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Exercise Sheet 7

Exercise 1: Template Metaprogramming: Number Sequences (10 points)
Template metaprogramming might be an unusual programming technique, but it is Turing complete:
this can be shown by simply implementing a Turing machine in C++ templates (you can find some
online if you are interested). This shows that anything you can write as a normal program could,
at least in principle, be achieved using template metaprogramming (see Church-Turing conjecture1).
The main obstacles are the finite amount of recursive template levels the compiler allows, the fact
that dynamic interaction with the user is impossible, the fact that floating-point numbers can’t be
template parameters, and of course the slightly awkward way things have to be written. The only
way to provide some form of user input is through preprocessor macros, since the usual command line
arguments and queries using std::cin are not known at compile time.

Solve the following two tasks with template metaprogramming:

(a) Fibonacci Numbers.Write both a template metaprogram and a normal function that compute
the k-th element of the Fibonacci sequence for given k ∈ N:

ak :=


1 for k = 0
1 for k = 1
ak−2 + ak−1 else

Base your two implementations on the mathematical definition above, i.e., directly implement
the given recursion formula. Then write a main function that calls both versions for the argument
“INDEX”, and prints the results. Here, INDEX is a preprocessor macro, which we use instead of
command line arguments or user input to control which index k is used. You may define this
index during the compilation process, e.g., for GCC:

1 g++ -D INDEX=<your value> -o main main.cc

Remember that you have to recompile your program if you want to change this index.

Measure both the compilation time and runtime of your program from k = 5 to k = 50 in
steps of 5 (under Linux you can use the “time” command for this task). What do you observe?
Plot both times over the index k and discuss your observations. What is the explanation for
the asymptotics? There are significantly faster algorithms for the computation of Fibonacci
numbers2. Would you suggest using one of these other algorithms for the template metaprogram,
the function, or both?

(b) Prime Numbers. Write a second template metaprogram that prints the N -th prime number.
Remember that a prime number is a natural number larger than one, that is only divisible by
one and itself. Here are some steps that you may follow in your implementation:

• Start with a struct is_prime<int P> that exports a const static bool that is true for
prime numbers and false for all other numbers. A simple implementation uses the signature

1 template<int P, int K = P - 1> struct is_prime;

that checks whether P is not divisible by any number smaller or equal to K (except for
one, of course). A recursive definition of this function is straight-forward, using the modulo
operator and simple Boolean algebra. The default case then provides the desired struct.

1https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
2https://www.nayuki.io/page/fast-fibonacci-algorithms

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://www.nayuki.io/page/fast-fibonacci-algorithms


Object-Oriented Programming Exercise Sheet 7, 14.12.2021 Page 2 / 3

• Then write a second struct next_prime<int N> that exports the smallest prime P with
P ≥ N . If N is prime, then this is simply N itself, else we can use recursion again by exporting
the smallest prime P with P ≥ (N + 1). Why is this recursion guaranteed to terminate?
The recursion needs to branch on whether N itself is prime or not, but both conditionals
(if/else) and the ternary operator (X ? Y : Z) would always instantiate the next recursion
level, whether X is true or false, leading to infinite recursion. From C++17 onwards one could
use the constexpr if construct to only instantiate one of the two branches, thereby solving
the problem, but your code should be valid C++98/03. Once again, this can be solved with
a slightly extended signature:

1 template<int P, bool B = is_prime<P>::value> struct next_prime;

How can you use this second (auto-evaluated) parameter to get the desired branching beha-
vior?

• Finally, write a struct prime<int N> that exports the N -th prime number, making use of
the other structs you have defined. This definition is also recursive. What is the base case?
How can you compute the correct prime number for all the other cases recursively?

Use the aforementioned preprocessor macro trick to evaluate your template metaprogram for
different values of N , and check that the right sequence is created.

Exercise 2: Matrices: An Application of SFINAE (10 points)
One of the major drawbacks of class template specializations is the need to reimplement the whole class
template, even if only a single method has to be modified. This leads to significant code duplication,
especially for classes that provide a large number of methods, and inconsistencies between the different
specializations may occur after some time if updates aren’t copied to all the different specializations.

SFINAE can be used to solve this issue: there is no explicit specialization of the class template, instead
there are simply two (or more) different versions of the one method that needs to be changed, with
exactly one of them being instantiable for any parameterization of the class template. This technique
can be used for both normal methods and methods that are function templates themselves: if the
method is a template, then it simply gains an additional template parameter for the std::enable_if,
and if it is an ordinary function it becomes a template with a single parameter instead.

(a) Apply SFINAE to the print() method of your matrix implementation. As discussed in a
previous exercise, the default implementation is only correct if the elements of a given matrix
are actual numbers, and doesn’t work anymore if the matrix is actually a block matrix, i.e., a
matrix with entries that are themselves matrices. Instead of redefining the whole matrix class
for such cases, introduce two versions of the print() method, one that is instantiated when the
entries are scalars, and one that is instantiated when the entries are matrices.

You can reuse the function bodies if you have completed the previous exercise, else you will have
to implement one of them. To determine whether a given matrix is a block matrix or not, check
the following properties of the entries:

• Does the type of the entries export a number of rows? (You may have to introduce a public
enum in your matrix class to make this available if you haven’t already done so.)

• Does the type of the entries export a number of columns? (With an enum as above.)

You may assume that anything exporting these two constants is actually a matrix (and not,
say, a higher-dimensional tensor or similar). Make sure that exactly one of the conditions in the
std::enable_if clauses is true for any potential entry data type.

(b) Assume for a moment that there are both matrix classes with public enums as above, and
matrices that make the number of rows / columns available via methods (which is what a matrix
implementation with dynamic size would do). How would your SFINAE have to change if it
should work with

• normal entries such as numbers (double, int, . . . )
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• matrices that export enums as treated by your implementation

• matrices that provide this information via methods instead

You don’t have to actually implement the functionality needed for the checks: assume that all
required structs are already provided, and write down what the signatures of the three imple-
mentations would look like.

(c) SFINAE can also be used to provide two or more competing (essentially non-specialized) tem-
plates, which can eliminate the need for several different function overloads. Consider the multi-
plication operators, there are usually three different types:

• with a scalar

• with a vector

• with another matrix

The first two of these have already been implemented: for concrete types, or as templates para-
meterized by container types. However, the code for these three types of multiplication is usually
quite generic, and would work the same way for several different types of scalars, vectors, and
matrices. This makes the implementation via completely abstract function templates attractive,
i.e., with the type of the second argument as template parameter. The problem: all three types
of multiplication would have the same function signature.

Use SFINAE to work around this problem:

• The existence resp. nonexistence of which methods can be used to characterize scalars,
vectors, and matrices?

• Provide traits classes is_vector<T> and is_matrix<T> that can detect whether a given
type matches the vector resp. matrix interface.

• Implement all three types of multiplication as free function templates, parameterized by the
type of the second argument, and use SFINAE to select the correct template version for a
given type of operand.

Modify one of your existing test cases to make sure that your SFINAE construct works and picks
the right template in each case.


