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Lecture

I Lecturer: Peter Bastian
Office: INF 205, room 1/401
email: peter.bastian@iwr.uni-heidelberg.de

I Lecture: Mi + Fr 9-11 SR C
Exercise: Tue 14-16 SR 11

I Lecture homepage:
https://conan.iwr.uni-heidelberg.de/teaching/

finiteelements_ws2021/

I Lecture notes available from the homepage

I Moodle page https:

//moodle.uni-heidelberg.de/course/view.php?id=10404

inscription should be possible without key

I Lecture will be recorded (writing and audio) and put on moodle

peter.bastian@iwr.uni-heidelberg.de
https://conan.iwr.uni-heidelberg.de/teaching/finiteelements_ws2021/
https://conan.iwr.uni-heidelberg.de/teaching/finiteelements_ws2021/
https://moodle.uni-heidelberg.de/course/view.php?id=10404
https://moodle.uni-heidelberg.de/course/view.php?id=10404


Excercises
I Excercises Tue 14-16 in SR 11 organized by Michal Tóth

Office: INF 205, room 01.224
email: michal.toth@iwr.uni-heidelberg.de

I Registration to excercises via MÜSLI system:
https://muesli.mathi.uni-heidelberg.de/lecture/view/1420

I There will be theoretical and practical excercises
I Practical excercises are important! They will be based on the

software DUNE: www.dune-project.org
You will need some UNIX environment (Linux/MacOS)

I Scheme:
I Exercises can be done in groups of 2. . . 3
I Exercise given out / handed in Monday evening
I Discussion of submitted exercises on Tuesday
I You self-grade your exercise: how many points is it worth?
I Random selection of presenting groups (a group may be selected

even if no member is present!)

I Exercises start Tue, October 26

michal.toth@iwr.uni-heidelberg.de
https://muesli.mathi.uni-heidelberg.de/lecture/view/1420
www.dune-project.org


Exam

I Written exam (Klausur) at the end of the semester

I Date: February 18, 2022

I Requirements:



If I had free wishes

I Be interactive! Ask questions!

I There are no dumb questions!

I Do not miss the practical excercises. Polish your C++ knowledge!
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Equations of Mathematical Physics

I Calculus was invented for (partial)
differential equations!

I E.g. to express conservation of mass,
momentum and energy in quantitative
form

I Famous examples are:
I Poisson (electrostatics, gravity) 1800
I Euler (inviscid flow) 1757
I Navier-Stokes (viscous flow) 1822/1845
I Maxwell (electrodynamics) 1864
I Einstein (general relativity 1915

I Solutions in practical situtation only with
modern (super) computers!

Poisson Euler

Navier Stokes

Maxwell Einstein



Modelling with Partial Differential Equations

I This is a numerics class, but . . .

I In order to judge whether a numerically computed solution is
reasonable, it is good to have an understanding of the underlying
application problem

I In the first part of the lecture we will look at deriving some models

I Let us look at some examples for motivation!



Gravitational Potential (Poisson Equation)
Find function Ψ(x) : Ω→ R, Ω = R3 such that:

∂x1x1Ψ(x) + ∂x2x2Ψ(x) + ∂x3x3Ψ(x) = ∇ · ∇Ψ(x) = ∆Ψ(x) = 4πGρ(x)

G : gravitational constant, ρ: mass density in kg/m3

Force acting on small point mass m at point x : F (x) = −m∇Ψ(x)



Star Formation

Cone nebula from http://www.spacetelescope.org/images/heic0206c/

http://www.spacetelescope.org/images/heic0206c/


Star Formation: Mathematical Model

Euler equations of gas dynamics:

∂tρ+∇ · (ρv) = 0 (mass conservation)

∂t(ρv) +∇ · (ρvvT + pI ) = −ρ∇Ψ (momentum conservation)

∂te +∇ · ((e + p)v) = −ρ∇Ψ · v (energy conservation)

∆Ψ = 4πGρ (gravitational potential)

Constitutive relation: p = (γ − 1)(e − ρ‖v‖2/2)

Plus the Poisson equation . . .

More elaborate model requires radiation transfer, better constitutive
relations, friction, . . .

Nonlinear system of partial differential equations



Star Formation: Numerical Simulation

(Diploma thesis of Marvin Tegeler, 2011)



Flow of an Incompressible Fluid

(Incompressible) Navier-Stokes Equations:

∇ · v = 0 (mass conservation)

∂tv +∇ · (vvT )− ν∆v +∇p = f (momentum conservation)

I ρ is independent of pressure

I No compression work, isothermal situation

I Pressure is independent variable

I Existence of solutions is Millenium Prize Problem (in 3d for
general data)



Von Karman Vortex Street

Re 20 (laminar)

Re 200 (periodic)

Re 1500 (turbulent)



Von Karman Vortex Street

Re 20

Re 200

Re 1500



Surface Flow
I Starting point: the incompressible Navier-Stokes equations

∂t(ρv) +∇ · (ρvvT )−∇ · σ(v , p) = ρf

∇ · (ρv) = 0

with v velocity, p pressure, ρ (const.) density, σ given by

σ(v , p) = 2µε(v)−pI (stress), ε(v) =
1

2
(∇v+(∇v)T ) (strain rate)

I Free surface, no breaking waves  time-dependent domain
w(x, t): surface vertical position

b(x): bottom vertical position

h(x, t) = w(x, t) − b(x): water depth

I Boundary conditions:
I No-slip boundary condition: v(x , t) = 0 (bottom, lateral sides)
I Navier slip condition v ·nb = 0, (nb× (σ(v , p)nb))×nb + β

‖nb‖3 v = 0

I No flow at free surface: v(x , t) · nw (x , t) = ∂w
∂t (x , t), w(x , t)

surface pos.



Shallow Surface Flow

I Extend of fluid domain much larger in horizontal than in vertical
direction

I a) ocean flow, b) and c) land surface flow

I Dimension reduction reduces computational work



Shallow Water Equations

∂t(ρh(x̂ , t)) +
2∑

j=1

∂j(ρh(x̂ , t)v̄j(x̂ , t)) = 0,

∂t(ρhv̄i ) +
2∑

j=1

∂j(ρhv̄i v̄j) + ρg
∂w

∂xi
(x̂ , t)h(x̂ , t)

− 2µ [(ε(x̂ ,w(x̂ , t), t)nw (x̂ , t))i + (ε(x̂ , b(x̂), t)nb(x̂))i ] = 0. (i = 1, 2)

I First-order hyberbolic system for water height h and vertically
averaged horizontal velocity v̄

v̄i (x1, x2, t) =
1

h(x1, x2, t)

w(x1,x2,t)∫
b(x1,x2)

vi (x1, x2, x3, t) dx3 i = 1, 2.

I Derived rigorously from Navier-Stokes under very few assumptions:

I v3 is very small  hydrostatic pressure assumption
I Velocities do not deviate much from their average  vivj ≈ v̄i v̄j
I No internal friction (but surface and bottom friction)



Models Derived from the Shallow Water Equations

I Model friction, e.g. (ε(x̂ , b(x̂), t)nb(x̂))i = αv̄i (Navier slip)

I One-dimensional shallow water equations: St. Venant equations
I Diffusive wave approximation

∂(ρh)

∂t
−∇ · (cdwρh2(x̂ , t)∇(h + b)) = 0.

I Momentum equation: keep only gravity and bottom friction
I Employ Navier slip condition
I Insert into mass conservation
I Nonlinear diffusion equation, other nonlinearities are used below

I Kinematic wave approximation

∂(ρh)

∂t
−∇ · (ckwρh2(x̂ , t)∇b(x̂)) = 0.

I In addition assume ∂iw ≈ ∂ib (no lake at rest . . . )
I Nonlinear first-order hyperbolic, similar to Burger’s equation



(Shallow) Subsurface Flow
I Flow in fully saturated porous medium (groundwater flow

equation):

∇ · v(x , t) = f (mass cons.), v(x , t) = −K (x)

µ
(∇p(x , t)− ρg) (Darcy)

K permeability, g gravity vector

I Can be derived from Stokes equations

I Confined aquifer: elliptic PDE
I Unconfined aquifer

I With capillary effects: two-phase flow, Richards equation
I Without capillary effects: Groundwater flow with free surface

I Groundwater flow with free surface and shallow water assumption:

∂t(φu)−∇ ·
(
K
%g

µ
h∇(h + b)

)
= f

φ porosity, b bathymmetry



Coupled Shallow Surface/Subsurface Flow

∂tws −∇ ·
(

1

n(x)

(ws − bs(x))α

‖∇ws‖1−γ ∇ws

)
= fs(x , t)− q(x ,ws ,wa)

φ∂t(min(wa, bs)− ba)−∇ · (k(x)(wa − ba)∇wa) = fa(x , t) + q(x ,ws ,wa)

I Unknown functions: ws surface water level, wa groundwater level

I n Manning’s number, 0 < α ≤ 2, 0 < γ ≤ 1

I wa < bs : unconfined aquifer, wa ≥ bs : confined aquifer
I Exchange term (infiltration - exfiltration)

q(x ,ws ,wa) = Li
max(ws − bs(x), 0)

C + max(ws − bs(x), 0)
max(ws−wa, 0)−Le max(wa−ws , 0)

Instantaneous transfer from surface to groundwater

I Can model rivers, lakes, surface flow, groundwater flow



Example: Surface Flow in Baden-Württemberg

Setup:

I Only surface flow model with n = 1, α = 1, γ = 1/2

I “Hydrologically conditioned” digital elevation model (DEM) from
Hydrosheds1 at 90m resolution

I 48002 cells

I Constant forcing average rainfall (2 liter per m2 and day)

1https://www.hydrosheds.org/

https://www.hydrosheds.org/


I Left: Hydrologically conditioned DEM from www.hydrosheds.org

I Right: Water height after 300 days with initial height 1m



I Left: flow velocity after 1 day, initial height 1m

I Middle: flow velocity after 100 days, initial height 1m

I Right: flow velocity after 300 days, initial height 1m



I Focus on Neckar river, water height

I 1m initial height, 1, 100, 300 days



The Parameter Problem
Such high fidelity models need many spatially distributed parameters:

I n, α, γ parameters in surface flow model
I depend on land cover

I φ,K porosity and permeability in groundwater flow
I difficult, permeability varies by orders of magnitude

I Li , Le in exchange terms
I difficult, interface free flow / porous medium difficult to model

I bs , ba bathymmetries
I bs needs to be “hydrologically conditioned”, ba much more

uncertain

I fs , fa precipitation, groundwater pumping
I precipitation available, but at coarse resolution

Data that can be used for parameter estimation:

I River levels and discharge

I Groundwater levels



Geothermal Power Plant
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Geothermal Power Plant: Mathematical Model

Coupled system for water flow and heat transport:

∂t(φρw ) +∇ · {ρwu} = f (mass conservation)

u =
k

µ
(∇p − ρwg) (Darcy’s law)

∂t(ceρeT ) +∇ · q = g (energy conservation)

q = cwρwuT − λ∇T (heat flux)

Nonlinearity: ρw (T ), ρe(T ), µ(T )

Permeability k(x) : 10−7 in well, 10−16 in plug

Space and time scales: R=15 km, rb=14 cm, flow speed 0.3 m/s in
well, power extraction: decades



Geothermal Power Plant: Results

Temperature after 30 years of operation



Geothermal Power Plant: Results

 7e+06

 7.5e+06

 8e+06

 8.5e+06

 9e+06

 9.5e+06

 1e+07

 1.05e+07

 1.1e+07

 1.15e+07

 1.2e+07

 0  2000  4000  6000  8000  10000  12000

E
xt

ra
ct

ed
 P

ow
er

 / 
W

at
t

Time / days

Extracted power over time



Bacterial Growth and Transport in Capillary Fringe

DFG Research Group 831 DyCap, Experiment by C. Haberer, Tübingen



Bacterial Growth and Transport in Capillary Fringe

Experiment by Daniel Jost, KIT, Karlsruhe



Reactive Multiphase Simulation

Unknowns: pressure, saturation, bacteria concentration, carbon
concentration, oxygen concentration
Simulation by Pavel Hron



Reactive Multiphase Simulation

Simulation by Pavel Hron



Reactive Multiphase Simulation

Simulation by Pavel Hron



Propagation of Electromagnetic Waves

(Macroscopic)Maxwell equations:

∇× E = −∂tB (Faraday)

∇× H = j + ∂tD (Ampère)

∇ · D = ρ (Gauß)

∇ · B = 0 (Gauß for magnetic field)

Constitutive relations:

D = ε0E + P (D: electric displacement field, P: polarization)

B = µ0(H + M) (H: magnetizing field, M: magnetization)

Linear, first-order hyperbolic system



Application: Geo-radar

Soil physics group Heidelberg Simulation: Jorrit Fahlke



Second Order Model Problems

I Poisson equation: gravity, electrostatics (elliptic type)

∆u = f in Ω

u = g on ΓD ⊆ ∂Ω

∇u · ν = j on ΓN =⊆ ∂Ω \ ΓD

I Heat equation (parabolic type)

∂tu −∆∇u = f in Ω× Σ, Σ = (t0, t0 + T )

u = u0 at t = t0

u = g on ∂Ω

I Wave equation (sound propagation) (hyperbolic type)

∂ttu −∆u = 0 in Ω



Second Order Model Problems

Solutions have different behavior

(parabolic) (hyperbolic)
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What is a Solution to a PDE?
Strong form: Consider the model problem

−∆u + u = f in Ω, ∇u · ν = 0 on ∂Ω

Assume u is a solution and v is an arbitrary (smooth) function, then∫
Ω

(−∆u + u)v dx =

∫
Ω
fv dx

⇔ −
∫

Ω
(∇ · ∇u)v dx +

∫
Ω
uv dx =

∫
Ω
fv dx

⇔
∫

Ω
∇u · ∇v dx −

∫
∂Ω

(∇u · ν)v dx +

∫
Ω
uv dx =

∫
Ω
fv dx

⇔
∫

Ω
∇u · ∇v + uv dx =

∫
Ω
fv dx

⇔ a(u, v) = l(v)

Weak form: Find u ∈ H1(Ω) s. t. a(u, v) = l(v) for all v ∈ H1(Ω).



The Finite Element (FE) Method
Idea: Construct finite-dimensional subspace U ⊂ H1(Ω)

Partition domain Ω into “elements” ti :

0 1t1 t2 t3
Ω = (0, 1), Th = {t1, t2, t3}

Construct function from piecewise polynomials, e.g. linears:

0 1

Uh = {u ∈ C 0(Ω) : u|ti is linear }

Insert in weak form: Uh = span{φ1, . . . , φN}, uh =
∑N

j=1 xjφj , then

uh ∈ Uh : a(uh, φi ) = l(φi ), i = 1, . . . ,N ⇔ Ax = b
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Challenges for PDE Software

I Many different PDE applications
I Multi-physics
I Multi-scale
I Inverse modeling: parameter estimation, optimal control

I Many different numerical solution methods, e.g. FE/FV
I No single method to solve all equations!
I Different mesh types: mesh generation, mesh refinement
I Higher-order approximations (polynomial degree)
I Error control and adaptive mesh/degree refinement
I Iterative solution of (non-)linear algebraic equations

I High-performance Computing
I Single core performance: Often bandwidth limited
I Parallelization through domain decomposition
I Robustness w.r.t. to mesh size, model parameters, processors
I Dynamic load balancing in case of adaptive refinement



DUNE Software Framework

Distributed and Unified Numerics Environment

Domain specific abstractions for the
numerical solution of PDEs with grid based methods.

Goals:

I Flexibility: Meshes, discretizations, adaptivity, solvers.

I Efficiency: Pay only for functionality you need.

I Parallelization.

I Reuse of existing code.

I Enable team work through standardized interfaces.



Trends in Computer Architecture

Moore’s law Supercomputer performance (GFLOPs/s)
Nature, 530 (2016), pp. 144-147 https://commons.wikimedia.org/w/index.php?curid=33540287

I Power wall
I Power consumption is limiting factor for exascale computing
I Clock rate stagnates but Moore’s law is still valid

I Memory wall
I Bandwidth not sufficient to sustain peak performance

I ILP wall
I Revival of vectorization in form of SIMD instructions



Efficient Algorithms are Key

I Solution of large sparse algebraic systems F (z) = 0

I Consider linear case Ax = b, A ∈ RN×N :
I Non-sparse Gauß elimination: O(N3)

I Sparse Gauß elimination: O
(
N

3(d−1)
d

)
I Multigrid: O(N)

N Gauß elimination 2
3N

3 multigrid 1000N

1000 0,66 s 0,001 s
10000 660 s 0,01 s

100000 7,6 days 0,1 s
106 21 years 1 s
107 21.000 years 10 s

Run-time @ 1 GFLOPs/s



AMG Weak Scaling Results

I AAMG in DUNE is Ph. D. work of Markus Blatt

I BlueGene/P at Jülich Supercomputing Center

I P · 803 degrees of freedom (51203 finest mesh), CCFV

I Poisson problem, 10−8 reduction

I AMG used as preconditioner in BiCGStab (2 V-Cycles!)

procs 1/h lev. TB TS It TIt TT

1 80 5 19.86 31.91 8 3.989 51.77
8 160 6 27.7 46.4 10 4.64 74.2

64 320 7 74.1 49.3 10 4.93 123
512 640 8 76.91 60.2 12 5.017 137.1

4096 1280 10 81.31 64.45 13 4.958 145.8
32768 2560 11 92.75 65.55 13 5.042 158.3

262144 5120 12 188.5 67.66 13 5.205 256.2



Note: Lecture on Friday, October 22 will be given by Michal Tóth!
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