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Exercise Sheet 6

Exercise 1: C++ Quiz (5 points)
Here are some additional questions from https://cppquiz.org for you to answer:

Question 1: https://cppquiz.org/quiz/question/162 (unqualified name lookup)

Question 2: https://cppquiz.org/quiz/question/44 (dynamic polymorphism)

Question 3: https://cppquiz.org/quiz/question/29 (virtual during con-/destruction)

Question 4: https://cppquiz.org/quiz/question/224 (abstract base classes)

Question 5: https://cppquiz.org/quiz/question/133 (diamond pattern)

Question 1 is about name lookup rules, and questions 2 to 5 have a look at dynamic polymorphism,
virtual methods, and virtual inheritance. Do the results match with your expectations? Discuss.

Exercise 2: Interfaces: Integration (20 points)
In the lecture the concept of interfaces was introduced, using virtual methods and abstract base
classes. This exercise considers numerical integration as an example application.

The goal is to write a code library that allows, via numerical integration, to determine the integral of
an arbitrary function f(t) on a given interval t ∈ [A,B] (A,B ∈ R). The interval [A,B] is divided in
N subintervals of uniform length ∆t.

∆t = B −A
N

, ti = A+ ∆t · i, i = 0, . . . , N

On each of the subintervals the integral can be estimated using an appropriate quadrature rule.
Summing up these estimates produces a composite quadrature rule:

B∫
A

f(t)dt =
N−1∑
i=0

(
Q
ti+1
ti (f) + E

ti+1
ti (f)

)

Here Qba refers to the result of the quadrature rule on the interval [a, b] and Eba to the error. Quadrature
rules are normally based on polynomial interpolation. This means it is possible to specify the maximum
degree of polynomials that are integrated exactly and the order of the error in the case of functions
that can’t be integrated exactly.

In this exercise, we want to limit ourselves to two quadrature rules:

• The trapezoidal rule:
QTrapez

b
a
(f) = b− a

2 (f(a) + f(b))

It is exact for polynomials up to first order, and the error of the resulting composite rule is
O(∆t2).

• The Simpson rule:

QSimpson
b
a
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6 ·
(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
It is exact for polynomials up to degree two, and the error of the resulting composite rule is
O(∆t4).
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A good test for such a numerical integration is to study the order of convergence. For a problem with
a known solution, calculate the error EN for N subintervals and for 2N subintervals. Doubling the
number of subintervals cuts the interval width ∆t in half, reducing the error. The quotient

EOC = log(EN/E2N )
log(2)

is an indication of the order of convergence of the error (e.g., for the trapezoidal rule you should
observe order 2).

(a) Design interfaces for the different concepts. To this end, proceed as follows:

• First, identify the abstract concepts in our problem.

– We want to evaluate integrals of various functions; so we have the function as an abstract
concept.

– An integral is represented as a sum of integrals of subintervals.

– On each subinterval a suitable quadrature formula is applied.

– The quadrature formula evaluates the function to be integrated at certain points in order
to determine an approximate solution.

– A composite quadrature rule sums the results.

– A suitable test problem would contain

∗ a function to integrate

∗ a choice of quadrature rule and composite rule

∗ the interval bounds

∗ the true resulting integral value

• How are these abstract concepts mapped to interfaces? Usually, one introduces a base class
as an interface description for each concept.

– What is a suitable interface for a function?

– A quadrature rule evaluates a function on a given interval, how would a suitable virtual
method look like?

– Each quadrature rule can also report the degree of exactly integrable polynomials, and
report the order of convergence of the integration error that results.

– The actual integration (i.e., composite quadrature rule) is parameterized with a quadra-
ture rule and a function. It evaluates the integral of the function on an interval that has
to be specified, dividing the interval into N subintervals. In addition, the quadrature
formula that is to be used must be specified.

– Apart from the equidistant composite quadrature used here, there may be other ap-
proaches (see second exercise). In anticipation of extensions, also introduce the abstract
concept of a composite quadrature rule, although right now there is only one actual
implementation.

– What would be a suitable interface for test problems?

(b) Describe your interfaces and explain the design decisions. What are the reasons for your specific
choice of interfaces?

(c) Implement the interfaces using abstract base classes and dynamic polymorphism. Write imple-
mentations for all of the above variants of abstract concepts (trapezoidal rule, Simpson’s rule,
equidistant composite rule). Your functions and classes should be as general as possible, i.e., use
interface classes for arguments and return values. Make use of the best practices introduced in
the lecture.
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(d) Test your implementation with the integration of 2t2 + 5 on the interval [−3, 13] and t
π sin(t) on

the interval [0, 2π]. To do this, implement appropriate test problems for each combination of test
function and quadrature rule. Write a free function that expects a test problem and a number of
steps to perform, and then

• reports the true integral value and expected convergence order

• starts with one big interval without subdivisions

• doubles the number of subintervals after each step

• applies the composite rule in each step

• reports in each step:

– the current estimated value

– the resulting error

– the estimated order of convergence (EOC)

– the deviation from the expected order

Discuss the results.

Exercise 3: Adaptive Integration (10 points (bonus))
An improvement over the integration using equidistant intervals is adaptive integration. Here one tries
to only use small intervals ∆t where the error is actually large.

If you are in need of additional points or not challenged enough ;-), you may write a class for adaptive
integration that complements the equidistant one from the previous exercise. This new version should
use the same interface for functions and quadrature rules and fit into the test infrastructure you have
written.

One can estimate the error in one of the subintervals by comparing the result of quadrature with the
result of an interval that has been refined once, i.e., the local error is estimated through hierarchical
refinement. The goal is to have the “error density”, i.e., error per unit length of interval, to be about
the same in all subintervals. Subintervals with large errors are divided again, iteratively or recursively.
One starts with a small number of subintervals and repeats the error estimation and refinement until
the desired number of subintervals is reached.

To avoid having to constantly reevaluate the integrals of the individual subintervals, it is helpful to
store the subintervals, integrals and estimated errors in appropriate data structures: note that the
refinement used to estimate the local error will immediately become part of the set of subintervals
if this error proves to be large. The containers of the C++ Standard Library, e.g., std::map and
std::deque, might prove useful. The same holds for function evaluations: note that one half resp.
one third of the function evaluations in the previous exercise were actually unnecessary and quite
wasteful, because interval bounds were generally evaluated twice.

You are free to design more or less efficient algorithms for the local error estimation and for deciding
which intervals should be bisected and in which order. Your primary concern is a program that
produces good approximations w.r.t. the number of intervals used, thoughts about runtime efficiency
are a good idea but not mandatory.

The points of this exercise don’t count towards the total number of points that can be achieved during
the semester. Consequently, you can do this exercise instead of another one later on or in addition to
the other exercises to achieve a higher point percentage.


