
Object-Oriented Programming for Scientific Computing WS21/22 Exercise Sheet 9
Dr. Ole Klein, Stefan Meggendorfer Submission date 11.01.2022
IWR, Heidelberg University

Exercise Sheet 9

Exercise 1: Lambda Expressions for Integration (10 points)

Introduced in C++11, lambda expressions are a very convenient way to define function objects (func-
tors). We will have a second look at numerical integration, so that you can decide for yourself whether
using lambdas makes the resulting code more readable or not.

In a previous exercise you had to implement several functors to write a program for numerical inte-
gration (quadrature):

• scalar real functions (polynomials and trigonometric functions)

• quadrature rules (trapezoidal rule and Simpson’s rule)

• composite rules (only the equidistant one in our case)

• . . .

Each of these functors was derived from some abstract base class that defined its interface.

Your task is the modification of the program you already have, so that it uses lambda expressions
instead of the classes you created (or to write the program from scratch if you skipped that exercise).
Proceed as follows:

(a) Remove all abstract base classes. Lambda expressions introduce anonymous auto-generated
classes that are not derived from anything1, so these base classes become irrelevant. The usual
replacement for these abstract base classes would be templates, to model the polymorphism at
compile-time. However, you need to pass lambdas as arguments to lambdas, i.e., these lambda
expressions themselves would need to be templates. This isn’t possible in C++11, since a lambda
expression defines a functor class, not a functor class template, and the type of function arguments
is therefore fixed. C++14 introduces generic lambdas, as we will see, but for now another solution
has to be used.

(b) C++11 provides a class template called std::function (in header <functional>). This tem-
plate is an instance of type erasure: you can assign any type of function or function object to
it, and it will forward the function calls to it, while its type is independent of the exact type
of its contents. This means you can capture lambdas in std::function objects and ignore the
fact that each lambda defines its own type. Inform yourself how this class is used and what its
drawbacks are2.

(c) Replace each functor object with an equivalent lambda expression, using std::function whe-
rever you have to pass a lambda to another lambda. Note how the std::function argument
serves as documentation of the expected function interface. Wherever appropriate, capture local
variables instead of handing them over as arguments, and make sure that the right capture type
is used (by-value vs. by-reference).

(d) Run the test problems as described in the previous exercise, and make sure that your new
version produces the same results. Use the time command to compare the compile time for the
two versions, as well as the runtime for a large number of subintervals. Which version is faster,
if any, and which is easier to read resp. implement? Discuss.

1https://en.cppreference.com/w/cpp/language/lambda
2https://en.cppreference.com/w/cpp/utility/functional/function

https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/utility/functional/function


Object-Oriented Programming Exercise Sheet 9, 11.01.2022 Page 2 / 2

Exercise 2: Variadic Templates: Type-Safe Printing (10 points)
The concept of variadic functions is nothing new: C has them as well, e.g., the printf function that
creates formatted output. However, these C-style variadic functions3 have two drawbacks:

• They need special macros, like va_start, va_arg, va_end, etc., which are not very intuitive to
use and incur a certain runtime cost.

• They are not type-safe, since there is no way to know what data types are going to be passed as
arguments.

Variadic functions based on the variadic templates introduced in C++11, however, have full access
to the type information of their arguments. Use this to write a flexible print() function:

(a) Start by writing several variants of this function for a single argument, using a combination of,
e.g., SFINAE and simple function overloads:

• Any class that has a print() method should be printed by simply calling this method.
Create a simple numerical vector class with such a method that prints its components as
comma-separated values enclosed by brackets, e.g., [2.72,3.12,6.59], and test your func-
tion with it. There is no need to implement any of the usual methods of vector classes, just
an appropriate constructor and the print() method.

• Strings (std::string) and string literals (const char*) should be placed between quotation
marks (you can ignore the fact that internal quotation marks in the strings would have to
be escaped in practice).

• Floating-point numbers should be printed with six-digit precision in scientific notation. Use
the appropriate I/O manipulator4 and the precision() method of the stream object, and
don’t forget to restore the original precision after printing.

• Any other single argument should simply be printed by passing it to std::cout.

(b) Write a variadic print() function that is able to print an arbitrary number of arguments using
the rules above. Base your implementation on the single-argument versions you have already
produced, and note that the order of function definitions is important. Test your function with
some sequences of mixed arguments. There is no need to specify any types, like you would for
printf: the compiler can deduce those types from the function argument. Note that this also
means that there is no way to accidentally specify the wrong type, of course.

3https://en.cppreference.com/w/cpp/utility/variadic
4https://en.cppreference.com/w/cpp/io/manip

https://en.cppreference.com/w/cpp/utility/variadic
https://en.cppreference.com/w/cpp/io/manip

