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Abstract

A parallel algorithm for the implementation of the recursive Green’s function
technique, which is extensively applied in the coherent scattering formalism, is de-
veloped. The algorithm performs a domain decomposition of the scattering region
among the processors participating in the computation and calculates the Schur’s
complement block in the form of distributed blocks among the processors. If the
method is applied recursively, thereby eliminating the processors cyclically, it is
possible to arrive at a Schur’s complement block of small size and compute the
desired block of the Green’s function matrix directly. The numerical complexity
due to the longitudinal dimension of the scatterer scales linearly with the number
of processors, though, the computational cost due to the processors’ cyclic reduc-
tion, establishes a bottleneck to achieve efficiency 100%. The proposed algorithm
is accompanied by a performance analysis for two numerical benchmarks, in which
the dominant sources of computational load and parallel overhead as well as their
competitive role in the efficiency of the algorithm will be demonstrated.
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1 Introduction

In 1965, Gordon Moore predicted that the number of transistors packed on a
chip would continue to double every year, a prediction known as the Moore’s
law [1]. During the past few decades, the rapid progress of novel experimen-
tal techniques, has resulted in scaling down the size of the integrated circuits
on a chip according to Moore’s law. Nowadays, chips with hundreds of mil-
lions of transistors have been industrially realised and are exploited in a wide
range of commercial applications. However, the continuous scaling down in
size of the transistors is about to reduce their dimensions thereby entering the
mesoscopic regime, in which the electronic wave length becomes important,
i.e., comparable with the size of the device, and quantum effects dominate
and define the laws of information processing [2]. The natural route towards
future electronics is therefore to understand these effects and comprehend
them in the design of the nanoscaled devices. The necessary condition for the
description of these phenomena in realistic mesoscopic transistors, regarding
computational resources, is the ability to treat systems with million degrees
of freedom.

The theoretical framework for the description of mesoscopic electronic trans-
port has been established within the Landauer formalism [3], in which the
conductance of a mesoscopic sample is in direct relation to the probability
that an electron will transmit through it. To this end, several numerical tech-
niques have been developed and applied to describe various physical setups.
The most efficient method to attack coherent ballistic transport has proven
to be the recursive Green’s function (RGF) approach. The general framework
for this approach can be found in Refs. [4,5,6] and depending on the emphasis
of the individual scattering problem, alternative numerical techniques can be
applied. Therefore, techniques such as the boundary element method [7], with
an emphasis on the arbitrary geometry of the scattering region, or the mod-
ular Green’s function method [8], in which the scattering region is initially
decomposed in modules which are finally joined via the Dyson equation, have
been developed to take into account the particular geometrical features of the
scattering problem. Recently, a RGF technique has been applied to describe
scanning probe experiments [9]. This technique describes tunneling, through
the STM tip, which comprises the whole scattering area but scales equally well
with the standard RGF method. As an alternative solution to improve the
efficiency and consequently the capability to treat larger systems, approxima-
tions in the Schrödinger eigenvalue problem, as in the contact block reduction
method [10], have been employed to treat multi-terminal three-dimensional
problems with relatively good accuracy.

The aim of this paper is to present a parallel algorithm for the computation
of the electronic transmission probability, within the framework of the RGF
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method. The parallelization will allow us to treat large systems with millions of
degrees of freedom and will be particularly efficient to handle highly complex
modular scattering structures. The paper is organised as follows. In section
2 we discuss the basic guidelines of the coherent scattering formalism and
the desired computational goal to be achieved. In section 3 we construct the
parallel algorithm and calculate its numerical complexity. Section 4 contains an
analysis of the performance and scalability of the applied parallel algorithm for
certain numerical benchmarks. Finally, section 5 draws our main conclusions.

2 Basic guidelines of the coherent scattering formalism

Coherent scattering formalism implies that the conductance of a mesoscopic
sample attached to two reservoirs (Fig. 1) is proportional to the quantum-
mechanical probability T (E) that an incoming electron at a Fermi energy
E in the reservoirs will transmit through it. To evaluate the transmission
probability T (E) one has to solve the Schrödinger equation:

(E − H(r) + iη)GR(r; r′) = δ(r − r′) (1)

where H(r) is the Hamiltonian and GR(r; r′) is the retarded Green’s function
operators of the open system (scatterer + reservoirs). In the following we
restrict ourselves to two-dimensional (2D) transport.

y

x

a

a

Fig. 1. Two-dimensional scattering region attached to two reservoirs discretized on
a uniform lattice with constant a.

To proceed with the calculation of T (E) we discretize our space on a uniform
lattice with constant a. In order to represent the Hamiltonian operator H(r)
we use the tight-binding model assuming only nearest neighbor interactions
[4]. In this case the Hamiltonian can be written:

H(r) =
∑

r

|r〉ǫr〈r| +
∑

r,∆r

|r〉Vr,∆r〈r + ∆r| (2)
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where ǫr is the on-site energy at the position r = (x, y) with x = na and
y = ma, n, m ∈ N, ∆r represents the vectors from r to their nearest neighbor
sites and Vr,∆r is the nearest neighbor hopping energy. The dispersion relation
for the 2D discretized lattice reads for a constant on-site energy:

E2D(k) = 4V0 − 2V0cos(kxa) − 2V0cos(kya) (3)

where k = (kx, ky) is the electron’s wavevector and V0 = −~
2/(2m∗a2) is

the matrix hopping element linking each site to its nearest neighbor. In the
limit a → 0 we recover the usual parabolic relationship of a free particle in a
continuum space.

The full tight-binding Hamiltonian of the open system (scatterer + reservoirs)
can be then decomposed in the following block form:

H(r) =















HL VL O

V
†
L HS VR

O V
†
R HR















where the Hamiltonian HS describes the electronic motion in an arbitrary
scattering region which is coupled to two external reservoirs from the left and
right, via the semi-infinite matrices VL and VR respectively. The Hamiltonian
operators HL and HR are of infinite size and describe the electronic flow within
the reservoirs.

Following Datta [2] one can accordingly partition the overall retarded Green’s
function operator of equation (1). It is then possible to obtain for the retarded
Green’s function operator of the scatterer the following expression,

G(E) = [EI − HS − ΣR(E) −ΣL(E)]−1 (4)

which takes into account the effect of the coupling to the reservoirs, via the so
called self-energy matrices ΣK(E) = V

†
KGK(E)VK due to the left (K = L)

and right (K = R) reservoir. The function GK is the retarded Green’s function
operator of the reservoir K, i.e., GK(E) = [(E + iη)I −HK]−1.

Due to the tight-binding’s model discretization, the space of the scattering
region now consists of n = 1, 2 . . . , N slices along the x-direction each of
which consists of m = 1, 2, . . . , M sites along the y-direction. The matrix
A = EI−HS −ΣR(E)−ΣL(E) we want to invert in order to evaluate G(E)
is a N ×N block tridiagonal matrix [4] whose elements are the blocks Aij each
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of which is of size M × M :

A =











































A11 A12 O · · · O O O

A21 A22 A23 · · · O O O

O A32 A33 · · · O O O
...

...
...

. . .
...

...
...

O O O · · · AN−2,N−2 AN−2,N−1 O

O O O · · · AN−1,N−2 AN−1,N−1 AN−1,N

O O O · · · O AN,N−1 AN,N











































The expression for the evaluation of T (E) can be given in a compact form
within the Fisher-Lee relation [11]:

T (E) = Tr[ΓR(E)G(E)ΓL(E)G†(E)] (5)

where ΓK(E) = i[ΣK(E) − Σ
†
K(E)] is the strength of the coupling of the

reservoir K to the scatterer. Due to the fact that the reservoirs are coupled
only to the left and right of the scatterer, the blocks that correspond to the
left interface of the scatterer with the lead, i.e. the upper left block σL(E)
of ΣL(E), and to the right interface of the scatterer with the lead, i.e. the
down right block σR(E) of ΣR(E), are the nonzero blocks of the matrices
ΣK(E). Therefore, the total self-energy due to the right and left reservoir has
the following structure:

ΣL(E) + ΣR(E) =











































σL(E) O O · · · O O O

O O O · · · O O O

O O O · · · O O O
...

...
...

. . .
...

...
...

O O O · · · O O O

O O O · · · O O O

O O O · · · O O σR(E)











































Due to the above mentioned structure of the self-energy matrices, it becomes
clear that only the upper left block of ΓL(E), γL(E) = i(σL(E) − σ†

L(E))
and the down right block of ΓR(E), γR(E) = i(σR(E)− σ†

R(E)) are nonzero.
Hence, the trace of the product of the four matrices occuring in equation (5)
simplifies to:

T (E) = Tr[γR(E)G1,N(E)γL(E)G†
1,N(E)] (6)
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Equation (6) implies that only the upper right block of the inverse of A,
A−1

1,N = G1,N is necessary for the evaluation of T (E). The ultimate goal is

therefore to compute A−1
1,N.

3 The parallel algorithm

3.1 Prerequisites

The overall scattering problem, as discussed in section 2, is summarized to a
N ×N block tridiagonal matrix A = EI−H−ΣR(E)−ΣL(E) of which each
block is of size M ×M , where the goal is to compute the upper right block of
the inverse of A, A−1

1,N.

The algorithm that we pursue should possess the following properties:

(1) Storage requirements should be restricted to a small number of blocks of
size M × M .

(2) The number of inversions and multiplications of the M × M blocks Aij,
which scale as M3, should be proportional to N . This corresponds to the
numerical complexity of the sequential RGF technique in the asymptotic
limit of large N and M :

Cseq(N, M) ≈ NM3

(3) Exploit the fact that the matrix A is Hermitian, i.e., for the off-diagonal
blocks is claimed that A

†
ij = Aji.

(4) The algorithm should be parallelizable.

3.2 Preparations

3.2.1 Change of the inverse under permutation

Let Pij be an elementary permutation matrix with the following properties:

(1) Set Ã = PijA, then Ã is identical to A except that rows i and j are
interchanged.

(2) Set Ã = APij, then Ã is identical to A except that columns i and j are
interchanged.

(3) PT
ij = Pij = Pji.

(4) Pij · P
T
ij = I, i.e., Pij is orthogonal and self-inverse Pij = P−1

ij .

6



We call P = Pin,jn . . .Pi1,j1 a permutation matrix. Then P−1 = (Pin,jn · . . . · Pi1,j1)
−1 =

P−1
i1,j1

· . . . · P−1
in,jn

= Pi1,j1 · . . . · Pin,jn = PT. Now if we apply row and column

permutations to the matrix A, Ã = PAPT then for the inverse we have that
Ã−1 = (PAPT)−1 = P−TA−1P−1 = PA−1PT.

The above imply the following two alternative paths for the computation of
A−1

1,N:

(a) Starting from A we compute the inverse of it. Then by applying the appro-
priate row and column permutations, through operation of the permutation
matrices, it is possible to shift the desired upper right block A−1

1,N in another
position of the inverse. Respectively, the down left block of A is also shifted.
This first path can be illustrated graphically as follows:

A

compute

inverse of A

−→
A−1

apply row/col

permutations

−→
PA−1PT

(b) Alternatively, if we start by applying row and column permutations in
the initial matrix A, then we can shift the upper right block A1,N into an-
other position. If we compute the inverse of the new matrix then the desired
block A−1

1,N will be located at the same position. Graphically, this second path
implies:

A

apply row/col

permutations

−→
Ã

compute

inverse of Ã

−→
Ã−1

Therefore, the diagram implies that computation of the desired block of the
inverse matrix A−1

1,N by following path (a) is equivalent to the computation of

A−1
1,N by following path (b) .
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3.2.2 Expression of the inverse via the Schur complement

Let any matrix A with a general 2 × 2 block structure:

A =







A11 A12

A21 A22







Then the inverse of A in block form is:

A−1 =







A11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1







where S = A22 −A21A
−1
11 A12 is the so called Schur’s complement block.

Hence, together with the permutation Lemma (section 3.2.1) we arrive at the
following statement:

If the block A1,N is transfered to the block A22 via permutation transformation
then the desired block A−1

1,N of the inverse can be obtained from the inverse S−1

of S.

3.3 Parallel recursive algorithm

To construct the parallel recursive algorithm for the computation of A−1
1,N we

proceed as follows. By starting from the matrix A in its original block tridi-
agonal form, we induce an additional block structure thereby distributing the
domains of the scattering region to p processors as shown in Figure 2. This
secondary level block structure, due to the scatterer’s domain decomposition,
consists of p blocks, which in turn contain n1, n2, . . . , np blocks respectively
and p + 1 elementary blocks which correspond to the interface slices of the
decomposed domains. Additionally, we encounter blocks that couple the in-
terface slices with the p blocks corresponding to the scatterer’s domains. The
position of the upper right block A−1

1,N that is required to be computed is
indicated in Figure 2.

In the next step we reorder rows and columns, formally through permutation
matrices, and we arrive at the reordered matrix with the structure of Figure
3. The reordered matrix has the 2 × 2 block structure,

Ã =







AII AIΓ

AΓI AΓΓ
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  *    *

  *     *    *

   *

     *     *    *
       *    *    *

 

  *    *

  *     *    *

   *

     *     *    *
       *    *    *

 *   *

     *     *    *

*     *     *

 

  *    *

  *     *    *

   *

 

  *    *

  *     *    *

   *

 

  *    *

  *     *    *

   *

     *     *    *
      

 *    *    *        

1 1 2 2 3 3 p p p

1

1

2

2

3

3

p

p

p

... ...

..

.

...

 *    *    *

 *     *

AII
pp

AΓΓ
pp

AΓΓ
p+1,p+1

AΓI
pp

AIΓ
pp

AII
11

AII
22

AΓΓ
11

AΓΓ
22

AIΓ
12

AΓI
11

AIΓ
11

AΓI
21

Fig. 2. Original block tridiagonal matrix with new secondary level block structure
due to processor subdivision.

and moreover, the desired block to be computed is transfered to the upper right
corner of AΓΓ. Therefore, in order to compute A−1

1,N, it suffices to compute
S = AΓΓ − AΓI(AII)−1AIΓ and extract the upper right block of S−1. The
computation of S results again in a block tridiagonal matrix and the algorithm
can be applied recursively, i.e., by knowing S and applying cyclic reduction
among the processors which participate in S, we can arrive recursively to a
matrix that is small enough to compute A−1

1,N directly.

Analytically, the stages to which the parallel RGF algorithm is divided as well
as the corresponding numerical complexities are the following:

(1) First Stage: Scatterer’s domain decomposition and computation of S

The scatterer is decomposed in domains with n1, n2, . . . , nk, . . . , np blocks.
Each domain corresponds to one of the altogether p processors participat-
ing in the computation and additionally, there are p+1 elementary blocks
of each interface slice between the domains (Fig. 2). At this point we have
to note that the last processor stores two interface blocks, i.e., AΓΓ

pp and
AΓΓ

p+1,p+1. Then we reorder rows and columns such that the matrix A

has the block structure of Fig. 3. Subsequently, the algorithm performs a
block Gaussian elimination adapted to the special sparse block structure
of Fig. 3, i.e., it proceeds by eliminating AΓI using AII. Analytically, the
steps of the block Gaussian elimination applied hereby:
∀ processor k

for i = 1 . . . nk

B = (AII
kk)

−1
ii
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*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

  *
  *

 *

   *
   *

     *
     *

       *
       *

        *

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

1 2 1 2 3 p

1

2

3

p

1

2

3

p

 3  p ...

...

...

...

AII
pp

AII
11

AII
22

AΓΓ
11

AΓΓ
22

AΓΓ
33

AΓΓ
pp

AΓΓ
p+1,p+1

AIΓ
11A

IΓ
12

AIΓ
22A

IΓ
23

AIΓ
ppA

IΓ
p,p+1

AΓI
11

AΓI
21 AΓI

22

AΓI
32

AΓI
p,p

AΓI
p+1,p

AII AIΓ

AΓI AΓΓ

Fig. 3. Reordered matrix A after row and column permutations.

(AII
kk)i+1,i+1 = (AII

kk)ii − (AII
kk)

†
i,i+1B(AII

kk)i,i+1

(AIΓ
kk)i+1 = −(AII

kk)
†
i,i+1B(AIΓ

kk)i
(AΓΓ

kk )i+1 = (AΓΓ
kk )i − (AIΓ

kk)
†
iB(AIΓ

kk)i
if i == nk + 1

B = (AII
kk)

−1
nk,nk

AΓΓ
kk = (AΓΓ

kk )nk
− (AIΓ

kk)
†
nk

B(AIΓ
kk)nk

AΓΓ
k,k+1 = −(AIΓ

kk)
†
nk

BAIΓ
k,k+1

The numerical cost for each processor scales with np inversions of M ×M
blocks and requires 6 · np multiplications of matrices (see the algorithm
above). With respect to the storage only a few auxiliary blocks of size
M × M , independent of nk, are required. Hence, each processor at the
end of the first stage of the computation has stored the diagonal AΓΓ

k,k and
off-diagonal AΓΓ

k,k+1 block of the Schur complement. At this point we note
that the notation used in the subscript of the blocks of S is identical to the
one of the blocks of AΓΓ for convenience. The last processor computes, in
addition to the two previously mentioned blocks, the last block AΓΓ

p+1,p+1.
The numerical complexity for each processor scales, in the limit of large
N and M , with:

C1 ≈ 7nkM
3 ≈ 7

N

p
M3

After the completion of the first stage, the Schur’s complement block S

has been computed with the form of distributed blocks AΓΓ
k,k and AΓΓ

k,k+1

among the processors participating in the computation. Moreover, S has
a block tridiagonal structure and is Hermitian:
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S =











































AΓΓ
11 AΓΓ

12 O · · · O O O

AΓΓ†

12 AΓΓ
22 AΓΓ

23 · · · O O O

O AΓΓ†

23 AΓΓ
33 · · · O O O

...
...

...
. . .

...
...

...

O O O · · · AΓΓ
p−1,p−1 AΓΓ

p−1,p O

O O O · · · AΓΓ†

p−1,p AΓΓ
p,p AΓΓ

p,p+1

O O O · · · O AΓΓ†

p,p+1 AΓΓ
p+1,p+1











































(2) Second Stage: Cyclic reduction of the processors participating in the Schur’s
complement block
To proceed further, we exploit the block tridiagonal structure of S. To
this end we apply a recursive technique called cyclic reduction [12]. The
implementation of this technique requires successive reordering of the
processors in such a way that in each step the Schur’s complement block
is half the size as before. The first step of the cyclic reduction algorithm
is shown in Fig. 4.

...

.

.

.

.

..

...

AΓΓ
22

AΓΓ
44

AΓΓ
11

AΓΓ
33

AΓΓ
p−1,p−1

AΓΓ
p−2,p−2

AΓΓ
p,p AΓΓ

p,p+1

AΓΓ
p+1,p+1

AΓΓ†

12 AΓΓ
23

AΓΓ†

34

AΓΓ†

p−2,p−1A
ΓΓ
p−1,p

AΓΓ
12

AΓΓ†

23 AΓΓ
34

AΓΓ
p−2,p−1

AΓΓ†

p−1,p

1

1

2

2

3

3

4

4

p

p

p − 1

p − 1

p − 2

p − 2

Fig. 4. Reordering according to the cyclic reduction algorithm for a Schur’s com-
plement block of size (p+1)×(p+1). The size of S after the applied block Gaussian
elimination is reduced to half of the preceding size.
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We observe that the reordered block structure possesses again the 2×2
structure of the matrix Ã. Therefore by eliminating the off-diagonal block
using the upper-diagonal, i.e., the procedure of the first stage, we arrive
at a new Schur’s complement block of half the size as the preceding one.
By applying this procedure recursively, after log2(p) steps we arrive at a
3×3 block matrix, of which the upper-right diagonal block of the inverse
is the desired A−1

1,N one. At this point we should remark that in each re-
cursive step, the first and the last processor should always participate in
the new resulting Schur’s complement block, as shown in Fig. 4. This con-
dition ensures that the desired block A−1

1,N is always located in the upper
right corner of S. In this second stage of parallelization, each recursive
step requires one inversion and four multiplications for the calculation of
the diagonal AΓΓ

kk and the fill-in AΓΓ
k,k+1 blocks of the resulting Schur’s

complement block (see algorithm of the first stage applied to the block
structure of Fig. 4). The numerical complexity of the second stage scales
as:

C2 ≈ 5log2(p)M3

After log2(p) recursive steps, we are left with a 3 × 3 block matrix of
which the first row, i.e., blocks AΓΓ

1,1 and AΓΓ
1,2, are stored in the first

processor and the rest two rows, i.e., blocks AΓΓ
p,p, AΓΓ

p,p+1 (second row)
and AΓΓ

p+1,p+1 (third row), are stored in the last processor. The upper

right block of the inverse of this 3 × 3 block matrix is the desired A−1
1,N

which can be straightforwardly computed.
(3) Third Stage: Computation of the transmission coefficient

At the last stage, there remain a few multiplications c of the blocks that
are included inside the Fisher-Lee relation and are all known for the
evaluation of T (E). These operations are performed sequentially from
the first processor. The numerical complexity for this last stage can be
evaluated as,

C3 ≈ cM3

and since c is a small constant, in the limit of large N , C3 can be absorbed
in C1.

The numerical complexity of the parallel algorithm scales as:

Cpar(N, M, p) ≈ C1 + C2 + C3 ≈ 7
N

p
M3 + 5log2pM

3 (7)

and the corresponding sequential (p = 1) one, as:

Cseq(N, M) ≈ 7NM3
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We should remark that the algorithm developed here holds equally for scat-
tering regions with complex boundary conditions, i.e., blocks Aij with varying
sizes, and can be generalized to the geometry of 3D scatterers in a straight-
forward manner.

4 Numerical benchmarks

4.1 Metrics for the analysis of performance and scalability

In this section an analysis of the performance and scalability for two specific
numerical benchmarks will be pursued. This is required in order to test the
models for the numerical complexity we derived so far and to demonstrate
a measure for the capabilities and optimized use of the proposed algorithm.
To proceed with such an analysis it is necessary to define some characteristic
quantities for our parallel algorithm following Ref. [13]. Firstly, we define the
problem size:

W (N, M) = 7NM3

which is the number of numerical operations in the sequential algorithm (p =
1), i.e., the RGF approach, and is also equal to the serial run time Ts if a unit
of time corresponds to each numerical operation. The cost of simulating the
parallel algorithm on a single processor is:

pTp(N, M, p) = pCpar(N, M, p) = 7NM3 + 5 p log2(p)M3

where Tp is the parallel run time corresponding to Cpar(N, M, P ) if we assume
a unit of time for each computational step. The overhead function T0 of the
parallel algorithm is defined as:

T0(M, p) = pTp − W = 5 p log2(p)M3

and determines the part of its cost that is collectively spent by all processors
compared to the sequential algorithm. The sources of overhead of a parallel
system can be in general attributed to interprocessor communication, load
imbalance and extra computational time due to a part of the program that is
not parallelizable. In our algorithm the dominant contribution to the overhead
results from the amount of operations during the cyclic elimination of the
processors. The extra computational time required for the evaluation of the
Fisher-Lee relation (this is the only not parallelizable part) can be neglected in
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the limit of large N . As far as load imbalance is concerned, the two numerical
benchmarks to be investigated will show a different significance of this source
of overhead. Finally, we define the efficiency of the parallel algorithm as:

F =
W

pTp

=
7NM3

p
(

7N
p
M3 + 5 log2(p)M3

) =
1

1 + 5 p log2(p)
7N

(8)

From this relation, we conclude that the efficiency is independent of the size of
blocks M and depends only on the longitudinal length of the scatterer N and
the number of processors p participating in the computation. Moreover, by
scaling appropriately N with p, it is possible to maintain the efficiency fixed,
a property met in scalable parallel algorithms. From Eq. (8) we can define the
isoefficiency function:

W = KT0

where K = F/(1 − F ) is given for a specific F . For fixed K we can arrive at
the following relation for N and K:

N =
5

7
Kp log2(p) (9)

Therefore, our algorithm can be cost-optimal if we choose N = 5
7
Kp log2(p)

and scalable if we increase N with rate O(p log2(p)). On the other hand, for a
fixed size problem, i.e., keeping N and M fixed, we observe that the efficiency
decreases with increasing p as a consequence of Amdahl’s law (see Eq. (8)).
Here some final remarks are in order. In the quantities defined so far, we have
assumed lattices of unique size N ×M for the discretization of the scattering
regions (perfectly load balanced problems). In addition, the time spent for
the interprocessor communications is neglected. This is due to the increased
granularity of the block tridiagonal system, resulting in a better efficiency of
the parallel algorithm.

4.2 Sinai billiard in a magnetic field

The first numerical benchmark to test the performance of our algorithm is
the Sinai billiard in a homogeneous magnetic field. Figure 5 shows the setup.
Modified Sinai billiard provide a class of systems for testing the correspondence
between quantum and classical transport. Its simple geometry allows the use
of lattices with a unique size for the discretization, leading therefore to a
perfectly balanced problem with respect to the numerical work loaded to each
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processor. It represents therefore an excellent ground to test the models for
the complexity we developed in subsection 4.1.

y = ma

x = na

~B

Fig. 5. Setup of a Sinai billiard attached to two reservoirs with n = 0, 1, . . . , N − 1
slices of m = 0, 1, . . . ,M − 1 sites each, used in the fixed-size efficiency calculations.
The ratio of the two dimensions is N

M
= 8

5 .

The first setup to test the performance of our algorithm uses a 400 × 250
lattice for the discretization of the Sinai billiard (ten times resolved compared
to the one of Figure 5). The first type of analysis consists of keeping the lattice
fixed and studying the efficiency of the problem with increasing the number of
processors. We remind the reader that the total cost of the parallel algorithm
is dominated by the cost for the evaluation of the Schur’s complement block
and the cost due to the cyclic reduction of the processors (see Eq. (7)). Table
1 shows the times measured for the evaluation of T (E, B) at a fixed energy E
and magnetic field B.

Table 1
Measured time (Time) and efficiency (F ) as a function of the number p of the
processors for a Sinai billiard in a magnetic field with fixed size N = 400 and
M = 250.

p Time (sec) F p Time (sec) F p Time (sec) F

1 1723.58 1.0 14 136.82 0.9 48 53.78 0.668

2 871.94 0.989 16 120.09 0.897 56 49.31 0.624

4 444.75 0.969 20 99.84 0.863 64 45.33 0.594

6 300.57 0.956 24 86.57 0.83 80 39.68 0.543

8 229.18 0.94 28 77.58 0.793 96 38.49 0.466

10 185.61 0.928 32 69.51 0.775 112 35.16 0.438

12 158.46 0.906 40 59.11 0.729 128 34.27 0.393

At this point we note that the system used for the time measurements has been
a Linux cluster of 256 nodes with Dual AMD Athlon 1.4 GHz processors of 2
GB RAM each. Efficiency is 1.0 for p = 1 and gradually decreases with p. This
is due to the fact that with increasing p, the term in equation (7) proportional
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to log2(p), dominates with respect to the other term that decreases with N
p
,

thereby decreasing the efficiency of the proposed algorithm.

Figure 6 shows the efficiency F as a function of the number p of proces-
sors according to the performed time measurements (dots) compared to the
analytical curve of Eq. (8). We observe that the agreement between the theo-
retical model and the measurements is very good. Therefore, we conclude that
the dominant sources of numerical load have been succesfully identified and
weighted. Further sources of overhead, such as the time required for interpro-
cessors’ communication, could be neglected as the work load is dominated by
the amount of numerical operations that scale with M3, i.e., multiplications
and inversions of M × M blocks.

0.3
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0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

F

p

Fig. 6. Efficiency F as a function of the number p of processors. The dots correspond
to the measured efficiency and the solid curve to the theoretical model employed.

The next step in our analysis is to perform a scaling size experiment. The
aim of this test, is to scale the size of the problem such that the efficiency is
kept fixed. As we saw from Eq. (8) the efficiency is independent of the size of
the transversal dimension M and depends only on the size of the longitudinal
dimension N and the number of processors p. Therefore, by scaling appropri-
ately N with p it is possible to arrive at a fixed efficiency F of the algorithm.
According to equation (9) for p = 2 processors the efficiency can be 0.848 if
we choose N = 8. If we keep increasing the number of processors p and the
size of the system N , keeping M fixed, according to the relation:

N ′ = N
p′log2(p

′)

plog2(p)

where N ′ and p′ are the new size of the system and the new number of pro-
cessors respectively, then we expect that the efficiency will stabilize around
84.8%. Table 2 shows the efficiency for the scaled size problem.

We observe that the efficiency is stabilized between 0.81 and 0.85 thereby
confirming our prediction. The sources of these slight deviations could be at-
tributed to some enhanced contributions of time spent in interprocessor com-
munications. Therefore our models provide a reliable source for the estimation

16



Table 2
Efficiency (F ) as we increase the longitudinal dimension N of the billiard with the
number of the processors p according to N = O(plog2(p)). We keep M = 100 fixed.

N ; p Ts (sec) Tp (sec) F

8; 2 1.1 0.68 0.816

32; 4 4.76 1.44 0.826

96; 8 14.27 2.17 0.822

256; 16 38.32 2.82 0.849

640; 32 95.25 3.54 0.841

1536; 64 228.79 4.27 0.837

3584; 128 534.06 5.04 0.828

8192; 256 1222.07 5.82 0.82

of the computational cost. Table 2 shows that the larger the size of the sys-
tem N , the larger becomes the efficiency. Therefore, our parallel algorithm
is suitable for large systems, in particular of enhanced longitudinal dimen-
sion. Scattering problems with complex structures could be disentangled into
modules with arbitrary complexity, of which the computation could be done
efficiently by one processor. Cyclic reduction among the processors would join
the information of the individual modules. If the computational complexity
of a module is particularly enhanced for one processor, then more processors
could be employed.

4.3 Antidot inside the scatterer

The second numerical benchmark corresponds to a category of scatterers with
enhanced complexity. It consists of a Sinai billiard with a centered antidot of
circular shape. This setup has been chosen for simulations in Ref. [14]. The
numerical challenge imposed hereby is the exact reproduction of the antidot’s
circular shape in the continuum limit.

Figure 7 shows the discussed geometry. Subfigure 7-(a) shows the open ge-
ometry and dimensions of the Sinai billiard, while in 7-(b) the isolated Sinai
billiard is discretized on a 49 × 49 grid of points. On such a small grid the
antidot has, on the scale of Fig. 7-(b), the shape appearance of a polygon.
Subfigure 7-(c) shows the same setup of the Sinai billiard but on a grid which
is four times resolved compared to 7-(b), i.e., a 399 × 399 grid. The latter is
going to be our fixed input size for the time measurements as we increase p. At
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Fig. 7. (a) Open scattering geometry of a Sinai billiard with a centered antidot of
circular shape. Subfigure (b) shows the isolated scatterer on a 49×49 grid of points
and width W = 10a. Subfigure (c) shows the same setup but four times resolved.
The thickness of the border lines in (b) and (c) provide a measure of the lattice
constant.

this point we remark that the antidot has hard wall boundaries, i.e., the sites
which form the antidot are excluded from the computation, thereby leading
to blocks Aij with varying dimensions. Table 3 shows the efficiency measured
for the evaluation of T (E) at a fixed energy E as a function of p.

Table 3
Measured time (Time) and efficiency (F ) as a function of the number p of the
processors for a Sinai billiard with an antidot placed centrally in it. The lattice
N = 399 and M = 399 is kept fixed.

p Time (sec) F p Time (sec) F p Time (sec) F

1 13490.83 1.0 14 1201.49 0.802 48 417.8 0.673

2 6791.23 0.993 16 1058.31 0.797 56 379.9 0.634

4 3917.2 0.861 20 855.45 0.789 64 343.87 0.613

6 2689.56 0.836 24 734.14 0.766 80 271.07 0.622

8 1974.65 0.854 28 655.5 0.735 96 267.04 0.526

10 1649.51 0.818 32 571.54 0.738 112 226.92 0.531

12 1404.99 0.800 40 462.83 0.729 128 224.37 0.47

The efficiency decreases with increasing p as expected. We should note that
for these measurements equidistant domains, with respect to the longitudi-
nal dimension, have been distributed among the processors. However, due to
the antidot’s boundaries, it becomes clear that this kind of distribution leads
to an inevitable load imbalance. The domains that include sections of the
antidot are described by blocks of smaller size, resulting thereby in reduced
computational load for the corresponding processors. For p = 2, we observe an
efficiency very close to 100%. This is a result of the symmetry of the geometry
of the setup, which results in a load balanced problem for this specific num-
ber of processors. If we further increase p then the efficiency falls abruptly.
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This result is attributed to the intensive load imbalance for few number of
processors. To remedy this problem we have to choose a non-uniform domain
decomposition of the scattering region, leading, thereby, to a more fair work
load for all processors. For a larger number p, however, this problem becomes
much less intense, since the total cost is multiply distributed in fairly small
pieces of numerical load and the inequality among the processors, with respect
to the load they share, significantly reduces. Therefore, for rather large p, load
imbalance is not a significant source of parallel overhead, however, deviations
compared to a load balanced setup are still evident (see below).

To analytically calculate the efficiency of the parallel algorithm for the setup
in discussion, it is necessary to take into account the circular shape of the
antidot. For this purpose, we divide the scatterer in two sections. One section
of which the numerical cost scales with N1 ×M3 arithmetic operations, where
N1 the number of slices outside the antidot, and a second one of which its

computational load scales with
N2
∑

i=1
M3

i where Mi is the varying size of the

blocks of each of the N2 slices that compose the antidot. Therefore, the size
of the scattering problem is:

W (N, M) = 7N1M
3 + 7

N2
∑

i=1

M3
i

Moreover, we assume that at the first stage of parallelization, the work W is
distributed uniformly among the processors and that at the second stage the
processors that participate in the cyclic reduction are weighted appropriately,
with respect to the load that corresponds to them. This is translated to the

fact that 2
5
p processors possess a work load that scales with

N2
∑

i=1
M3

i and 3
5
p

processors possess a work load that scales with M3. Therefore, the cost for
the parallel algorithm will be:

pTp = 7N1M
3 + 7

N2
∑

i=1

M3
i + 3plog2(

3p

5
)M3 + 2plog2(

2p

5
)

N2
∑

i=1

M3
i

The efficiency, which is no longer independent of the size of the transversal
dimension M , will be:

F =
W

pTp

=
N1M

3 +
N2
∑

i=1
M3

i

N1M3 +
N2
∑

i=1
M3

i + 3
7
p log2(

3p

5
)M3 + 2

7
p log2(

2p

5
)

N2
∑

i=1
M3

i

(10)

Figure 8 shows the measured efficiency (dots) as a function of p. We observe
a rather abrupt decrease of F for a small number of processors p > 10 which
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smoothens for larger p. The solid curve of Figure 8 represents the analytical
model of Eq. (10), calculated for the 399 × 399 grid of subfigure (7)-c.
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Fig. 8. Efficiency F as a funtion of the number p of processors. The dots correspond
to the measured efficiency and the solid curve to the theoretical model derived to
take into account the special geometry of the setup.

The agreement with the measurements is quite well, however, deviations for
p > 2 are evident. For p = 2 the prediction agrees due to the symmetric load
share to the two processors for this problem. For p > 2, deviations are apparent
due to the assumptions within the derivation of our model. Namely, neither
does W distribute itself evenly among the processors (load imbalance) nor is
the computational load due to the cyclic reduction weighted exactly among
the processors, as we assumed. To remove the first assumption one should
proceed to an uneven domain decomposition with respect to the processors,
which would vary depending on p. We conclude thereby, that in a scattering
problem of complex geometry, the strategy to be followed in order to optimize
the efficiency of the algorithm, regarding the load that the processors share,
should take into account the particular geometric features of the scatterer.

5 Conclusions

A parallel algorithm for the implementation of the RGF method has been
developed. The structure of the algorithm is mainly based on an initial do-
main decomposition of the scattering region due to processors’ subdivision
and recursive computation of the Schur’s complement block through cyclic
elimination of the processors. The computational cost due to the longitudinal
dimension of the scattering region scales linearly with p. However, the cost due
to the cyclic elimination, prevents us from achieving an efficiency of 100%. To
demonstrate the efficiency of the parallel RGF algorithm, we proceeded with
an analysis of the performance, scalability and sources of overhead for two
specific numerical benchmarks. The first numerical benchmark corresponds to
a perfectly load balanced setup, such as a Sinai billiard in a magnetic field,
and the derived model is in very good agreement with the measurements. The
second numerical example contained an additional geometrical challenge, be-
ing the exact reproduction of the circular shape of an antidot with hard wall
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boundaries in the centre of a Sinai billiard. The computation hereby required
manipulation of blocks with varying sizes leading to a nonuniform numerical
load for the processors participating in the computation. A model adapted to
the special geometry of this problem has been employed, which exhibited its
geometric peculiarities and indicated the additional source of overhead due
to load imbalance. The effect of the latter can be reduced by a selection of
non-uniform decomposed domains distributed to the processors, based on the
numerical cost. From our analysis it became apparent that the parallel RGF
technique developed here, is particularly suitable for modular scattering struc-
tures of high complexity. Parallelization in this context gives the freedom to
decompose the scatterer into modules, the computation of each can be effi-
ciently performed by one processor. The optimized distribution of modules to
processors depends on their individual complexity. In case, their complexity is
enhanced, more than one processors could be employed and the corresponding
computational load should be shared according to the individual features of
the module.

P. S.D. and P. S. gratefully acknowledge illuminating discussions with G. Fa-
gas. P. S.D. also acknowledges financial support from DFG in the framework of
the International Graduiertenkolleg IGK 710 ”Complex processes: Modeling,
Simulation and Optimization”.
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