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SUMMARY

In this paper we present a new approach to simulations on complex shaped domains. The method
is based on a Discontinuous Galerkin method, using trial and test functions defined on a structured
grid. Essential Boundary conditions are imposed weakly via the Discontinuous Galerkin formulation.
This method offers a discretization where the number of unknowns is independent of the complexity
of the domain.

We will show numerical computations for an elliptic scalar model problem in R
2 and R

3. Convergence
rates for different polynomial degrees are studied. Copyright c© 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of physical, biological and chemical processes often involve complex shaped
domains. Common problems are flow through root networks, solute transport on the pore
scale of porous media or exchange processes through cell membranes.

Classical numerical methods require a grid resolving the complex geometry. Creating such
grids is a very sophisticated process and therefore methods without this requirement are of
great interest.

This paper presents a new approach. It is based on a Discontinuous Galerkin (DG) method
with trial and test functions defined on a structured grid. Thus the number of degrees of
freedom is proportional to the number of elements in the structured grid. The support of the
trial and test functions is restricted according to the shape of the geometry.

This paper is organized as follows. In the first section we discuss existing methods, namely
the Fictitious Domain method [1, 2] and Composite Finite Element method [3], and compare
them with the proposed novel approach. The next section presents our Discontinuous Galerkin
based approach. In section 4 we describe the application of this method to an elliptic Model
Problem. We investigate convergence rates for a special case not covered by the theory of the
discretization error and show numerical results in R

2 and R
3.
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2. OVERVIEW

2.1. Problem Description

Let Ω ⊆ R
d be a domain of size

L = diam(Ω) (1)

and G be a disjoint partitioning of Ω into N sub-domains

G(Ω) =
{

Ω(0), . . . ,Ω(N−1)
}

(2)

with

Ω(i) ⊆ Ω ∀ 0 ≤ i < N,

Ω(i) ∩ Ω(j) = ∅ ∀ 0 ≤ i < j < N,

∂Ω(i) ∩ ∂Ω(j) = Γ(i,j) ∀ 0 ≤ i < j < N,

Ω̄ =

N−1
⋃

i=0

Ω̄(i),

Γ =
⋃

i,j

Γ(i,j).

(3)

The partitioning G is usually based on geometrical properties obtained from experiments or
previous simulations. The boundaries ∂Ω(i) may have a complex shape.

On each Ω(i) we consider an elliptic partial differential equation

Li(ui) = fi (4)

with a linear differential operator Li together with suitable boundary conditions on ∂Ω and
transmission conditions on the interfaces Γ(i,j).

2.2. Existing Approaches

Following the standard finite element paradigm one would create a finite element mesh of the
whole domain Ω or a sub-domain Ω(i) such that the elements resolve the boundaries ∂Ω(i).
Most finite element methods require a conforming triangulation, at least within each Ω(i). Non
conforming treatment of interfaces Γ(i,j) is possible with mortar finite elements [4]. However,
constructing a triangulation of good quality is very difficult, especially in three dimensions.
Moreover, approximation errors of finite element schemes and the convergence behavior of
iterative linear solvers depend on the mesh quality. Resolving the shape of ∂Ω(i) might require
very fine grids, resulting in a large number of degrees of freedom. Recent developments
concentrate on mesh generation for curved elements [5] which would reduce the number of
elements, but still these algorithms are generally applicable.

Fictitious domain methods, sometimes called embedding domain methods [2], were studied
e.g. by [1]. These methods present an approach independent of the sub-domains Ω(i). They
are based on an arbitrary grid irrespective of the boundaries ∂Ω(i); usually this will be a
structured grid. A standard finite element discretization is applied on the whole domain Ω,
neglecting the internal boundaries. The internal boundary conditions on the interfaces Γ(i,j)
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are imposed as constraints on the involved partial differential equations. Using the technique
of Lagrange multipliers the resulting problem is solved. This method successfully decouples
the number of unknowns from the shape of interfaces Γ(i,j), but it needs additional degrees of
freedom to formulate the constraints. Solving the modified problem is quite expensive, because
the Lagrange multiplier technique results in a saddle point problem. The Immersed Boundary
Method [6] and Immersed Interface Method [7] are based on the same idea as the Fictitious
domain method, but the constraints are introduced using virtual forces.

Composite finite elements, as introduced in [3], were developed to improve geometric
multigrid methods on domains with complicated structures and micro structures, They are
based on hierarchic grid constructions. It is assumed that the geometry is resolved by a
conforming finite element mesh. Trial functions for coarser meshes are constructed by linear
interpolation of the basis functions of the conforming grid in their nodal points. This approach
was primarily intended as a fast iterative solver, not a discretization scheme. Furthermore the
construction of the coarse grid basis functions can become very expensive, especially for higher
order trial functions.

Using conforming finite element methods, [8] presented a discretization method on an
unfitted mesh. The finite element mesh does not resolve the geometry and boundary conditions
along the geometry are enforced weakly using Nitsche’s method [9]. This method is known as
Unfitted Finite Element Method. However the method itself does only allow first order trial
and test functions. We will extend this approach using Discontinuous Galerkin methods instead
of Nietzsche’s method. Thus higher order computations are possible.

3. THE UNFITTED DISCONTINUOUS GALERKIN APPROACH

In this section we describe the new Unfitted Discontinuous Galerkin (UDG) approach. It
combines the Unfitted Finite Element Method with a Discontinuous Galerkin discretization.
This approach offers extra flexibility, as it allows higher order trial and test functions. Note also
that for problems described by a conservation equation DG methods are especially attractive,
because certain DG formulations are element wise mass conservative and therefore able to
accurately describe fluxes over element boundaries.

A triangulation T of the domain Ω (Figure 1) is given in addition to the partitioning G.
T can be chosen independently of G. Using the Discontinuous Galerkin method trial and test
functions are defined on T and their support is restricted to G. This method decouples the
degrees of freedom from the geometrical properties.

3.1. The Finite Element Mesh

The triangulation T is a partitioning of Ω, where the mesh size

h = min {diam(E) | E ∈ T } (5)

is not directly determined by the shape of G. Nevertheless error control on the solution of the
differential equations Li might require a smaller h due to the shape of G.

We call T the fundamental mesh. Its elements are denoted by

T (Ω) = {E0, . . . , EM−1} (6)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008 ; 3:1–2
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T (Ω)
E0

Ω(0)

Ω(1) G(Ω)

T (Ω(1))E
(1)
0

and

T (Ω(0))

E
(0)
0

Figure 1. Construction of the partitions T (Ω(i)) given the
partitions G and T of the domain Ω.

with

Ei ⊆ R
d ∀ 0 ≤ i < M,

Ei ∩ Ej = ∅ ∀ 0 ≤ i < j < M,

Ω̄ ⊆
M−1
⋃

i=0

Ēi.

(7)

For each Ek there exists a smooth one-to-one mapping TEk
from a reference element Êm

Ek = TEk
(Êm). (8)

Note that the set Êm of reference elements should be small, i.e. many elements Ek have
the same reference element. For each Ω(i) ∈ G a mesh based on equation (6) is defined (see
Figure 1):

T (Ω(i)) =
{

E(i)
n = Ω(i) ∩ En

∣

∣

∣
E(i)

n 6= ∅
}

. (9)

There are no restrictions on the shape of E
(i)
n .

Note that E
(i)
n is always a subset of En, therefore we will call En fundamental element of

E
(i)
n .
For practical reasons, we also require that E

(i)
n is connected (see [10]), read any two points

in E
(i)
n can be connected by a curve lying completely within E

(i)
n (see [11]). Note that not for

every pair of G(Ω) and T (Ω) this requirement can be guaranteed.

The internal skeleton of the partitioning is named Γ
(i)
int with

Γ
(i)
int =

{

γe,f = ∂E(i)
e ∩ ∂E

(i)
f

∣

∣

∣
E(i)

e , E
(i)
f ∈ T (Ω(i)) and E(i)

e 6= E
(i)
f and |γe,f | > 0

}

. (10)
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Correspondingly, the external skeleton is denoted by

Γ
(i)
ext =

{

γe = ∂E(i)
e ∩ ∂Ω(i)

∣

∣

∣
E(i)

e ∈ T (Ω(i)) and |γe,f | > 0
}

. (11)

3.2. The Shape Functions

Since each element E
(i)
n in the finite element mesh T (Ω(i)) can be shaped arbitrarily it is hard

to use conforming trial and test functions. Conforming shape functions depend on the shape
of the elements, therefore it would be necessary to construct suitable shape functions for each

E
(i)
n in accordance to the local boundary conditions.

However, using DG the shape functions can be chosen independently of the shape of the
element. In [12] it is shown that star shaped elements (see [13, p. 18]) are sufficient, although
not necessary, for the convergence rate to be independent of the shape of the elements.

We use a Discontinuous Galerkin formulation with a discontinuous, piecewise polynomial
approximation. Let denote ϕn,j ∈ Pk a polynomial on the fundamental element En, where

Pk =







ϕ : R
d → R

∣

∣

∣

∣

∣

∣

ϕ(x) =
∑

|α|≤k

cαxα







(12)

is the space of polynomial functions of degree k and α is a multi–index. The local base functions

ϕ
(i)
n,j are given by polynomials ϕn,j ∈ Pk with their support restricted to E

(i)
n :

ϕ
(i)
n,j =

{

ϕn,j inside of E
(i)
n

0 outside of E
(i)
n

. (13)

The resulting finite element space for the discretization of Liui = fi on Ω(i) is defined by

V
(i)
k =

{

v ∈ L2(Ω
(i))

∣

∣

∣
v|

E
(i)
n

∈ Pk

}

(14)

and consists of piecewise polynomials with discontinuities on the internal skeleton Γ
(i)
int.

Since the assembling of the stiffness matrix will require integration over the volume of E
(i)
n

and over the surface ∂E
(i)
n , for elements E

(i)
n significantly smaller than the fundamental element

En only a very small part of ϕn,j is integrated. This means that their matrix entries would
become very small. These small matrix entries worsen the condition of the matrix, what is not
desired for numerical reasons. In order to avoid this, the shape functions are scaled according

to the bounding box of the element E
(i)
n .

A similar approach is also used in structural mechanics (see [14]).

3.3. Assembling the Stiffness Matrix

Assembling the local stiffness matrix in a DG approach requires integration over the volume

of each element E
(i)
n and its surface ∂E

(i)
n .

Integration is done using a local triangulation of E
(i)
n (see Figure 2). To do so, E

(i)
n is

subdivided into a disjoint set {E
(i)
n,k} of simple geometric objects, i.e. simplices and hypercubes,
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Figure 2. Creation of E(i) from its fundamental element and Ω(i) and the local

triangulation of E
(i)
n and ∂E

(i)
n .

with

E
(i)
n,k ⊆ R

d ∀ 0 ≤ i < N,

E
(i)
n,k ∩ E

(i)
n,l = ∅ ∀ k 6= l,

Ē(i)
n =

⋃

k

Ē
(i)
n,k.

(15)

Therefore the integration of an element E
(i)
n with a complex shape requires many integration

parts E
(i)
n,k. On the analogy of equation (8), we have a smooth one-to-one mapping T

E
(i)
n,k

from

a reference element Ê to E
(i)
n,k:

E
(i)
n,k = T

E
(i)
n,k

(Ê). (16)

For a good boundary approximation either a very fine local triangulation, or isoparametric
elements [15] must be used. This technique is used in the simulations presented in subsections
4.2 and 4.3, where boundaries are approximated using quadratic mapping (higher order
mappings have not been implemented yet).

Using standard quadrature formulae we assume a set Q = {(qi, wi)} of pairs of integration
points and scalar weights on the reference elements Ê. Thus the integral over a globally defined

function f on E
(i)
n can be approximated as

∫

E
(i)
n

fdV ≈
∑

k

∑

j

f(T
E

(i)
n,k

(qj)) wj |det(JT
E

(i)
n,k

(qj)) |, (17)

with JT
E

(i)
n,k

denoting the Jacobian matrix. Since the base functions are defined in local

coordinates (ξ, η) on Ê, the integral over a shape function ϕ ∈ Pk is evaluated as (see Figure 3):

∫

E
(i)
n

ϕ ◦ T−1
En

dV ≈
∑

k

∑

j

ϕ((T−1
En

◦ T
E

(i)
n,k

)(qi)) wj |det(JT
E

(i)
n,k

(qj)) |. (18)
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E
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n,k

qj

Ω̂t
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T−1
En

T−1
En

◦ T
E

(i)
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Figure 3. Transformations from the reference triangle Êt to the reference square

Ês are done by concatenating the transformation T
E

(i)
n,k

from the reference triangle

to global coordinates and T−1
En

onto the reference square.

On a structured grid TEn
consists only of scaling and translation, hence it is easy to compute

the inverse T−1
En

. Here the evaluation of the composite mapping T−1
En

◦ T
E

(i)
n,k

is dominated by

that of T
E

(i)
n,k

.

3.4. The Local Triangulation

Constructing the local triangulation needed for the evaluation of the integrals is far simpler
than the construction of an unstructured finite element mesh. The local triangulation can be
non conforming with an arbitrary number of hanging nodes. Note that for the computation of
the local triangulation of one element E(i)n , no information about the neighboring elements is
required. For finite element mesh different criteria concerning the size of angles and the ratio of
the elements must be met [16, 17]. As the local triangulation is only used for integration purpose
all these requirements can be dropped leading to much simpler grid generation algorithms.

For the UDG method no particular local triangulation is required. Many different approaches
for the local triangulation are possible. In the reference implementation two different algorithms
are implemented and were used in the numerical experiments in section 4.

3.4.1. Local triangulation of analytically described geometries For analytically described
geometries we have implemented a local triangulation for two dimensional domains. The
geometries are given as a list of CAD primitives, e.g. circles and splines.

This approach of local triangulation consists of two parts. First a set of {Rn,k} of sub-
rectangles is created, using bisection of En (Figure 4). Then each Rn,k is assigned to a class
according to the way Rn,k intersects with the interfaces Γ(i,j). Choosing suitable rules to
control the bisection the set of different intersection classes can be kept small. For each of
these classes a suitable triangulation is predefined (Figure 5).

For a detailed description of bisection rules implemented in this algorithm see [10]. The
implementation supports only a very limited set of CAD primitives. Every new primitive, as
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Figure 4. Recursive bisection until each rectangle intersects with not more than
one interface Γ(i,j).
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Figure 5. According to the way Rn,k intersects with the interfaces Γ(i,j), an
appropriate triangulation is chosen. Example: one corner missing → connect the

intersection points to the corner opposite of the missing one.

well as the extension to R
3, will require additional bisection rules. For three space dimensions

we do not regard this approach practical, as the complexity of the local triangulation code will
become much higher. For our application an other approach is more appropriate.

3.4.2. Local triangulation of implicitly described geometries Detailed measurements of
complex geometries, e.g. pore scale structures are often obtained using imaging technology.
These measurements, e.g. X-ray tomography, yield data on a structured grids. Image processing
techniques lead to a data set where the sub-domain boundary ∂Ω(0) is given by a threshold
value.

Instead of reconstructing CAD primitives from this data an alternative local triangulation
is proposed, which can directly use the obtained image data. For simplicity we describe the
algorithm for two space dimensions, the implementation also supports three dimensions.

The domain Ω(0) is implicitly given by a scalar function, and the sub-domain boundary
∂Ω(0) is given as an iso-surface of the scalar function. Usually the image data is available on
a much finer grid than the one used for the computations, in the following we call this the
image grid. For this kind of domain description we require that the image grid is a hierarchic
refinement of the computation grid.

The local triangulation is based on the Marching Cubes Algorithm (see [18]) which gives
a surface reconstruction for an iso-surface. Each vertex of an element in the image grid can
have a value below or above the threshold value of the iso-surface, read inside or outside
the sub-domain. For a cube element in R

2 this results in 16 different cases. Each of these
cases corresponds to one of six basic cases and can be transformed using simple geometric
operations. A lookup table maps each case to the appropriate surface reconstruction. The
original algorithm was extended such that the lookup table provides a surface and also a
volume reconstruction (see Figure 6).

The local triangulation is obtained as follows:
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◦ : Φ < 0

• : Φ > 0

0000 0001 0011 0101 0111 1111

Figure 6. The Marching Cube algorithm in R
2 distinguishes six basic cases, depending on the value

of a scalar function Φ in the corners. The pictures show these six different cases, together with their
key in the lookup table.

• Search all child elements of an element in the computation grid.
• For each of these child elements do a volume reconstruction using the extended marching

cubes algorithm.
• The union of the sub-elements of all child elements form the local triangulation of an

element on the computation grid.

3.5. The Cone Condition

Given a domain Ω, a function u ∈ Hk+1(Ω) and an interpolation Operator I : Hk+1 → Pk,
which maps u onto the space of piecewise continuous polynomials Pk of order k, the Bramble–
Hilbert lemma [19] gives an estimation for the interpolation error. In the optimal case this
error measured in L2 or H1 shows the order of convergence

||u − Iu||L2
= O(hk+1) (19)

||u − Iu||H1 = O(hk). (20)

These estimates require that the domain satisfies the strong cone property, as defined in [19]
and [20, p. 45].

Figure 7. Refinement of cusp elements results in anisotropic elements, which do
not fulfill the cone property.

In general the elements E
(i)
n might not fulfill this cone property. E.g. consider the sub-domain

Ω(i) = (0, 2)2 ∩ {(x, y)|x2 + (1 − y2) > 1}, (21)

see Figure 7. In point (0, 0) the edges are meeting such that the tangents of both edges in
this point are equal. Such a point is called a cusp and poses particular problems. Not only
the cone condition is violated, the element also becomes anisotropic when refining the grid.
To our knowledge there exist no estimates of the interpolation errors in such a case. Note that
this problem can occur only when using quadratic or higher transformations. For multi-linear
transformations the tangents can not become parallel.
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10 P. BASTIAN, C. ENGWER

Estimates for anisotropic linear triangles have been obtained by Babuška and Aziz [16]
and they have shown that anisotropy does not pose any problems, as long as the largest
angle in every element is bounded away from π. In [12] it is shown that full convergence can
be obtained for star shaped elements. However, none of these papers applies in this case of
anisotropic elements with quadratic transformation.

To investigate convergemce properties we studied the interpolation error measured in L2–
and H1–norms for a single cusp element in R

2 by computational means, rather than perfoming
an analytic study. To reduce numerical inaccuracies we did these calculations with MAPLE
[21], using an accuracy of 30 digits. Using Lagrange interpolation the error measured in both
L2– and in H1–norm shows optimal convergence rate (see Figure 8). When using L2 projection
we have no control over the derivative in y direction and therefore loose one order in the error
convergence in the H1–norm.
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Figure 8. Interpolation error measured in H1–norm (left) and its convergence for
h → 0 (right) for the L2 projection and the Lagrange interpolation (Lagr.) of a

function with full regularity on a single cusp elements.

In subsection 4.2 we will present numerical results supporting the claim that the order of

convergence for the DG scheme is independent of the shape of the elements E
(i)
n .

4. NUMERICAL EXPERIMENTS

4.1. The Elliptic Model Problem

The test problem for the numerical experiments presented in this paper will be a generic elliptic
model problem. In the following we will present the DG discretization of this test problem.

We restrict ourself to one complex-shaped sub-domain Ω(0) ⊆ Ω ⊂ R
d with Ω being cuboidal.

On the sub-domain Ω(0) the model problem is solved, without any transmission conditions.
The model problem reads

−∇(K∇p) = f on Ω(0) (22)
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with Dirichlet boundary conditions

p = g on ΓD ⊆ ∂Ω(0) (23)

and Neumann boundary conditions

j · n = J on ΓN = ∂Ω(0) \ ΓD, (24)

where j = K∇p denotes the flux, p the pressure and n is the normal vector.

Now let T (Ω(0)) = {E
(0)
1 , . . . , E

(0)
n } be a non–degenerate quasi–uniform subdivision of Ω(0),

as defined in (6) and (7). The outer unit normal on E
(0)
e is denoted by n̂e.

With each γe,f ∈ Γ
(0)
int we associate a unit normal n, which is oriented outwards E

(0)
e for

e > f and inwards otherwise. For every γe ∈ Γ
(0)
ext we associate n oriented outwards Ω(0).

Equation (14) defines the finite element space V
(0)
k . The discontinuity of a function v ∈ V

(0)
k

evaluated on an internal edge γef ∈ Γ
(0)
int will be referred to as the jump and is denoted by

[ v ]ef = (v|
E

(0)
e

)|γef
− (v|

E
(0)
f

)|γef
. (25)

The average of v ∈ V
(0)
k on γef ∈ Γ

(0)
int is

〈 v 〉ef =
1

2

(

(v|
E

(0)
e

)|γef
+ (v|

E
(0)
f

)|γef

)

. (26)

Using the formulation described in [22], the problem to be solved reads: Find p ∈ V
(0)
k such

that
aǫ(p, v) + Jσβ(p, v) = lǫσβ(v) ∀v ∈ V

(0)
k . (27)

The bilinear form

aǫ(p, v) =
∑

E
(0)
e ∈T (0)

∫

E
(0)
e

(K∇p) · ∇v dV

+
∑

γef∈Γ
(0)
int

∫

γef

ǫ 〈 (K∇v) · n 〉[ p ] − 〈 (K∇p) · n 〉[ v ] ds

+
∑

γe∈ΓD

∫

γe

ǫ (K∇v) · n p − (K∇p) · n v ds

(28)

is parameterized by ǫ = ±1. Choosing ǫ = 1 yields a non–symmetric scheme as introduced by
Oden, Babušky and Baumann in [23]. For ǫ = −1 we obtain the Symmetric Interior Penalty
method [24] which needs an additional stabilization term added to the bilinear form. The
stabilization term reads

Jσβ(p, v) =
∑

γef∈Γ
(0)
int

σ

|γef |β

∫

γef

[ p ][ v ]ds +
∑

γe∈ΓD

σ

|γe|β

∫

γe

pv ds (29)

with appropiate parameters σ > 0 and β. This penalty term was employed in the original
IP-Method. Choosing ǫ = 1 and σ > 0 results in the Non–Symmetric Interior Penalty method
[25].
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12 P. BASTIAN, C. ENGWER

The right hand side of (27) is given as the linear form

lǫσβ(v) =
∑

E
(0)
e ∈T (0)

∫

E
(0)
e

f v dV

+
∑

γe∈ΓN

∫

γe

J v ds

+
∑

γe∈ΓD

∫

γe

ǫ (K∇v) · n g ds

+
∑

γe∈ΓD

σ

|γef |β

∫

γe

v g ds.

(30)

4.2. Convergence Rate of H1–/L2–Error on a Cusp Domain

As described in subsection 3.5 the usual estimates for the convergence rates do not hold for
cusp elements due to violation of the cone condition. In this section we will show results
supporting our claim that within this scheme cusp elements have no negative impact on the
convergence rate of the discretization error.

This example treats a test problem with full regularity. The calculations are done on the
unit square with a parabola shaped sub-domain Ω(0) (see Figure 9).

.... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .....

y = x2

Γ0

Γ1

Γ2

Ω(0)

0

y = 0

x = 1

Figure 9. Parabola shaped sub-domain Ω(0) on the Unit
Square. The cusp in (0, 0) violates the cone condition.

We solve equation (22) with

K ≡ 1 on Ω(0). (31)

The exact solution is

pexact(x) = e(−||x−x0||
2) with x0 = (0.5, 0.5). (32)

f , g and J are chosen in accordance to the exact solution:

f = 2 e−||x−x0||
2

· (2 − ||x − x0||
2),

g = e(−||x−x0||
2) and

J = −2 e(−||x−x0||
2) · (x − x0).
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Figure 10. Discretization error measured in L2– and H1–norm (left) and their
convergence for h → 0 (right) for the Unfitted DG discretization of the model
problem on a domain with a cusp. The plots show the errors for a discretization

of −∇(K∇p) = f with the exact solution e−(x−x0)2 and Dirichlet boundary
conditions, using the OBB scheme. Similar results are obtained for Neumann

boundary conditions and for the NIPG and SIPG scheme.

Two different sets of boundary conditions are used:

1. only Dirichlet boundary conditions

ΓD = ∂Ω(0) = Γ0 + Γ1 + Γ2, (33)

2. Neumann boundary conditions on the curved and on the lower boundary and Dirichlet
boundary conditions on the right boundary

ΓN = Γ0 + Γ1 and ΓD = Γ2. (34)

The local triangulation of the elements E
(0)
n is implemented using the algorithm for

analytically described domains, see section 3.4.1. Iso-parametric elements with second order
transformations are used, which allows the shape of Ω(0) to be resolved exactly.

Figure 10 shows the L2– and H1–error and their convergence for h → 0 for Dirichlet
boundary conditions. The graph on the right shows the experimental order of convergence

EOCh =
log(Errh/Errh

2
)

log(2)
, (35)

with Errh being the error for the mesh size h. The calculations are done for trial functions of
polynomial degrees 2–5, with the scheme introduced by Oden, Babušky and Baumann in [23]
(ǫ = 1, σ = 0). Although the cone condition is not fulfilled in the sub-domain Ω(0) (Figure 9),
an optimal h–convergence rate in the H1–norm is obtained. The h–convergence in the L2-norm
also exhibits the predicted behavior O(hk+1) for k odd and O(hk) for k even.

For Neumann boundary conditions similar results are obtained. Also the Symmetric (ǫ = −1,
σ > 0) and the Non–Symmetric (ǫ = 1, σ > 0) Interior Penalty method show optimal
convergence rates.
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14 P. BASTIAN, C. ENGWER

4.3. Potential driven flux with obstacles

The next example investigates a setup where no analytic solution can be given. On the unit
square Dirichlet boundary conditions are imposed on the left and right hand boundary and
Neumann boundary conditions on the top and bottom boundary. f and g are chosen as

f = 0 and

g = 1 − x.

The result can be interpreted as flow through a channel driven by a conservative force. Given
an obstacle in the channel, ∇u · n = 0 on the surface, (Figure 11) no analytic solution can be
given.

u = 1 u = 0

∇u · n = 0

∇u · n = 0

0

y=1

x=1

Figure 11. Circular obstacle in a channel. Dirichlet boundary conditions let the pressure drop from left
to right, Neumann boundary conditions on the circle lead to pressure increase in front and pressure

drop behind the obstacle. No exact solution can be given.

In order to compute the EOC, a solution on a fine mesh with mesh width h̃ is used instead
of the exact solution:

EOCh/h̃ =
log(||uh − uh̃||/||uh

2
− uh̃||)

log(2)
. (36)

As in the previous subsection, the simulation uses the local triangulation as described in
3.4.1. The discretization uses the OBB scheme (ǫ = 1, σ = 0). Computations are carried out
for trial and test functions of polynomial degrees 2–5. Once the grid is sufficiently fine to give
a good approximation of the geometry, the predicted h–convergence rate in the L2– and the
H1–norm is observed, see Figure 12. For very coarse grids the convergence rate is a lower,
but extrapolating the error on fine grids back to h = L, one would still expect an error which
is bigger than the one obtained in the computation. Note that the coarse grid simulations
wouldn’t be possible using standard finite elements.

4.4. (Super-) Convergence of the discontinuities

Theoretical estimates of the convergence rate of the jumps in the solution along an internal
edge are shown in [26]. Furthermore, it is stated that for problems with sufficient regularity
super convergence of the jumps can be observed. Numerical examples are given.
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Figure 12. Discretization error measured in L2– and H1–norm (left) and their
convergence for h → 0 (right) for the Unfitted DG discretization of the model
problem on domain Figure 11. The reference solution is computed for h = L/256
and order 5. The plots show the expected convergence rates for a discretization

using the OBB scheme.

We define the norm L2 along an edge as

||f ||L2,e =

(
∫

γe

f2ds

)
1
2

(37)

and examine the jump in the solution

sup
e

||[ p ]||L2,e. (38)

Even for the first example, with violated cone condition, we can observe super convergence
in the jump.

4.5. Examples in R
2 and R

3

In this last section, computations in R
2 and R

3 are shown. For the local triangulation a different
algorithm than in the previous computations is used, outlined in section 3.4.2.

The domain Ω(0) is implicitly given by a scalar function, as it would be obtained through
post processing of image data. Instead of experimental data, an artificial structure is generated,
using a sphere-packing algorithm [27]. For the 2D computations Figure 15 shows the scalar
function, the described domain and a closeup of the resulting local triangulation. Notably the
image grid in this example is very fine, such that an appropriate reference solution can be
computed.

The boundary conditions are chosen similar to the setup in subsection 4.3: pressure boundary
conditions on the left and on the right boundary, no-flux Neumann boundary conditions else.
Simulations in two and three space dimensions are carried out.

For two dimensions Figure 16 shows the results for different polynomial degrees k and
different mesh sizes h.
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Figure 13. Although the cusp domain does not fulfill the cone property, super
convergence of supe ||[p]||L2,e is observed for a problem with sufficient regularity.
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Figure 14. For lower polynomial degrees, super convergence of supe ||[p]||L2,e can
also be observed for the example considered in section 4.3. For higher order ansatz
functions, the solution does not show enough regularity, thus super convergence

is not observed.

In order to compare the results the flux through the inflow boundary

jinflow =

∫

Γleft

∇p ds (39)

was evaluated. Figure 17 shows the flux through the inflow boundary, the approximative error
and the order of convergence for different polynomial degrees. The error was always computed
for a reference solution on a grid with h being half the size of the finest computation grid.
The domain is given on a grid with h = L/256. Since this problem does not show sufficient
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Figure 15. A scalar function (left) defines the geometry G. The sub-domain boundary Γ(i,j) is given
as the iso-surface of value 0.0, fundamental mesh T intersected with G gives the finite element mesh
(middle). Integration is done using a local triangulation based on the Marching Cube algorithm (right:

closeup upper left corner).

h = L/2 h = L/16 h = L/128

k = 2

k = 5

k = 7

Figure 16. Solution and iso-lines. Computations for different polynomial degrees
k and different mesh sizes h.
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regularity the convergence rate is limited, as it can be seen in the graphs (Figure 17).
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Figure 17. Flux through the inflow boundary (left), the approximative error (middle) and the order
of convergence (right). Insufficient regularity limits the convergence rate.

Figure 18 shows streamlines in two space dimensions. The main characteristics of the solution
are already visible on a rather coarse grid with higher order shape functions.

A similar setup was computed in three dimensions. A pressure gradient from left to right
was imposed on a unit cube domain. The domain was filled with 100 randomly distributed
spheres. Figure 19 shows the flow field through the domain for computations with h = L/8.
The flux through the inflow boundary was computed for different mesh sizes h. Notably the
quality of the solution depends on the resolution of the grid, but it can be chosen independent
of the structure. The fluxes converge quickly to a solution of about 0.7, already for very coarse
grids, which do not even fully resolve the geometry.

5. CONCLUSIONS

In this paper, we presented a new approach to simulations on complex shaped domains. It is
shown experimentally that optimal convergence rates for the error for a scalar elliptic problem

h = L/256 h = L/64 h = L/8
k = 2 k = 5 k = 7

Figure 18. Streamlines (computed using VTK) visualizing the results for
computations with different meshes and different polynomial degrees (left: k = 2,

h = L/256; middle: k = 5, h = L/64; right: k = 7, h = L/8).
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Figure 19. Potential driven flow computed on a 3D domain with internal obstacles (k = 2). Left:
the flux through the inflow boundary for simulations with different h. Middle: streamlines (computed
using VTK) visualizing the results. Right: closeup of the flow field close to the obstacles. The middle

and right picture show computations with h = L/8

are obtained. Furthermore super convergence of the discontinuities was observed.
The method offers a coarse discretization which takes small scale geometric properties

into account. The computational costs for the matrix assembling are similar to those of an
unstructured mesh. But as the fundamental mesh can be rather coarse, the resulting matrix
is small. Especially for a partition G given by image data the costs of assembling can be very
high, as they scale with the resolution of the image. The local triangulation algorithm for
implicitly given domains still leaves many options for improvements regarding the speed, in
particular using adaptive image grid for the representation of scalar function.

The construction of the local triangulation has less constraints than the mesh generation
process for an unstructured finite element mesh, thus the algorithm is simpler and more
efficient.

In order to take further benefit from this flexibility it will be necessary to incorporate local
adaptive refinement of the fundamental mesh. This is possible without loosing efficience, as
the method allows local refinement of a structured grid, using hanging nodes.

Future work will include application of this method to Discontinuous Galerkin discretizations
of other partial differential equations, including time dependent problems.
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