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Exercise 1 The parallel Richardson iteration

We want to solve the linear system Ax = b with the Richardson iteration

x(k+1) = x(k) + ω(b−Ax(k)).

LetA be the stiffness matrix coming from the discretization of the Poisson equation on the unitsquare
with P1 Finite Elements. We use a structured simplicial mesh with N = n2 degrees of freedom.

To accelerate the computational time we want to do the iteration in parallel with p processors. There-
fore we subdivide the unitsquare into p smaller squares and the degrees of freedom are distributed
accordingly. With this partitioning we assume that p is a square number such that every processor
has (n/

√
p)2 degrees of freedom. The index set of the degrees of freedom is denoted by I , the index

set of the i-th processor by Ii. Every processor stores the entries of x(k) corresponding to its degrees
of freedom and relevant rows of A.

One iteration of the parallel Richardson iteration consists of the following steps:

• Communication of required entries of x(k) from the neighbouring processors.

• Calculation of x(k+1).

1. Describe the index sets Ii and specify which entries of x(k) the processor i has to communicate
with which processor.

2. The computation time for an arbitrary arithmetic operation (addition, subtraction or multipli-
cation) is denoted by top, the time needed for sending one byte to another processor by tbyte
and the time needed to set up a message to another processor is denoted by tmsg.

Derive a formula for the total computational time of one iteration with p processors. The entries
of x(k) are stored in double precision such that every entry requires 8 byte of memory.

The formula has to be only asymptotically correct. The matrix rows of the nodes next to the
boundary which have less entries can be considered as interiour nodes.

3. Present the speedup of the parallel iteration in a table using the following parameters:

top = 2 ns
tbyte = 20 ns

tmsg = 5000 ns
n ∈ {1024, 4096}
p ∈ {1, 4, 16, 256, 4096}

( 12 Points )



Exercise 2 Domain decomposition

In the lecture you have learned the following theorem:
Let Ω ⊂ Rd be Lipschitz domain (open, bounded and connected) and let f ∈ L2(Ω). Then the Poisson
problem

−∆u(x) = f(x) ∀x ∈ Ω

u(x) = 0 ∀x ∈ ∂Ω
(1)

is equivalent to the solution of the two subproblems

−∆u1(x) = f(x) ∀x ∈ Ω1

u1(x) = 0 ∀x ∈ ∂Ω1 \ Γ

u1(x) = u2(x) ∀x ∈ Γ

∂u1(x)

∂n1
= −∂u2(x)

∂n2
∀x ∈ Γ

−∆u2(x) = f(x) ∀x ∈ Ω2

u2(x) = 0 ∀x ∈ ∂Ω2 \ Γ

(2)

with the non-overlapping decomposition

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ = ∂Ω1 ∩ ∂Ω2, µ(∂Ωi) > 0,

such that the ∂Ωi are Lipschitz continuous.

The theory for the Poisson equation can be formulated for right-hand sides f ∈ H−1(Ω) as well. But
for the general assumption f ∈ H−1(Ω), the equivalence (1)⇔ (2) does not hold. To see this we are
going to consider the following counter example in one dimension for Ω = (−1, 1):

−∆u(x) = −2δ(x) in Ω

u(−1) = u(1) = 0

where δ(x) denotes the Dirac delta function.

1. Find the unique weak solution u ∈ H1(Ω).

2. What are the transmission conditions of u(x) on Γ? Compare them to the transmissions condi-
tions given in (2).

3. What changes in the derivation for the transmission conditions if we take again a right-hand
side f ∈ L2(Ω)? Hint: Cauchy-Schwarz inequality.

( 8 Points )



Exercise 3 Parall Computation of L2-Norm using DUNE

The code in the program uebung03/uebung03.cc computes the solution to a PDE and computes
its L2-Norm by numerical integration. Your task is to extend it to work correctly in parallel.

Parallelism in DUNE is achieved using the MPI communication framework. This provides a way to
launch multiple instances of a program as well as providing means for communication of arbitrary
data between the instances. The same abstract MPI interface works on your own computer as well
as modern supercomputers.

You can run the program in parallel by calling

mpirun -np 4 ./uebung03

where you can specify an arbitrary number of processes after -np.

Have a look at the vtk output, in particular try to find out how subdomains are arranged for different
numbers of processes.

The two main points that require work are to make sure that each process only integrates over its
own subdomain, excluding overlap, as well as making sure the results of all processes are summed
up correctly.

Summing up a value over multiple processe requires communication. This can be done directly using
MPI; it is however easier to make use of existing DUNE infrastructure which wraps MPI functionality
in a way convenient for our purposes.

You can test your modifications by trying increasing overlap or increasing numbers of subdomains;
this should expose any errors in your code. Conversely, setting overlap 0 and running only one
process should always give you the correct value.

( 4 Points )


