
Finite Elements (WS 2017) Exercise 2

Prof. Dr. Peter Bastian, Linus Seelinger Submission date: 13 Nov 2017

IWR, Universität Heidelberg

Exercise 1 Updating dune-npde

As we update the dune-npde module during the semester, you need to get the current state before
starting to solve a new programming exercise:

• Navigate to your dune-npde directory in a terminal

• Execute the commands

git stash
git pull
git stash pop

These git commands temporarily move your local changes to the stash, download the updates and
apply your changes to the new version again.

Note: In order to avoid merge conflicts during the update procedure, we highly recommend that you
do not modify files that belong to exercises that have not officially started yet.

(0 Points)

Exercise 2 Analytical solution of heterogeneous heat equation

Ω1Ω2

Ω3 Ω4

(0, 0)

(1, 1)

(−1,−1) (1,−1)

(−1, 1)

On a bounded two-dimensional domain (see picture above) the equation describing stationary heat
transfer should be solved:

∇ · (−λ∇u) = 0, ∀x ∈ Ω, mit Ω =
⋃

i=1,...,4

Ωi,

λ is a piecewise constant given by

λ =

{
λ1 x ∈ Ω1 ∪ Ω3

λ2 x ∈ Ω2 ∪ Ω4

.

1. Prove, that the following function in polar coordinates

pi(r, θ) = rδ(ai sin(δθ) + bi cos(δθ))

with constant coefficients ai, bi, δ ∈ R in Ω\(0, 0) is harmonical, that means ∆pi = 0 holds.

2. The function p : Ω→ R is piecewise defined by

p(r, θ)
∣∣
Ωi

= pi(r, θ), (i = 1 . . . 4).

Which conditions must be valid at the intersections between subdomains

Ω1

⋂
Ω2, Ω2

⋂
Ω3, Ω3

⋂
Ω4, Ω4

⋂
Ω1,

for p to fulfil the physical requirements of the conservation law of the heat transport?

3. (Bonus) Determine explicit (using Matlab, Maple, Mathematica or your own programm) the
coefficients ai, bi, δ for fixed δ = 0.5354409455.

(5 (+ 2) Points)

Exercise 3 Simulation of discrete spring system

In this exercise, the solution u ∈ R3(n+1) of the discrete energy functional will be determined numer-
ically.

The functional fulfills the inequality

J (n)(u) ≤ J (n)(v) ∀v ∈ U.

To find a minimum of the functional J (n)(u), the nonlinear algebraic equation

∇J (n)(u) = 0

should be solved.

It holds:

∂J(u)

∂(uk)l
= κk−1(‖uk − uk−1‖ − lk−1)

(uk)l − (uk−1)l
‖uk − uk−1‖

+ κk(‖uk+1 − uk‖ − lk)
(uk)l − (uk+1)l
‖uk+1 − uk‖

− (fk)l.

In dune-npde module in directory dune-npde/uebungen/uebung02 you can find a programm, which is
able to compute almost all steps which are necessary to solve the problem.

The nonlinear problem should be solved by an iterative scheme:

∂J(ui, ui−1)

∂(uk)l
= κk−1(‖ui−1

k −u
i−1
k−1‖−lk−1)

(uik)l − (uik−1)l

‖ui−1
k − ui−1

k−1‖
+κk(‖ui−1

k+1−u
i−1
k ‖−lk)

(uik)l − (uik+1)l

‖ui−1
k+1 − u

i−1
k ‖

−(fk)l.

The iterative scheme starts with an initial value u0 ∈ R3(n+1). In each iteration a linear problem to
determine ui must be solved. Only the functions assembleMatrix(..) and assembleRhs(..),
which assemble the matrix and the right hand side of the linear problem, need to be implemented
properly.

1. Complete the implementation and test it. The programm is configured with the file uebung02.ini.
The initial values correspond to a silicone-rubber fibre with a cross-section surface of 1 square
millimeter. The fibre was stretched to a lengt of 2.5 times the initial length.

2. Test your solution and extend the program in a way that:

• output contains y-coordinates of the spring-nodes

• determine the mean and minimum values of y-coordinates

3. (Bonus): Do NOT use any conditionals in the matrix-iterator loop, that means the instructions
which can create some jumps in compiled code (if, switch, ?:, std::max(..), etc.).

Hint: Use the function Dune::printmatrix for debugging. Use the DUNE documentation to find out what argu-
ments it receives. (As the first argument, you can simply put std::cout)

(10 (+ 3) Points)

