent on the phase state
(Section 3).

2.1 Mole Fractions

The composition of a phase a of the components K is expressed by mole fractions zX with the

Saf =1, 1)
K

supplementary constraint

We compute the mole fractions of water and organic contaminant in the gas phase by

K
K_Py

3
g Dy

z K € {w,c}. (2)

Then the air mole fraction in the gas phase is obtained by zg = 1 — zi — 7. For applying Eq.

(2), we use Dalton’s Law
Py = pr (3)
K
and assume validity of the Ideal Gas Law for all components in the gas phase:

= 4

Here, R = 8.314J/(mol K) is the universal gas constant, n represents the quantity of the gas in
[mole], and V in [m?] is the volume occupied by n. The partial pressure pf of the components
water and organic contaminant in the gas phase is equal to the saturation pressure (Fig. 2),
presuming that the corresponding liquid phase is present. Otherwise the respective mole fraction
in the gas phase is treated as a primary variable (see Section 3). We compute mole fractions of

air and organic contaminant in the water phase by using Henry’s Law

K
K _ Py

w_H—g’ KG{G,C}, (5)

x

where HHI,( is the Henry—coefficient. Then, analogously to the air component in the gas phase,

we get T =1 — 2% — x5 .

2.2 Density

For the computation of the densities of the liquid phases, pressure effects are neglected, whereas
the gas phase density is strongly dependent on pressure and temperature. Transforming Eq. (4)

yields the molar density 9,,01,4 of the gas phase

n p
Omol,g = v = R—g—. . (6)
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Figure 2: Saturation pressure curves of water and some NAPLs

The molar density of the water phase can be taken, e.g., from International Formulation Com-
mittee (IFC, 1967) [28] and an estimation for the NAPL molar density is given, e.g., in Lide and
Kehiaian (1994) [32] or Reid et al. (1987) [40]. The mass density of a phase « is obtained by

Omass,a. = Omol,a * z ngK ’ (7)
K

where MK represents the molecular weight of component K.

2.3 Viscosity

The dynamic viscosity of the gas phase is dependent on composition. For its computation, we
use the Wilke method (Reid et al., 1987) [40]. Approaches for the NAPL phase viscosity as a
function of temperature can also be found in Reid et al. (1987) and for the water phase by the
IFC (1967) [28].

2.4 Specific Internal Energy and Specific Enthalpy

Since we have to formulate an energy balance equation, we need to determine the caloric state
variables of a thermodynamic system, namely the specific internal energy u, and the specific
enthalpy h, of the fluid phases. wu, stands for the total energy of the molecules of phase «
per mass unit (kg). The derivation of the specific internal energy with respect to temperature
gives the specific heat capacity at constant volume. If the volume is not constant, the amount
of thermal energy brought into a system does not equal the variation of internal energy. The

difference can be expressed by the product pv and represents the volume changing work. The



specific enthalpy is then given by

ha = Ua + Pala = Ua + —22 (8)

Omass,o
While for the liquid phases water and NAPL the volume changing work can be neglected (u = h),
it has to be taken into account for the compressible gas phase. The specific enthalpy of water
and water vapor can be taken from tables of IFC (1967) [28], while Reid et al. (1987) [40] give
approximations of specific enthalpies for a large number of organic liquids (NAPLs) and their

corresponding vapors.

2.5 Heat Conductivity

Since the assumption of a local thermal equilibrium is made, the heat conductivity of the fluid-
filled porous medium (Apy,) is averaged from the heat conductivities of the phases and the solid
matrix (e.g., Somerton et al., 1974). For the three phase system water-NAPL-gas we modified

the Somerton approach to:

Apm = N =0+ VS (g™ = Agn™0) + VSO = A ) (9)

2.6 Diffusivity

The term ’hydrodynamic dispersion’ merges two different physical effects, namely molecular
diffusion, which is caused by the motion of the molecules, and mechanical dispersion, which
describes the transport of components due to fluctuations of the velocity on the pore scale.
With phase velocities getting smaller the quota of molecular diffusion increases. In our model we
neglect mechanical dispersion and consider only molecular diffusion in the gas phase. Normally,
molecular diffusion coefficients are several orders of magnitude larger in the gasphase (x~ 10~°
m?/s) than in the water phase (= 10~° m?/s). The computation of the diffusivities for water
vapor and the vapor of the contaminant is done using the binary diffusivities Dg®, Dg", and
Dy (Falta et al., 1992) [20]

1—zv
_ g
D;” = W (10)
Dgw T Dgw
1—x¢
— g
D; = Zv—ga (11)

Since the diffusive fluxes JgK of the components have to meet the constraint
Jg+Jy +J; =0, (12)
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the diffusivity for the component air is not needed. The diffusive mole flux of the components

in the gas phase is obtained by

JE = —0mol,g Diy, grad z (13)

where
DX =71$S,DJ . (14)

7 represents the tortuosity of the porous medium.

2.7 Relative Permeability

Approaches for the determination of relative permeabilities as a function of saturations in a
two-phase system are well known, e.g. from Brooks and Corey (1964) [12] or van Genuchten
(1980) [44]. For a three phase system, Parker et al. (1987) [36] suggest an approach for the

NAPL relative permeability that is based on the two-phase parametrizations of van Genuchten:

S n nl n nl 2
e

with
_ Sw - Swr
Swe = T o — 5. (16)
Sw + Sn - Swr
— Zw Tn Fur 1
Ste 1 — Swr ( 7)

Eq. (15) does not explicitly consider the residual saturation Sy, of the NAPL phase. A modifi-
cation of Eq. (15) can be achieved by replacing the tortuosity factor \/ I_ng by \/ Sﬁ}i’;’“ The

water and gas phase relative permeabilities are calculated using the known two-phase relation-

ships, since they are only dependent on their own saturations. Thereby, it is assumed that water
is the wetting fluid with respect to NAPL and NAPL is wetting with respect to gas. Effects of
hysteresis due to their enormous complexity are currently not considered in the model concept
neither for relative permeability nor for capillary pressure, although in some cases they may

have significant influence.

2.8 Capillary Pressure

Capillary Pressure in a three phase system is difficult to determine. Parker and Lenhard (1987)
[35] give a capillary pressure model for a water-NAPL—-gas system. Presuming that interfaces
exist only between the phases water and NAPL respectively between NAPL and gas (according

to their order of wettability), one can calculate the capillary pressures using the two-phase



approximations scaled by factors that consider the ratios of the surface tensions. The capillary
pressure between NAPL and the water phase (p.,,,) is thereby a function of S, whereas p,, is
a function of S; = Sy, + S,,.

1
DPepay (Sw) = 5 Pegu (18)
Brw
and
1
Pegr (St) = o Py - (19)
ﬂgn
The scaling factors ., and By, according to Lenhard (1994) [30] are calculated as:
/an = Zgn + onw (20)
Onw
By = ot Oomw (21)
Tgn

In Eq. (20) and (21) o represents the surface tension.

Then, from the total system pressure, which is equal to the pressure of the gas phase (p,), the

pressures of the NAPL and water phases can be obtained from:

Pn = Py~ Opcy,(St) = (1= 0) [peyy, (Sw) = Pepy, (Sw = 1)] (22)

Pw = Pn— Opc,, (Sw) — (1 -0) [pcnw (Sw = 1)] (23)

O = min(1, 5—73) ensures a continous transition from the three phase to the two phase system

in case of disappearance of the NAPL phase.

This three phase capillary pressure approach of Parker and Lenhard (1987) [35] is based on the
two phase relations of van Genuchten (1980) [44]. The influence of temperature on capillary
pressure in porous media is not yet quantified sufficiently to implement relations therefore into
our numerical model. Some rather qualitative suggestions therefore are found in Leverett (1941)
[31] and in She and Sleep (1998) [41].

3 Basic Equations and Primary Variables

The mathematical description of the physical processes yields a system of coupled partial dif-
ferential equations that exhibits a high degree of nonlinearity. Using an Eulerian approach we
formulate for each of the mass components a single balance equation. In addition, presuming
local thermal equilibrium, a single energy balance equation for the fluid-filled porous medium
is required. The balance equations can be derived from the continuity condition where an en-

hanced Darcy Law for the determination of the fluid flow velocities is inserted (e.g., Helmig,



Table 1: Functional dependence of secondary variables on the primary variables

variables and functional dependence

phase
parameter gas water NAPL
mole fractions xf(pg,T) X (pg, T) assumption: zf =
density 0¢(Pg; 375(’ T) 0w (Pw, T) on(T)
viscosity pig (2l T) oo (T) pn(T)
specific internal energy ug(pg, acf ,T) Uy (P, T') un(T)
specific enthalpy hg(pgs :1:5, T) how (P, T') hn(T)
molecular diffusion coefficient
of water (pg>Sg, T, ) - -
of NAPL Dy, (pg, Sy, T, ¢) - -
relative permeability krg(Sy) Erw (Sw) krn(Sg, Sw)
capillary pressure Pegw (Sws T)  Pegn(Sws SgsT)  Pepy (Sw, T)
heat conductivity Apm (Sg, Sw,T)

parameters independent of primary variables
permeability K; porosity ¢; specific heat capacity c¢s and density g5 of solid phase

1997 [25]). The equations are given in the following:
Mass:

3(Za Qmol,axaKSa)

¢ ot

. k
— Z div {ﬂgmgl,a-’EfK( grad DPa — Qmass,oeg)}
S Mo
—div {Dé{mgmol,g grad x;(}

—¢5 =0 K e {w,a,c}, a € {w,n,g}

Thermal Energy:

0 (Ea Qmass,auasa) _ doscsT

¢ ot

—div (Apm, gradT)

— Z div {—Qmass ah K ( gradpa - Qmass,ag)}
Ho
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- Z div {Dp{(m Qmol,gh;(M = grad 'Tfll{ }
K

—¢" =0 Ke{wac} ac{wn,g} (25)

cs represents here the specific heat capacity of the soil grains. The system of equations is

completed by the supplementary constraints given already in Section 2.

The number of degrees of freedom in a multiphase multicomponent system is, according to the
Gibbsian phase rule
F=K-P+2+(P-1)=K+1 (26)

with K and P representing the number of phases and components. In our case, this requires
the choice of four independent primary variables to determine the thermodynamic state of the
system. For all possible phase states, pressure and temperature can be used as primary variables.
In case of all three fluid phases being present, the saturations of water and NAPL complete the
set for this phase state. If a phase disappears, one of the primary variables ’saturation’ is
replaced by a 'mole fraction’ (Tab. 2). An example for this is shown in Fig. 3. At time g, all
nodes of the element have phase state 1 (all three fluid phases present). Assuming a steam front
propagating in x—direction, one can see that the front has not yet reached the element. At time
to + At, the temperature at one of the nodes has reached the boiling temperature of pure water,
and the NAPL saturation has become zero, which means that the NAPL phase has disappeared
at this node.

In order to describe the disappearance and appearance of phases, we need a process adaptive
algorithm for the substitution of the primary variables. Its implementation in MUFTE_UG is

given schematically in Fig. 4.

Checking the phase states requires the definition of criteria for the indication of changes. The
simplest of all cases is given when one of the phases disappears. Then its saturation takes a
negative value. It’s more complex for the appearance of a fluid phase. Different cases have to
be distinguished (Tab. 2).

If the gas phase is present (phase states 1, 3, 5, 6), then water respectively NAPL can appear
as liquid, when the partial pressure of their corresponding vapor in the gas phase exceeds the
respective saturation pressure. If only the water phase is present (2), the appearance of NAPL
can be noticed, when the mole fraction of the NAPL in water exceeds the solubility xg,. An
appearance of the gas phase occurs, when the sum of the (hypothetical) vapor pressures of the
individual components becomes higher than the total pressure, which is given by p, (hypothetical
gas phase pressure). The contribution of the air component can be obtained by transforming
Eq. (5) as 'Henry coefficient’ times 'mole fraction of air in water’. E.g., degasing of carbon

dioxide (C'O3) due to pressure lowering can also be modeled in such manner.
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Figure 3: Process adaptive substitution of primary variables after a change of phase state

The saturation pressure criterion for indicating the appearance of the water or NAPL phase

shows satisfactory performance for condensation dominated processes (Class, 2000 [15]). Our

experiences with advection dominated processes exhibited some numerical problems leading to

small time steps. There is still need for analyzing the responsible physical processes and their

Table 2: Phase states, corresponding primary variables, and criteria for the substitution in case

of phase appearance

phas¢ present primary appearance of phase
state| phases variables water NAPL Gas
1 w,n, g Swy Sny pgy T - - -
2 | w T Ty Pgy T - Ty > X Psat + HyTi, > Dy
3 n,g Sn, Ty, Pgs T ngpg > pqsuat - -
4 w, 1 S'fl’ xzn Dy, T - - pg)at +p§at + H’(CILJ‘T% > Py
5 g Ty, gy Pgs T || ®GPg > Poar | TgPg > Psat -
6 w, g l‘ga Sw, Dg, T - ‘szg > pgat -

12
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time step

mathematical /numerical implementation.

For time discretization we use a fully implicit Euler method. For the spatial discretization of
Eqg. (24) und (25) we implemented two different mass conservative schemes, namely a Control-
Volume-Finite-Element method (CVFE) and a Subdomain Collocation Method (BOX) (e.g.,
Helmig, 1997 [25]; Class, 2000 [15]). Both methods can be derived from the principle of weighted
residuals. The difference between CVFE and BOX results from the choice of the weighting
functions. For CVFE the weighting functions are equal to the shape functions, whereas for
BOX a piecewise constant weighting of the residuals is done. Both methods use a mass lumping
which avoids the occurence of non-physical oscillations of the solution (Celia and Binning, 1992
[13]). A fully-upwind weighting of the advective flux term coefficients is also applied for both
schemes. CVFE and BOX yield different results when the main flow direction deviates from the
orientation of the elements. Say a given model domain is discretized with regular rectangular
elements. The main flow direction be along the diagonals of the rectangles. Then the BOX
method, which represents a 5-point stencil, can not reproduce fluxes between the end points of
the element diagonal. Instead, one gets numerical cross diffusion into the system. CVFE is able
to model these diagonal fluxes directly, however for coarse grids an increased rate of numerical
dispersion in this direction is obtained. Due to the diffusive behaviour of heat conduction the
distribution of temperature is less influenced by the choice of the discretization method than the

distribution of saturations. Thus, temperature is in this context a rather good natured quantity.

The nonlinearities in the equations are handled with a Newton—-Raphson method, where the

elements of the Jacobian matrix are computed by numerical differentiation (see also Section 4).
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4 Extension of the Multigrid Method

For the solution of the linearized system of equations, which may have a huge number of un-
knowns, fast and efficient solution techniques are required to reduce computation time. Multigrid
methods (e.g., Hackbusch, 1985 [23]) are very fast methods for solving large sparse systems of
linear equations arising from discretized partial differential equations. Their order of conver-
gence is, when applied to elliptic model problems, independent of the mesh size, i.e., solving a
system of linear equations requires computer time, which is proportional to the number of un-
knowns. The work of Bastian and Helmig (1999) [7] shows a very satisfactory performance for
a multigrid method applied to the linearized fully coupled two-phase flow equations, although a
convergence proof for such systems is not available. The extension of the multigrid method for
multiphase multicomponent systems with variable phase states requires a reformulation of the
prolongation algorithms taking into consideration that the set of primary variables at the nodes

inside an element may not be consistant.

4.1 Basic algorithms

For a more detailed explanation of the discretization and solution methods implemented in
MUFTE_UG we recommend, e.g., Bastian (1999) [5] or Bastian and Helmig (1999) [7].

A damped inexact Newton algorithm for solving the nonlinear system of equations is given by:

Choose z¥T10: set m = 0;

while (|[F(z"2™)||2 / [|F(2*0])2 > en))

{
Solve K($k+1’m)u — _F(wk—}—l,m)
with accuracy ey;p;

ghtbmtl — phtlm g

m=m+1;
}

F(z*+1™) represents the defect term obtained at time level k + 1 and iteration m depending on
the nonlinear functions F' and the vector of primary variables x. €,; and €5, are the accuracy
criteria of the nonlinear respectively the linear solution. ||- || is the Euclidean vector norm. The
damping factor n = (1/2)? is chosen such that
1 /1\¢
||F($k+1,m+1||2 < [1 o Z <§> :| ||F($k+1,m||2 (27)

is valid for the smallest possible g € {0, 1, ..., ;s } with the maximum number of line search steps

n;s being between 4 and 6. A time step reduction is applied if no such ¢ can be found.

Ku=f (28)
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is the Jacobian system to be solved by a linear solver. The multigrid mesh hierarchy yields a
Jacobian system on each grid level [. We need linear mappings, restriction R; and prolongation
P, for interpolation between the grid levels. A multigrid algorithm (V-cycle) for an iterative

improvement of a given vector u; can be written as follows:

mgc (I, ur, fi)
{
if (I ==0)uo = K; ' fo;
else {
Apply v1 smoothing iterations to Kju; = fi;
di-1 = Ri(fi — Kiw);
e—1 =0;
mge (I —1,e-1,d1-1);
u = u + Pejq;

Apply vo smoothing iterations to Kju; = fi;

}

For smoothing iterations, e.g., v; = vo = 2 ILU steps (incomplete decomposition, e.g., Hack-
busch, 1985) can be chosen.

4.2 Prolongation adaptive to the phase states

Let e, be the error, i.e., the deviation of 4;"; from the exact solution, on level [ — 1. Then,

the coarse grid correction can be written as an iteration of form:

u = ul + I ey (29)
where matrix I} ; describes the transfer (prolongation) between levels [ — 1 and I. For the
prolongation of the coarse grid corrections, one has to take into account that different phase
states are inherent with different primary variables in the solution vectors. Thus, it may occur
that the correction for a fine grid node has to be interpolated from coarse grid nodes with

different phase states. Fig. 5 illustrates this case.

It shows a NAPL-contaminated subdomain, which is recoverd by a steam/air injection. The
subdomain is discretized with a coarse grid element (1-2-3-4) respectively four fine grid elements
(I-II-ITI-IV; II-V-VI-IIT and so on). The NAPL-contaminated area represents a three-phase area
and has phase state 1 (NWG). The area already cleaned up only contains the phases water and
gas and has therefore phase state 6 (WG). Thus, the coarse grid nodes 1, 2, and 4 have phase
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Figure 5: Prolongation dependent on the phase states

state WG, whereas node 3 still has NWG. We assume that the fine grid node III has phase
state WG. Then, the correction of the primary variables (pgy, Sy, Tg, T) can be interpolated
directly from the coarse grid nodes 1, 2, and 4. However, the vector of primary variables at
node 3 contains zy instead of S, (phase state NWG). Thus, the correction value of coarse grid
node 3 for the primary variable S,, has to be transformed into a correction value for the primary
variable zg at fine grid node III. This can be achieved by a linearization of the correction around

the corresponding position in the solution vector in iteration m:
em|:cj = fwj (uZ + 61) - f:vj (uz) (30)

em|zj is the correction of variable z;. f;; stands for the function through which z; can be
computed from the given primary variables. In case of node III, em|xj equals the correction
value of variable zj from the interpolation part of node 3. em|$; at node 3 is computed using
the functional fre = pgy;/pq-

The existence of a hierarchical grid system can be used for another efficient solution method.
Applying nested iterations provides the possibility to use approximate values for w;_; from an
iteration on grid level [ — 1 as starting values w; for the iteration on grid level . Thus, by

improving the starting values one obtains better results of the iteration reducing the iteration
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steps necessary for a given accuracy. For large systems this thereby improved convergence
behaviour outweighs the apparently higher computation effort rapidly. Since a phase state must
be assigned to every node, we need rules to determine the phase states of fine grid nodes, which
are not part of the coarser grid. A look on Fig. 5 shows that fine grid nodes I, V, VII, IX
are identical with coarse grid nodes 1, 2, 3, 4 and therefore inherit the respective phase states.
For fine grid nodes II, III, TV, VI, VIII, the phase states must be determined from the current
state of the system. In a first approach, we evaluate the Ansatzfunctions of the coarse grid
elements with respect to a given fine grid node and take the phase state from the coarse grid
node with the highest Ansatzfunction value. This leaves still doubt wether the achieved choice
of the respective coarse grid node is unique (e.g., nodes III and VI in Fig. 5). Our next step in
this context is developing better criteria for assigning the phase states to fine grid nodes, e.g.,

by evaluating the phase velocities and transport rates around a node of interest.

5 Examples

5.1 Verification: The Heatpipe Effect

For our model concept for nonisothermal water—-NAPL-gas flow in a porous medium, there
exist no analytical solutions that would allow a comprehensive verification. Instead, one has to
split the task of verification into parts which allow verification by means of analytical solutions
of subproblems and parts which use well-controlled experiments for comparison with numerical

results. The latter is commonly referred to as validation and will be discussed in PAPER II.

temperature curve heat flow

=—length of heatpipe —=!

| |
| |

conduction | convection ! conduction
| )

| |
0 X |

one-phase region two-phase region of one-phase region
water the heatpipe steam

temperature

steam flow

S —

condensation evaporation

water flow

Figure 6: The heatpipe effect: schematic description

Udell and Fitch (1985) [42] provide a semi-analytical solution for a nonisothermal water—gas

system in a porous medium, in which the heat transfer processes convection, conduction, and
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diffusion as well as capillary forces play an essential role. This semi-analytical solution is practical
for comparison with numerical results (Emmert, 1997 [18]). At the right-hand boundary of
a horizontal column (Fig. 6) with an initially constant water saturation of 0.5, a constant
heat flux (¢ = 100W) into the column is given. At the left-hand boundary constant values
(Dirichlet conditions) for the gas phase pressure (p, = 101330Pa), the effective water saturation
(Swe = 1.0), and the air mole fraction in the gas phase (zj = 0.71). Thus, the temperature
is also stated to T" = 68.6°C. Due to the heat flux the system is heated up until the boiling
temperature is reached and steam is built at the right-hand boundary. This causes a pressure
gradient in the gas phase and the steam flows away from the heat source. After reaching cooler
regions of the column, the steam condenses and sets free its latent heat of vaporization. After
a while, a non-uniform saturation profile is obtained and a gradient of the capillary pressure is
produced. Hence, the pressure gradients of the phases have opposite directions and a circulation
flow is built. After reaching a stationary system state, three regions can be distinguished, each
of them associated with a dominant heat transport process (Fig. 6). Udell and Fitch (1985)
[42] derive four coupled first order differential equations for pressure, saturation, temperature
and gas-phase mole fraction. These equations are solved by numerical integration with a fourth
order Runge-Kutta method.

The numerical simulation of the heatpipe system was carried out with the BOX discretization
method. Note, that the choice, wether BOX or CVFE is used, makes no difference for the present

one-dimensional case. The following model parameters were used for the simulation run:

Permeability : K =101 m?

Porosity 1 ¢=04

Residual water saturation : Syr =0.15

heat conductivity of the

fully-saturated porous medium : Aow=l =1.13 W/(m K) (see Eq. 9)
heat conductivity of the

dry porous medium : Apw=0 = 0.582 W/(m K) (see Eq. 9)
Soil grain density : 0s = 2600 kg/m3

Specific heat capacity of the soil grains 1 ¢s =700 J/(kg K)

Density of water : 0w = 958.4 kg/m3

Dynamic viscosity of water t ey = 2.938-107% Pa s

Dynamic viscosity of air : g =2.08- 1075 Pa s

Dynamic viscosity of steam D g =1.20- 1073 Pa s

A function according to Fatt and Klikoff (1959) [21] is chosen for the relative permeability—

saturation relationship:

kg = (1-S)* for steam (gas phase)
kmy = S2 for water (31)
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For the capillary pressure-saturation relationship, the following function of Leverett (1941) [31]

is used:

pe=po-y-1.417(1 — S.) — 2.120(1 — S.)* +1.263(1 — S,)? (32)

The surface tension v at 7 = 100.5°C is 0.05878 Nm ! and for the scaling pressure applies
po = /¢/K. A constant value of 0.5 is assigned to the tortuosity 7 and the binary diffusion
constant D2 takes the value 2.6 - 10~% m?/s.

The dimension of the model domain in x—direction is chosen to 2.4 m. However, this is not
important for the length of the heatpipe after reaching stationary state as long as the domain
is sufficicently large for the heatpipe to be built. We used a discretization length of Az = 0.04
m. The initial conditions were chosen to p, = 101330 Pa, S,, = 0.5 und T' = 70°C.

1
X [m]

Figure 7: Semi-analytical and numerical curve of Sy, and zj

The results of the numerical simulation with the semi-analytical solution are compared in Fig.
7,8, and 9. In all cases, the curves match very well. The length of the heatpipe is obtained to ~
2.0m consistently. Due to the complex interaction of different physical processes and the excellent
agreement between simulation and semi-analytical solution, we state that the verification of
the numerical model for an air-water system was successfull. Starting with the given initial
conditions, the model could reproduce the heating at the right-hand boundary from 70°C up to
the boiling temperature. Also the gradual extension of the heatpipe region until reaching the
stationary system state was modeled correctly. The disappearance of the water phase associated
with a change of the phase state and a substitution of the primary variables was carried out

well. Fig. 9 shows clearly that the pressure gradients of both phases are oppositely directed.
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Figure 8: Semi-analytical and numerical curve of T

5.2 Performance of the Multigrid: The Fivespot Problem

In the following we present an example for the comparison of the multigrid method with a

classical iteration method (ILU scheme) as preconditioners for a BiCGStab solver.

Fig. 10 shows a two-dimensional model domain (1 m x 1 m). The coarsest grid used in the
multigrid hierarchy is given with 400 quadratic elements. Any refinement of an element yields
four quadratic elements on the next finer grid level (regular refinement, e.g. Bastian, 1999).
The system is initially contaminated with xylene in residual saturation. Furthermore, there is a
water saturation slightly below residual saturation and atmospheric pressure at a temperature of
293.15 K. In the lower left corner a steam/air mixture is injected (Neumann boundary condition);
in the upper right corner the system is open to the environment (Dirichlet boundary condition).

The remaining boundary has no-flow properties.

The boundary conditions in the corners are each assigned constant to 0.05 m along the domain

boundaries which corresponds to the node distance on the coarsest grid:

e lower left: Neumann boundary condition

q¥ = —1.0 mol/(s m)
q* = —3.0 mol/(s m)
q" = —50000 J/(s m)

e upper right: Dirichlet boundary condition
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Figure 9: Semi-analytical and numerical curve of p, and p,,

S, =0.1

S, =0.1

py = 101300 Pa,
T =293.15 K

The initial conditions are the same as the Dirichlet conditions given in the upper right corner
(phase state 1: water, NAPL, and gas phases are present).

Further system parameters:

permeability K=10-10"1m?
porosity ¢ =0.45

water residual saturation Swr = 0.12

NAPL residual saturation Snr = 0.10

gas residual saturation Sgr = 0.00

heat conductivity Agw=5n=0 = .35 J/(m s K)

ASu=1=1.60 J/(m s K)
Aon=t = 0.65 J/(m s K)
density of soil grains 0s = 2650 kg/m?
spec. heat capacity of soil grains cs = 850 J/(kg K)

Gravitation and capillary forces were neglected. For the relative permeability—saturation rela-

tionship we applied the approaches of Parker et al (1987) respectively van Genuchten (1985).
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Sn=0.1

Sw=0.1
pg = 101300 Pa
T=293.15K

-
'

/ q%= 0.1 mol/(s*m)
q2= 0.3 mol/(s*m)
q"= 5000 J/(s*m)

Figure 10: The fivespot problem (coarse grid: 400 elements)

The van Genuchten parameter n was assumed to be n = 4.0.

Fig. 11 shows the distribution of NAPL saturation and temperature after 3 hours of steam/air
injection. One can see that the domain is cleaned up from the lower left corner. The evaporated
NAPL is transported in the gas phase towards the upper right corner. When reaching the cooler
regions part of the NAPL vapor condenses such that the liquid NAPL phase accumulates forming
a peak of NAPL saturation. The temperature plot shows that in the subregion already cleaned
up an almost constant temperature of =330 K prevails, which is equal to the temperature of
the injected steam/air mixture. A change of the phase state from NWG (1) to WG (6) occurs

whenever the NAPL saturation disappears at a node.

In the following case study we investigated wether the application of the extended multigrid
method to this complex three-phase three-component system yields comparable solution per-
formance as known from the literature (e.g., Hackbusch, 1985 [23]) for elliptic problems. The

following four combinations of solvers for the linearized equations are compared:

1. Nested iteration, multigrid V-cycle preconditioner with 11 = 15 = 2 smoothing iterations
(ILU), BiCGStab solver for finest grid, direct solver as coarse grid solver (for computation

of the correction on the coarsest grid)

2. Same as Case 1, but nested iteration only for the computation of the first time step
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Figure 11: Isolines of NAPL saturation (left) and temperature (right) after 3 hours simulation

time

3. ILU as preconditioner, BiICGStab solver for finest grid, nested iteration only for the com-

putation of the first time step

4. direct solver for the finest grid, no nested iteration

We applied for the criteria of linear and nonlinear accuracy (ez;, and e,;) a value of 1074,
The simulations were conducted on different refinement levels. The coarsest grid contains 400
quadratic elements, the refinement levels 1, 2, 3, and 4 accordingly have 1600, 6400, 25600, and
102400 elements. Each of the simulations ended at simulation time 14400 s (4 hours). The
application of the direct solver exhibits already at refinement level 1 (1600 elements) an increase
in computation time compared to all other cases by a factor of 5. In Tab. 3, 4, and 5 some
characteristic performance statistics are listed for Cases 1, 2, and 3. The abbreviations used are

explained shortly:

SIZE number of elements on the finest grid

avg. At average time step size [s]

EXECT  execution time [s]

NLIT number of required nonlinear iteration steps

LIT number of required linear iteration steps

AVG = LIT/NLIT: average number of linear iteration steps per nonlinear

iteration step
MAXLIT maximum number of linear iteration steps during a nonlinear

iteration step
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Table 3: Simulation parameter Case 1

SIZE avg. At EXECT NLIT LIT AVG MAXLIT
1600 350 7561 317 582 1.84 4
6400 306.3 3.48-10* 615 1435 2.33 5
25600 248.9 1.95-10° 1172 3083 2.63 5
102400 181.2 1.27-106 2277 6368 2.80 5
Table 4: Simulation parameter Case 2

SIZE avg. At EXECT NLIT LIT AVG MAXLIT
1600 254.8 8126 252 765 3.04 5
6400 121.3 6.28-10% 526 2072 3.94 6
25600 54.7 5.16-10° 1160 4781 4.12 6
102400 19.5 5.25-106 3056 12265 4.01 7

Discussion of the results: The average time step size in Case 1 (nested iteration for all time
steps) with increasing refinement level becomes significantly larger than for the other cases. The
maximum time step length was chosen to Atp,, = 350 s. There is an automatic time step
control implemented in MUFTE_UG, which halfens the time step if no convergence within the
nonlinear Newton solver is achieved. Normally, a reduction of the space discretization length is
accompanied with a reduced time step length. The use of nested iterations enables an improved
starting value for the iteration such that a better convergence behavior is obtained permitting
larger time step sizes. The dependence of the computing effort on the refinement level is almost
reached by the multigrid method in the manner as it would be expected for elliptic problems.
Convergence should be achieved independently of the refinement level. Thus, the computing
effort should increase proportionally to the number of nodes (number of unknowns), i.e., the value
of AVG should be asymptotically constant. However, the ratio of linear to nonlinear iteration
steps (AVQG) is clearly better in Case 1 than in Case 2. The reason therefore is probably that the
starting values for the iteration are given better when using nested iteration. With increasing

SIZE this effect of better linear convergence has an important influence on the total execution

Table 5: Simulation parameter Case 3

SIZE avg. At EXECT NLIT LIT AVG MAXLIT
1600 254.8 8288 252 12307 48.84 70
6400 121.3 9.42-10* 526 50505 96.02 141
25600 54.7 1.18-10° 1160 207033 178.48 318
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time (EXECT). For 1600 elements the computation time has the same order of magnitude for
all three cases (=~ 8000 s). The more grid levels are used, the more computation time can be
saved compared to the ILU scheme when using the multigrid preconditioner or even nested
iteration. The ILU/BiCGStab scheme (Case 3) confirms the expected convergence behavior
(p = 1 —0O(h)). The number of maximum linear iteration steps (MAXLIT) during a single
Newton step roughly doubles with each refinement level, whereas it remains nearly constant for
Cases 1 and 2. The computation effort for one multigrid step is approximately by a factor of 4
larger than for one ILU/BiCGStab step. But this is only a disadvantage for small refinement
levels. Since the convergence behavior of the multigrid method was nearly textbooklike, it could

outweigh this for higher levels of refinement and yield significant savings in computation time.

6 Conclusions and Outlook

In this paper, a three-phase three-component model concept for the simulation of nonisothermal
water-gas-NAPL systems is presented. Variable phase states are considered using an algorithm
for the process adaptive switching of the primary variables according to the phase states. A
verification example is given for an air-water system (heatpipe effect). A multigrid method was
extended in order to apply to this specific problem and a comparison with an ILU scheme was

conducted with respect to solution performance.

The verification can be carried out only for sub-problems of the present model concept. In
particular, the interaction between all three phases and temperature effects is not described by
analytical or semi-analytical solutions in the literature. It is therefore important to use well-
controled experiments in order to validate the model as possible. We refer here to PAPER II,

where model validation and the applicability of the model for practical problems are discussed.

The example given in the previous section showed that a successful application of multigrid
methods is possible also for the multiphase multicomponent model concept with variable phase
states. A further improvement of the convergence is expected when the prolongation of the phase
states is done depending on the flow directions and velocities of the phases. An important basic
step could be made in order to provide fast and efficient solution methods for these complex
physical systems and the mathematical equations arising from this. For practical application of
such complex models to field scale problems, this is an essential precondition, since the number
of unknowns may reach huge numbers very fast. The program system MUFTE_UG provides
further the possibility of a parallelization (e.g. Bastian, 1996 [4]; Birken and Bastian, 1994 [11]).
In future work we want to improve the robustness of the substitution algorithm for the primary
variables. Experience with the developed code showed that problems may arise in the case of
appearing phases due to displacement processes. An intensive analysis of the physical processes

together with the mathematical description will be necessary therefore.
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The model concept described in this paper builds the basis for further currently ongoing research

work, e.g., dealing with degassing processes in the near-field of nuclear waste disposal sites

(Bastian et al., 2000 [6]) or degassing of methane in submarine aquifers (Sheta et al, 2001).
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