Note: Do not forget to update your dune installation as described in exercise sheet 2.

Exercise 1 Inverse error estimate for finite elements

This exercise is about proving a generalization of Proposition 8.12 (Inverse Estimate) from the lecture notes. Let $\{\mathcal{T}_{\nu}\}$ be a family of affine and shape regular triangulations of domain Ω with corresponding finite element spaces $P_k(\mathcal{T}_{\nu})$, and h_{ν} be the length of the shortest edge from the set of longest edges of simplices of \mathcal{T}_{ν} .

Prove, that there exists a constant c (independent of h_{ν} , but depending on k, l, m, grid regularity, dimension, etc.) such that

 $|v_h|_{l,\Omega} \le c \, h_{\nu}^{m-l} |v_h|_{m,\Omega} \quad \forall v_h \in P_k(\mathcal{T}_{\nu})$

for any integers $0 \le m < l$.

This is an inverse error estimate, meaning that the higher order seminorm is estimated by the lower order seminorm. Such estimates can be made only on finite-dimensional spaces (like P_k). You can use the claim that norms on these spaces are equivalent, i.e.

$$\|w_h\|_{L\hat{T}} \le c \|w_h\|_{m\hat{T}} \quad \forall w_h \in P_k(\hat{T})$$

with *c* depending on *k*, *m*, *l* and \hat{T} , where \hat{T} is the reference element.

Another theorem you might find useful is Bramble-Hilbert lemma.

(6 Points)

In *uebungen/uebung11* of your *dune-npde* module you can find a program that solves a convectiondiffusion problem

$$-\nabla \cdot (k(x)\nabla u) + a(x) \cdot \nabla u = 0 \qquad x \in \Omega$$
$$u(x) = g(x), \quad x \in \partial \Omega_D$$
$$(a(x) - k(x)\nabla u) \cdot n = j(x), \quad x \in \partial \Omega_N$$

using Q^1 and Q^2 finite elements on domain $\Omega = [0, 2] \times [0, 2] \subset \mathbb{R}^2$.

- 1. The main difference of this program compared to previous ones is that it implements its own *LocalOperator* in *convectiondiffusion.hh*, instead of using a predefined one. Figure out how the *LocalOperator* retrieves the parameters of the PDE it represents. Also, write down the numerical integrations it performs and check if it matches what you expect from the bilinear form.
- 2. First of all we will solve only a diffusion problem $(a(x) = \vec{0})$ with boundary conditions

u = 1 for $x_1 = 0$, u = -1 for $x_1 = 2$, (Dirichlet on the left and on the right side) $\nabla u \cdot n = 0$ otherwise.

The permeability field is heterogeneous. In the program we used permeability field K_a . Your task is to implement permeability field K_b , see picture.

- 3. Have a look at the function *flux* (you can find it in the file *utilities.hh*). What does the function compute?
- 4. Compare the results of *flux* function for K_a and K_b with coefficients $k_1 = 3.10^{-4}$, $k_2 = 10^{-1}$ for different refinement level and polynomial degrees. Does it converge to some value?
- 5. Now we will add advection. Set $a = (1,0)^T$ (parameter *convection* = 1 in *uebung11.ini* and $k_1 = k_2 = 10^{-3}$. What do you observe in the solution for different grid refinements? Can you explain these phenomena?

(10 Points)