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Interdisziplinäres Zentrum für Wissenschaftliches Rechnen
Universität Heidelberg, Im Neuenheimer Feld 368

D-69120 Heidelberg, Germany



ii



Contents

1 Introduction 1

2 Installation 5
2.1 Choosing a target directory and extracting the source code . . 5
2.2 Setting up the UG environment . . . . . . . . . . . . . . . . 5
2.3 Configuring UG . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Supported architectures and compilers . . . . . . . . . . . . 7
2.3.2 More configuration . . . . . . . . . . . . . . . . . . . . . . . 9
The DIM option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The IF option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The GUI option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
The MODEL option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
The CHACO option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The DEBUG MODE option . . . . . . . . . . . . . . . . . . . . . . . . . 11
The OPTIM MODE option . . . . . . . . . . . . . . . . . . . . . . . . . 11
The DOM MODULE option . . . . . . . . . . . . . . . . . . . . . . . . . 11
The GRAPE option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The COVISE option . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The NETGEN option . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Compiling UG . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 UG command line tools . . . . . . . . . . . . . . . . . . . . 12
ugclean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ugconf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
uggrep, uggrepc, uggreph . . . . . . . . . . . . . . . . . . . . . . . . 13
ugmake, ugpmake . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ugman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
ugrun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 UG on the Macintosh . . . . . . . . . . . . . . . . . . . . . 14
2.7 How to get UG . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Using a UG application 17
3.1 Compiling the tutorial application . . . . . . . . . . . . . . . 17
3.2 A first example . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 A sample script file . . . . . . . . . . . . . . . . . . . . . . 21
3.4 2D flow and transport problem . . . . . . . . . . . . . . . . 27
3.5 3D flow and transport problem . . . . . . . . . . . . . . . . 28
3.6 A parallel example . . . . . . . . . . . . . . . . . . . . . . . 29

iii



iv Contents

4 Basic data types 33
4.1 Unstructured mesh data structure . . . . . . . . . . . . . . . 33
4.1.1 MULTIGRID . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 ELEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4 NODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.5 VERTEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.6 LINK and EDGE . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Geometry data structure . . . . . . . . . . . . . . . . . . . . 37
4.3 Sparse matrix vector data structure . . . . . . . . . . . . . . 38
4.3.1 VECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 VECDATA DESC . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 MATDATA DESC . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 The tutorial application 41
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 The main() function . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Setting up a domain . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Setting up a problem . . . . . . . . . . . . . . . . . . . . . . 46
5.4.1 Numprocs . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 51

6 The tutorial problem class 55

7 Graphics 57
7.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 High-level methods for pictures . . . . . . . . . . . . . . . . 66
7.3 Plotobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 79



1

Introduction

In this tutorial you will learn how to use the UG software to solve partial dif-
ferential equations (PDEs) numerically. UG is quite large and this tutorial will
not be able to explain every aspect of the code but at least it should serve as a
starting point.

UG is a so–called framework for the numerical solution of partial differen-
tial equations. It provides tools for all parts of the numerical solution process,
i. e. geometry representation, mesh generation, mesh refinement, numerical al-
gorithms and post processing. After (Gamma et al. 1995) a framework is defined
as follows:

A framework is a set of cooperating classes that make up a reusable
design for a specific class of software. [. . . ] You customize a frame-
work to a particular application by creating application–specific
subclasses of abstract classes from the framework.

One of the important aspects here is that in a framwork–based application the
framework takes over control (possibly after some initialization) and calls user
specific methods at appropriate times.

In this tutorial we will start with some installation instructions and will then
look at an executable that has been prepared with UG. We will learn how to
use the shell language and what commands are available to all UG applications.
Then we will describe how numerical algorithms are implemented in UG in a
problem-independent way such that they can be reused for various PDEs to be
solved. The main part of this tutorial is the description of a complete problem
class with applications that solves a porous medium flow and transport model
using a finite-volume method.

The UG software package is structured into the “UG library”, so-called “prob-
lem classes” and “applications”. Figure 1.1 shows this basic structure. The UG
library is independent of the partial differential equation and is shared by all UG
users. It provides a framework which enables efficient (in terms of man-power)
construction of new simulaton programs.

The features offered by the UG library are:

� Representation of two- and threedimensional geometries,

� representation of unstructured meshes consisting of triangles, quadrilater-
als, tetrahedra, pyramids, prisms and hexahedrons,

1
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UG library

problem class
library

lication
app-

Figure 1.1: Basic Philosphy of UG applications

� built-in mesh generators for triangular and tetrahedral elements as well as
interfaces to several other mesh generators,

� local refinement and derefinment of a hierarchical mesh structure,

� management of degrees of freedom in nodes, edges, faces and elements
of the mesh,

� object hierarchy for numerical algorithms including multigrid solvers,
krylov solvers, nonlinear solvers, time-stepping schemes, error estimators,
grid transfer operators . . . Most of these algorithms can be used indepen-
dent of the PDE,

� graphical output of mesh structure and solutions to different devices, in-
cluding X11, Macintosh, ppm, postscript etc.,

� file I/O for visualization and restart purposes,

� and everything in parallel using a SIMD-message passing programming
model. All major parallel platforms are supported.

A “problem class” is built on top of the UG library and implements whatever
is specific to the PDE problem to be solved. In the simplest case this is only a
discretization scheme. The discretization scheme is implemented as a set of C
functions with parameters and return values prescribed by the UG framework.
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Once these functions are known by UG they can be used in conjunction with
the already existing numerical algorithms. A problem class implements a PDE
problem in a general form. The geometry, the boundary conditions and coeffi-
cient functions (e. g. density and viscosity in a flow model) are supplied by the
user later in what is called the “application”. The dots in Figure 1.1 indicate that
there are many problem classes built on the UG library and that there may be
many applications for each problem class.

This structure is also visible in the UG source code. When you list the UG
directory by typing ls (you might want to go to the installation chapter first if
you did not unpack UG yet):

peter@troll:˜/UG > ls
CHANGES README.license license.ps tutor/
CVS/ all.proj.hqx mufte/ ug/
README.Macintosh cm/ ns/
README.first diff2d/ sc/
README.install fe/ simple/

You find the directory ug containing the UG library and the directories cm
diff2d fe mufte ns sc simple and tutor each containing a problem class
with applications. When you enter the directory tutor (the problem class we
will use in this tutorial) you find

peter@troll:˜/UG/tutor > ls
CVS/ appl/ doc/ pclib/

where pclib contains the source code of the problem class library, appl
contains the application code, CVS contains information from the Concurrent
Versions System (a source code management system used to maintain the UG
source code) and the doc directory containing this tutorial.
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Installation

In this chapter, the process of installing UG is explained. By the end of this chap-
ter, you have a running copy of UG on your machine. UG is configured to run
on most UNIX flavors and Apple Macintosh Computers. Most of this chapter
will explain UNIX specific issues; the Mac is treated separately in section 2.6.

We assume, that you have a complete copy of the UG source code. If you
don’t have it, section 2.7 describes how to get it.

2.1 Choosing a target directory and extracting the
source code

You probably received your UG sources as a single tared and gzipped file, called
UG.tar.gz or ug-3.8.tar.gz. In the latter case, 3.8 refers to the version
number of UG. Within this description, we assume ug-3.8.tar.gz to be the
name of the archive.

Now choose the directory in which you want to install UG. This could be
anywhere on your machine; for simplicity we assume that you choose to install
UG in your home directory. Now cd to your home directory and put the UG
archive there. Then type:

> gzip -dc ug-3.8.tar.gz | tar xvf -

This creates the directory ug-3.8 in your current directory.

If you fetched your copy of UG from the UG ftp server, then the first step is to
register; see the file ug-3.8/README.license which explains how to register.
After registration, the file gm.h will be emailed to you. Put this file into the
directory ug-3.8/ug/gm/.

2.2 Setting up the UG environment
The next step is to extend your environment by defining UGROOT and by adjusting
your search path. This is absolutely necessary—without it you won’t be able to
compile UG.

Setting the environment variable UGROOT and extending your search path
works like this:

If you are using a csh or tcsh:

setenv UGROOT $HOME/ug-3.8/ug
set path = ( $path $UGROOT/bin )

5



6 2. Installation

Insert these two lines into the file $HOME/.cshrc or $HOME/.tcshrc, depending
on which shell you use.

If you are using sh, ksh, keysh or bash:

export UGROOT=$HOME/ug-3.8/ug
export PATH=$PATH:$UGROOT/bin

Insert these two lines into your $HOME/.profile file.

The directory $UGROOT contains the UG kernel and the directory
$UGROOT/bin contains many important tools for your everyday work with UG.

2.3 Configuring UG
UG can be configured in a great number of ways. You have to specify at least the
computer you work on, but also wether you want to use 2D or 3D code, if you
want to create optimized code or code for debugging, if you want to run your
UG application on a workstation or a parallel supercomputer, and many more.
The recommended way to change these settings is by using the tool ugconf.

ugconf is located in $UGROOT/bin. If you have set up your environment
like explained in the previous section, you should be able to start ugconf by
just typing ugconf. When called without any arguments, ugconf displays the
current setting:

> ugconf
current ug configuration is:
UGROOT = /home/dave/ug-3.8/ug
ARCH = SGI
MODEL = SEQ
DIM = 2
GRAPE = OFF
COVISE = OFF
NETGEN = OFF
REMOTE_IF = OFF
IF = S
GUI = OFF
DOM_MODULE = STD_DOMAIN
DEBUG_MODE = ON
OPTIM_MODE = OFF
CHACO = OFF
CAD = OFF

These settings will be explained in the following subsections. For a list of
possible options type ugconf -help; a list of all options will be displayed.

Your UG configuration is saved in $UGROOT/ug.conf and ugconf does noth-
ing else than changing this file. If you like, you can edit this file with a text
editor instead of using ugconf. In some cases it can even be necessary to edit
ug.conf directly.
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The next sections guide you through the configuration of UG.

2.3.1 SUPPORTED ARCHITECTURES AND COMPILERS

The ARCH variable contains the current computer architecture and compiler. Ta-
ble 2.1 contains a listing of all computer architectures and compilers supported
by UG. If your architecture is among them, just set the appropriate value with
ugconf. If for example your computer is a SGI R10000 Workstation just type
> ugconf SGI10

in your shell. If you say ugconf after that, the ARCH variable should be SGI10.
If your machine is not supported you can easily extend UG for your machine.

Suppose that your machine has a UNIX like operating system called HAL9000
and your compiler is comp. Then you have to do this:

1. Take a look at the directory $UGROOT/arch. There you will find a sub-
directory for each machine type that is supported by UG. Inside each of
these subdirectories is a file called mk.arch. You must set up a similar
directory with a mk.arch file.

Create a directory with the name of your architecture in the directory
$UGROOT/arch. In our example do the following:

> cd $UGROOT/arch
> mkdir HAL9000
> cd HAL9000

2. Create a file mk.arch inside the new directory. It is most sensible to copy
one of the mk.arch files that already exist and edit it instead of creating
one from scratch.

In the HAL9000/comp-example we would do this:

> cp ../SGI/mk.arch mk.arch

3. Edit the file mk.arch. Most of the settings in this file should be quite
clear; however, here is a description of them:

ARCH TYPE The type of architecture. This string is used as a -D option
when compiling and should have the form __architecture__. If your
architecture is HAL9000, set ARCH_TYPE=__HAL9000__.

ARCH MAKE Your version of make (e.g. make, gmake, gnumake, . . . ).

ARCH CC The C compiler. In most cases cc works, but you might need
or want something else like gcc or mpicc. In our example it would
be comp.

ARCH C++ The C++ compiler. This could be cc, c++, gcc,. . . . For most
parts of UG, you don’t need the C++ compiler.
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ARCH F77 The Fortran compiler.

ARCH LINK The linker. In most cases you can use the same setting as for
the compiler (cc, gcc, mpicc,. . . ), but you could also call the linker
directly (ld on many systems).

ARCH AR The library archive creation and maintenance program. Usually
ar.

ARCH SUFFIX Some operating systems force executables to have a spe-
cial extension (like .exe, .px, texttt.app, . . . ).

ARCH POSTLINK This program is run on the executable after linking.
Usually used for calling strip to reduce the size of the executable.

ARCH LIBS The libraries which are needed for successful linking. This is
usually something like -lm -lc.

ARCH FLIBS Libraries for Fortran programs.

SHELL The shell used from within make. Most architectures work without
specifying it.

ARCH CFLAGS Compile flags for the C compiler.

ARCH C++FLAGS Compile flags for the C++ compiler.

ARCH NOOPTIM Compiler flags for the creation of non-optimized exe-
cutables. If ugconf says that OPTIM MODE is off, then these options
are used.

ARCH OPTIM Compiler flags for the creation of optimized executables.
If OPTIM MODE is switched on, then these settings are used instead of
the ARCH NOOPTIM settings.

ARCH LFLAGS Flags for the linker.

ARCH FFLAGS Flags for the Fortran linker.

ARCH ARFLAGS Flags for ARCH AR.

ARCH XINCLUDES Specifies where the X11 header files can be found.
-I/usr/include/X11 is a typical choice.

ARCH XLIBS Specifies the X11 libraries.

4. Edit the file compiler.h in $UGROOT/arch. This file contains definitions
for the architecture type and is included by every UG file. It has a section
for each architecture where machine-dependent settings are specified. Just
copy one of these sections and change it to the appropriate values of your
architecture.

ALIGNMENT and ALIGNMASK are especially important.
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2.3.2 MORE CONFIGURATION

After setting ARCH to the right value you are now able to compile UG. The result
of this compilation is however determined by some other settings, so before
creating your first UG application, you should consider these switches.

The DIM option

By setting DIM to 2 or 3 you choose whether you want to run 2 dimensional
or 3 dimensional calculations. The decision for which dimension you want to
use has to be done here—there is no other switch for choosing the dimension
(especially not at run time).

The IF option

The IF options decides which (graphical or non-graphical) interface you want
to use. The options are:

SIF The standard interface. This means that no graphic output to the screen
will be done. Instead, UG will use the text capabilities of the shell for
input/output. While you are still able to draw pictures into files, you will
not be able to monitor your results on screen.

XIF The X11 interface. UG will use its own shell window and you will be able
to use the full interactivity possibilities of UG. You will be able to open
graphic windows and modify the display and even some data with your
mouse.

By default, the X11 interface uses the Athena widget set which is installed
with most X11 implementations. Should your installation lack the Athena
Widget set, you can turn its usage off by changing the line

#define USE_XAW

in file $UGROOT/ug/dev/xif/xmain.c to

#undef USE_XAW

However, the Athena widget set adds some nice capabilities and we rec-
ommend installing it.

MIF The MacOS X Server interface. This uses the Display PostScript window
server for its graphical interface. As soon as MacOS X is released, the
displaying model will be changed to use the Quartz window server.

RIF, XRIF, NORIF The remote interface. This interface is intended for comput-
ers that don’t have X11. Using the remote interface, it is possible to com-
municate with a computer running X11 and thereby to redirect the graph-
ical output.



10 2. Installation

The GUI option

Don’t use it.
The GUI is an implementation of a graphical user interface for UG that doesn’t

use the shell. While this might sound like a reasonable option at first, it is not—
the shell is by far the superior way to run UG. The GUI option was created
on special demand for a project partner and only works with one special appli-
cation. The source code for the GUI is not part of the standard distribution of
UG.

The MODEL option

The MODEL option decides whether UG is run in sequential or parallel mode.
On a single processor workstation, set MODEL = SEQ. If you are using a parallel
computer or want to use PVM or MPI for developing a parallel application, then
choose your option according to these parameters:

MPI The Message Passing Interface. MPI is installed on many parallel comput-
ers and can be used on workstations or clusters of workstations.

If you are using MPI, we recommend that you reflect its usage in adapting
your mk.arch file. Setting the compiler to mpicc will usually be the easi-
est way to get UG with MPI running, because mpicc knows about where
MPI header files and libraries are located. Should this not be sufficient,
edit $UGROOT/ug.conf, uncomment the lines

#MODEL_ENV_CFLAGS = -I$(MPIHOME)/include
#MODEL_ENV_LFLAGS = -L$(MPIHOME)/lib/IRIX/ch_p4 -lmpi

and set the flags to the appropriate values for your machine.

PVM The Parallel Virtual Machine. It is present on many parallel computers and
can be used on most workstations. In order to use PVM, uncomment the
lines

#MODEL_ENV_CFLAGS = -I$(PVM_ROOT)/include
#MODEL_ENV_LFLAGS = -L$(PVM_ROOT)/lib/$(PVM_ARCH) -lpvm3

in $UGROOT/ug.conf and set the flags to the values that are appropriate
for your machine.

NX Intels message passing library (e.g. Intel Paragon).

NXLIB An NX simulation for workstation clusters.

SHMEM The shared memory model of the Cray T3E.

SHMEMT3D The shared memory model of the Cray T3D.

PARIX The Parsytec message passing library.
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The CHACO option

If you are using UG for parallel computing, you will certainly know about the is-
sue of load balancing. Although UG has some simple load balancing strategies,
it uses the CHACO package for more advanced load balancing. Using CHACO
is highly recommended.

If you are not using the parallel capabilities of UG keep CHACO turned off.

The DEBUG MODE option

Setting DEBUG MODE to ON will enable the debugging flags for the compiler that
have been set in mk.arch. Use ugconf NODEBUG to turn off debugging mode.

The OPTIM MODE option

Setting OPTIM MODE to ON will enable the optimization flags for the compiler
that have been set in mk.arch.

The DOM MODULE option

This option determines the domain module that is used for the representation of
the domains you are using for your calculations. Currently the STD DOMAIN and
the LGM DOMAIN are available.

The GRAPE option

For postprocessing of your results, there is an interface to the GRAPE visu-
alization software. GRAPE is developed and distributed by the SFB 256, In-
stitut für Angewandte Mathematik (Rheinische Friedrich-Wilhelms-Universität
Bonn) in cooperation with the Institut für Angewandte Mathematik (University
of Freiburg) . It can be obtained from

http://www.iam.uni-bonn.de/sfb256/grape/main.html .

The COVISE option

UG has an interface to COVISE, which stands for Collaborative Visualization
and Simulation Environment. It is an extendable distributed software environ-
ment to integrate simulations, postprocessing and visualization functionalities.
See

http://www.hlrs.de/structure/organisation/vis/covise/

for further details.

The NETGEN option

NETGEN is a 3D grid generator developed by Joachim Schöberl that can be
used from within UG. Please see

http://www.sfb013.uni-linz.ac.at/˜joachim/netgen/ .

You will need an additional license and a C++ compiler.
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2.4 Compiling UG
Please make sure that you have placed the file gm.h in the directory
ug-3.8/ug/gm and that the environment variable UGROOT is set.

To make sure that everything is working you can start compilation of all UG
libraries and examples by typing ugproject. This can take some time on slower
machines, since it compiles all libraries and example applications for 2D and 3D.

If you only want to compile the UG libraries and have completed your setup
using ugconf, then it is sufficient to say ugmake ug. This will create the UG
libraries (which will be placed in $UGROOT/ug/lib).

To compile the tutor problem class and applications which are used in the
subsequent chapters, change into the directory $UGROOT/tutor/appl and type

> ugconf 2
> ugmake ug
> make
> ugclean
> ugconf 3
> ugmake ug
> make

This will create the programs tutor2d and tutor3d. For their usage see
chapter 3.

2.5 UG command line tools
This section describes some of the tools located in ug/bin. Most of them are
shell scripts which should run in almost any UNIX environment. These tools
help you developing and debugging applications.

Please make sure that your $UGROOT environment variable is set and that your
path has been adjusted as explained in section 2.2.

ugclean

This is a global make clean on the UG libraries—it mainly removes object
files. If you say ugclean all, then even the libraries and the contents of the
ug/include directory are removed (the ug/include directory contains only
links so removing it doesn’t do any harm).

Switching from 2D to 3D is a typical situation in which you would want to
apply ugclean, but also if you changed an important header file.

ugconf

The ugconf command is explained in section 2.3.
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uggrep, uggrepc, uggreph

The uggrep tools offer a convenient way to perform greps on the UG source
code. The command

> uggrep NODE

will search for all occurrences of NODE in UG source and header files. You can
limit the search to source files (files with the suffix .c) by using uggrepc and to
header files (files with the suffix .h) by using uggreph.

ugmake, ugpmake

Using ugmake can be used instead of make and offers the advantage that it knows
where and how the UG libraries are to be build. You can type ugmake ug any-
where in your shell, resulting in a complete make of UG. Its general syntax is:

ugmake [<ugmodule>] [makeoptions]

Some common <ugmodules> other than ug are dev, meta, xif, gm, graph,
low, numerics, ui and dom. You can pass additional options to make with the
makeoptions; the command ugmake np -k will compile the np module with
the -k option.

ugpmake is used like ugmake but tries to speed up the compilation by using
parallel versions of make. On sequential machines, this can be achieved by using
versions of make (like GNU make) that can start several compilation processes
with the -j n option; n specifies the number of compilation processes. Some
parallel computers or multiprocessor workstations also offer the possibility to
use several processors for compilation. Since this is very machine dependent,
you might have to adjust ugpmake to your local architecture.

ugman

The standard UG distribution comes with man pages for almost all commands
and functions of UG. To get the man page for the UG shell command drawtext
type ugman drawtext. In the same way the man page for the UG function
dcopy can be displayed with ugman dcopy.

ugrun

The way a parallel program has to be started is different on each type of com-
puter. Once you are working on a couple of machines it can get tedious to
remember the exact syntax of every such command. ugrun can be used to start
parallel programs by simply saying

> ugrun tutor2d 32

This will start the program tutor2d on 32 processors of your machine. Since
ugrun knows the environment variables that the application was compiled with,
it will use the appropriate command for starting the application (which could be
mpirun when using MPI or mpprun on a Cray T3E with SHMEM).



14 2. Installation

2.6 UG on the Macintosh
UG can be used on the Macintosh too. You will need the Metrowerks Codewar-
rior Professional Release 4 to compile the sources.

The process of getting a working version of UG onto your Mac is similar to
the UNIX procedure. First of all, follow the instructions in section 2.7 on how
to get the UG source code. You will probably use Fetch ore some other Mac-
intosh FTP tool. You can unpack the UG archive with StuffitExpander or with
MacGzip and suntar or tar (the infomac ftp archives should have the appropriate
software). Register your UG version. When you receive the file gm.h, place it in
the Folder ug-3.8:ug:gm (your version number might be different). Now un-
pack the file ug-3.8:ug:lib:MWCW:ug.proj.hqx (e.g. with StuffitExpander).
The resulting CodeWarrior Project has a target called ug. Make it active and
choose make from the Project menu. This will create all UG libraries.

There are several binhexed application project files in the application folders
diff2d, fe, ns and sc. Unpack them and build the applications.

2.7 How to get UG
In order to get a working copy of UG, you will have to follow these steps which
will be explained in greater detail below.

1. Get the UG distribution from ftp.ica3.uni-stuttgart.de.

2. Register. The license agreement is part of the UG distribution.

3. After registration, the file gm.h will be emailed to you.

4. Put gm.h in its place. Now you are ready to compile (see section 2.2).

As you will have guessed, the file gm.h is absolutely crucial for UG and com-
piling and running UG without it is hardly possible.1 Since we would like to
keep track of who is using UG we thought that this might be a good way to
enforce registration.

The UG source code is available from ftp.ica3.uni-stuttgart.de. As
of this writing, the current UG version is 3.8; should you find a UG distribu-
tion with a higher version number on our server please use it. Only stable ver-
sions are put on the server (unless explicitly stated otherwise) and new versions
usually contain a great number of new features and bug fixes. However, older
versions are still kept on the server.

A sample ftp session is shown here:

1If you should be able to create your own gm.h that works with UG please let us know—we
are very much interested in hiring you.
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% ftp ftp.ica3.uni-stuttgart.de
Connected to dom.ica3.uni-stuttgart.de.
220 dom FTP server ready.
Name (ftp.ica3.uni-stuttgart.de:clinton): ftp
331 Guest login ok, send e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd pub
ftp> cd ug
ftp> cd ug-3.8
ftp> bin
ftp> get ug-3.8.tar.gz
ftp> bye

You should now unpack UG and check the file README.license in the UG
root directory. If you don’t know how to unpack .tar.gz-files then look up
section 2.1. After fulfilling the license agreement, you will receive the file gm.h.
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ugconf Architecture Compiler
AIX IBM AIX cc
AIXGCC IBM AIX gcc
C90 Cray 90
CC XPLORER (Power PC, Parsytec)
DEC DEC Workstations
HP HP Workstations (HPUX 10) cc
HP20 HP Workstations (HPUX 10.20) cc
HPUX9 HP Workstations (HPUX 9) cc
LINUXPPC LinuxPPC gcc
MACOSXSERVER MacOS X Server cc
MKLINUX Microkernel Linux (PowerMacintosh) gcc
NECSX4 NEC SX4
NEXTSTEP NEXTSTEP 3.3
OPENSTEP OPENSTEP 4.2
ORIGIN SGI Workstations
PARAGON Intel Paragon
PC Linux-PC
POWERGC XPLORER (Power PC, Parsytec)
SOLARIS SUN Sparc 5 Workstations (SOLARIS 5.3) cc
SOLARISGCC SUN Sparc 5 Workstations (SOLARIS 5.3) gcc
SGI SGI Workstations cc
SGI10 SGI R10000 Workstations cc
SP2 IBM AIX SP2
SR2201 Hitachi SR2201
SUN4GCC SUN Workstations (SunOS 5.3) gcc
T3D Cray T3D
T3E Cray T3E
YMP Cray YMP

Table 2.1: Options for the ARCH variable of UG
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Using a UG application

In this chapter you will learn how to use an existing UG application. This as-
sumes that you successfully installed UG and compiled the tutor problem class
with the graphical user interface turned on (either X11 or Macintosh).

3.1 Compiling the tutorial application
Having compiled the UG library for two and three space dimensions with the
appropriate switches (if not return to chapter 2) you can now compile the tutorial
application. To do that, select the appropriate space dimension with ugconf,
change to the UG/tutor/appl directory and type make. If all goes right you
should have applications tutor2d and tutor3d.

3.2 A first example
Let us start by playing around with our first example. Change to the direc-
tory UG/tutor/appl and start the application tutor2d. You should see a win-
dow like the one shown in Figure 3.1. This is the UG shell window where
you can enter commands. Like the UNIX shell this shell can also execute text
files containing shell commands. Some example script files are provided in the
UG/tutor/appl/scripts directory. We will now execute our first script file.
For that type

> ex first

in the UG shell window. Some output is printed to the shell window and
two graphics windows will open. These two windows are shown in the upper
two pictures in Figure 3.2. The window labelled “W1” shows the current mesh
consisting of 8 triangular elements approximating a circle domain. The solution
of the equation

� ∆p � 0 � u � x3 � y2 on ∂Ω

is shown in the window labelled “W2” in the form of contour lines. As you
can see the approximate solution is linear on each triangle.

Now enter the following commands (at the end of each line press the RE-
TURN or ENTER key):

> mark $i 1
using rule red (no side given)

17
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1 elements marked for refinement
> refine
circle refined
>

The first command tags element number 1 for refinement (note the little num-
bers in each triangle). The second command refines the mesh. Note that options
to a command are preceeded by the $ sign. As you can see in the window W1
(depicted in the middle picture in the left row in Figure 3.2) element 1 has been
refined into four smaller triangles and the two green elements have been inserted
to make the mesh “consistent” (which means that the intersection of any two el-
ements is either empty, a node or an edge of both elements). You can still see
the previous mesh by entering

> level 0
current level is 0 (bottom level 0, top level 1)

>

and switch back to the finest level by entering

> level 1
current level is 1 (bottom level 0, top level 1)

>

We continue refining two times by giving the following commands

> mark $i 12
using rule red (no side given)

1 elements marked for refinement
> refine
circle refined
> mark $i 32

using rule red (no side given)
1 elements marked for refinement
> refine
circle refined
>

and end up with the mesh looking like the middle picture in the right row of
Figure 3.2. Note that the circle has been approximated better and better as the
mesh has been refined. The geometry is really entered as a circle and is not
defined by the coarsest mesh.

The graphical user interface has also some interactive capabilities. Move the
mouse into mesh window (window “W1”) and click. Notice that the window
gets an orange border indicating that this is the “active picture”. Now move the
mouse pointer to the lower part right part of the window where the little icons
are and place it over the arrow icon. The text to the left of the arrow now says
pointer [1/4]. When you press the left mouse button once it will say pan
[2/4] and when you press again it will say zoom [3/4]. This means that the
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Figure 3.1: The UG shell.

zoom tool has been enabled. You can use it to zoom into the part of the mesh that
has been refined. Just move the mouse pointer near the refined part. This will be
the first point of the rectangle indicating the new viewport. Press the left mouse
button, hold it and move to the second point. A rectangle will be shown. When
you release the mouse button the window will be redrawn and looks something
like the lower left one in Figure 3.2.

Now you can recompute the solution by entering (the @ is important):

> @solve
BOX: [0:a] [1:a] [2:a] [3:a]

************** linear_solver.ls.mgs **************
0 u: 3.3939336e+00 ---
1 u: 8.4281017e-03 2.4832842e-03
2 u: 5.6300590e-05 6.6801033e-03
3 u: 3.7552681e-07 6.6700332e-03

3 avg: u: 3.3939336e+00 3.7552681e-07 4.8007881e-03

LS : L= 3 N= 3 TSOLVE= -0.0673 TIT= -0.02243
>

The first line of outpout starting with BOX is from assembling the system of
linear equations on each grid level and the following output is from the multigrid
solver showing convergence rate and summary.

Another useful command is

> glist
grids of ’circle’:
level maxlevel #vert #node #edge #elem #side #vect #conn #imat minedge maxedge

0 3 9 9 16 8 8 9 25 0 7.654e-01 1.000e+00
1 3 5 14 29 16 10 14 43 0 3.827e-01 1.000e+00
2 3 5 19 42 24 12 19 61 0 1.951e-01 1.000e+00
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Figure 3.2: Graphics windows after various steps explained in the text.
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* 3 3 3 18 40 23 8 18 58 0 9.802e-02 1.000e+00

surface grid up to current level:
2 3 --- 22 50 29 13 22 65 9.802e-02 1.000e+00

32244 bytes used out of 20971520 allocated

which prints a summary of the multigrid hierarchy and the amount of memory
used.

3.3 A sample script file
In this section we look at the script file first.scr that has been used in the
previous section. It is shown in two parts in Figures 3.3 and 3.4. Let us start
with Figure 3.3 where the mesh is set up.

Line 1 contains a comment. The hash character makes the rest of the line a
comment line. In line 2 the variable MAXLEVEL is set to zero. Note that state-
ments are always terminated with a semicolon. Like in C you can place several
statements in a line.

Line 5 contains a so-called “format definition”. UG can place degrees of
freedom in the nodes, edges, faces and elements of the mesh. The amount of
memory (number of double values) required by the user in each geometrical
object is given by the format definition. In this example the $V option defines
vectors with one double value in each node n1 and we will need 8 of these
vectors in our numerical algorithm (therefore reserving 8 double values in each
node). The $M option defines the amount of memory needed in the sparse matrix
data structure. In our example the coupling of a node with another node will
contain one double value (n1xn1) and we will need two matrices with this layout
(one is the stiffness matrix the other will be an incomplete decomposition). Only
nodes which are corners of at least one common element will be coupled in the
matrix. It is important to note that the format command does not allocate any
memory, it just describes a data layout that will be used by the grid manager
part of UG. You can define several different formats in a script file and select
one later by giving its name (which is FlowFormat in our example).

Line 8 creates a new multigrid data structure in memory. The first argument
(circle) is the name of the structure (You could open several multigrids), $b
gives the name of the boundary value problem to be solved, $f specifies the
format to be used and $h gives the amount of memory to be allocated for this
multigrid data structure (20 MBytes in the example). The boundary value prob-
lem given with the $b option selects a geometry, boundary conditions and coef-
ficient functions (e. g. permeability or viscosity) which have been compiled into
the application. An application can include several boundary problems.

Lines 11–16 define a coarse mesh. In UG a geometry is given by a collection
of boundary segments. Each boundary segment is a mapping from a parameter
space to a d � 1-dimensional manifold, where d is 2 or 3. Nodes on the boundary
are inserted with the bn command by specifying the number of the boundary
segment and the parameter value. In our circle example the domain is described
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1 # some constants
2 MAXLEVEL = 0; # finest level
3

4 # data format definition
5 newformat FlowFormat $V n1: nt 8 $M implicit(nt): mt 2 $I n1;
6

7 # create multigrid
8 new circle $b circle problem $f FlowFormat $h 20M;
9

10 # make mesh
11 bn 0 0.25; bn 0 0.50; bn 0 0.75;
12 bn 1 0.25; bn 1 0.50; bn 1 0.75;
13 in 0.0 0.0;
14 ie 8 0 2; ie 8 2 3; ie 8 3 4; ie 8 4 1;
15 ie 8 1 5; ie 8 5 6; ie 8 6 7; ie 8 7 0;
16 fixcoarsegrid;
17

18 # refine mesh
19 j = 0;
20 repeat {
21 if (j == MAXLEVEL) break;
22 refine $a;
23 j = j+1;
24 }
25 lexorderv ru; #order nodes
26 glist; # print statistics
27

28 # show grid
29 openwindow 30 30 402 402 $n W1;
30 openpicture $s 1 1 400 400 $n grid;
31 setplotobject Grid $b 1 $n 0 $e 1 $c 1 $w a $p 0.9;
32 setview;
33 plot;
34 refreshon;

Figure 3.3: File UG/tutor/appl/scripts/first.scr: setting up the mesh
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36 # set up discretization scheme
37 npcreate sf $c stdf;
38 npinit sf $p sol;
39

40 npcreate bf $c bf;
41 npinit bf $A MAT $x sol $b rhs $P sf;
42

43 # set up solver
44 npcreate ilu $c ilu;
45 npinit ilu $damp 1.0;
46

47 npcreate base $c ex;
48 npinit base;
49

50 npcreate basesolver $c ls;
51 npinit basesolver $red 1.0E-4 $m 50 $I base $display no;
52

53 npcreate transfer $c transfer;
54 npinit transfer $x sol;
55

56 npcreate lmgc $c lmgc;
57 npinit lmgc $S ilu ilu basesolver $T transfer
58 $n1 2 $n2 2 $g 1;
59

60 npcreate mgs $c ls;
61 npinit mgs $A MAT $x sol $b rhs $m 25 $red 1.0E-6
62 $abslimit 1.0E-15 $I lmgc $display full;
63

64 # clear, assemble, solve
65 clear sol $a $v 0.0;
66 npexecute bf $a;
67 npexecute mgs $i $d $r $s $p;
68

69 # show solution
70 openwindow 30 490 402 402 $n W2;
71 openpicture $s 1 1 400 400 $n solution;
72 setplotobject EScalar $s sol $m CONTOURS_EQ $n 40 $d 0 $f -1.0 $t 1.0;
73 setview;
74 plot;
75

76 # define solve script
77 solve = "{
78 npexecute bf $a;
79 npexecute mgs $i $d $r $s $p;
80 }";

Figure 3.4: File UG/tutor/appl/scripts/first.scr: The solver
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by two boundary segments, the first (number 0) describing the upper half circle
starts with parameter 0 at point � 1 � 0 � and ends with parameter 1 at point � � 1 � 0 � .
The second segment describing the lower half circle starts with parameter value
0 at � � 1 � 0 � and ends with parameter value 1 at � 1 � 0 � . The two points � 1 � 0 � and
� � 1 � 0 � belong to both boundary segments and are called “corners”. The new
command automatically inserts nodes at those corner points of the domain. Inner
nodes are inserted with the in command getting the coordinates of the new node
as parameters. Elements are inserted with the ie command. The ie command
gets the node numbers as argument. The element type is determined from the
number of nodes given. The fixcoarsegrid command ends the specification
of the mesh, computes element neighborship and does some consistency checks.

Lines 19–24 refine the mesh uniformely MAXLEVEL times, where MAXLEVEL is
set in line 2 of the script. We do this with a repeat-loop. This is the only type
of loop available in UG’s script language. The only way to exit a loop is with the
break statement shown in line 21. The option $a in the refine command spec-
ifies that all elements should be refined. After refining the mesh the command
lexorderv is used to order the degrees of freedom lexicographically accord-
ing to the position of the corresponding nodes of the mesh. This is not strictly
necessary but may improve the convergence properties of the iterative solvers
for some problems. More sophisticated ordering strategies, such as “streamline
ordering” are also possible. The glist command has already been used in the
previous section to print some statistics about the current mesh structure.

Lines 29–34 display the mesh on the screen. Openwindow opens a window by
specifying the coordinates of the lower left corner (first two numbers) and the
width and height of the window (second two numbers), the $n option spcifies
a name for the window. By default windows are opened on the screen but the
same commands can be used writing the picture to a disk file in several different
formats (such as ppm, postscript, . . . ). The openpicture command specifies a
picture (drawing area) within the window. Several pictures can be placed into
the same window. The $s option gives the lower left corner, width and height
of the picture relative to the window and $n gives a name to the picture. Now
we want to specify what should be drawn in the picture. This is done by asso-
ciating a plot object with the picture in the setplotobject command. In this
case we specify the Grid plot object which draws the grid. Several options can
be given which determine whether the boundary of the domain should be drawn
($b) or whether node or element numbers should be given. The next command,
setview, determines from where we want to look at the plot object. If no ar-
guments are given default values are computed from the geometry definition.
Finally, the plot command draws the picture. By default the contents of a UG
graphics window is not redrawn if the mesh changes because redrawing may re-
quire a lot of time. The refreshon command changes this behavior and redraws
the pictures whenever the mesh is changed or the window is resized.

After creating the mesh we are now able to set up and solve the numerical
problem. Numerical algorithms in UG are organized in a class hierarchy (yes,
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it is coded in C although it uses object-oriented concepts). Objects of a class
can be created with the command npcreate (historically, these objects were
called “numerical prcoedures” and all commands therefore start with np, also
the directory containing the source code is called np). Every class has the three
methods “init”, “display” and “execute” which are mapped to the commands
npinit, npdisplay and npexecute. The init method of a class is used to set
parameters of an object, the display method shows the current settings and the
execute method instructs an object to do its intended job.

Each class has two kinds of interfaces, one is the script file interface which
has been described above and the other is the C-function interface. The class
hierarchy offers a C-function interface for all kinds of numerical algorithms like
iterative schemes, linear solvers, nonlinear solvers, discretization schemes and
more. This enables an object of one class to use an instance of another class
(like a krylov method using a preconditioner or a time-stepping scheme calling
a nonlinear solver) to do its job. This is also the key to reuse code written by
other people.

In our example script we will solve the problem

� ∆p � 0 � u � x3 � y2 on ∂Ω � (3.1)

This problem is in fact a special case of the more complicated class of prob-
lems

∇ � u � q in Ω � (3.2a)

u � � µ 	 1K � ∇p � ρg �
� (3.2b)

p � p0 on Γ1 � ∂Ω � (3.2c)

u � n � φ on Γ2 � ∂Ω � Γ1 (3.2d)

which can be solved by the tutorial problem class. Eq. (3.1) is obtained from
Eq. (3.2) by setting µ � 1, K � Id, ρ � 1, g � 0 and q � 0.

In order to seperate the implementation of the discretization of the general
problem (3.2) from the implementation of the specific functions µ, K, etc. , the
parameter functions are encapsulated in a seperate (abstract) class. The user
then will implement concrete classes in his application which will then be used
by the discretization class. In line 37 of the script file (see Figure 3.4) an object
named sf of class stdf is created. Class stdf is a concrete class implementing
the parameter functions µ � 1, K � Id, ρ � 1, g � 0 and q � 0 as required by our
example. The object sf is initialized in the following line 38. Since sf contains
a member function that computes the Darcy velocity u it needs to know where
the pressure field p is stored. The parameter given by $p is a so-called “vector
data descriptor” which describes where in the little data array allocated for each
node of the mesh the pressure field is stored (e. g. at array position 0, if nothing
has been allocated before). Note that the amount of space needed in each node
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has been determined by the newformat command. A vector data descriptor has
a name, sol in this case, in order to be able to use it at other places in the script
file.

Lines 40–41 create a discretization object named bf of class bf (yes, classes
and objects can have the same name). bf stands for “boxflow” indicating that
we solve the flow equation with the box method (finite volume method). The
bf object expects a “matrix data descriptor” with the $A option and two vector
data descriptors with the $x and $b options in order to know where the matrix,
solution and right side are stored. In addition the discretization object needs
an object implementing the parameter functions, i. e. our object sf we created
above. This is done via the $P option. The bf object will then use the inter-
nal C-function interface of the sf object to get the values of the discretization
parameters.

Lines 44–62 set up an iterative solver for the linear system. We intend to
use a linear multigrid method with an ilu smoother, the canonical grid transfer
operators given by the finite element space and an exact coarse grid solver. We
start with the ilu smoother in line 44–45 an set up the exact solver in lines 47–48.

Internally, both the ilu class and the ex class, implement the interface of an
iteration scheme. The puropose of an iteration scheme is to apply one iteration
step at a time to a given linear system. A linear system solver then executes
steps of an iteration scheme and checks convergence. Such a solver is set up in
lines 50–51. Object basesolver is an instance of class ls which is a simple
loop executing steps until the defect norm has been reduced by a certain factor
($red option) or a prescribed number of iterations ($m option) has been reached.
basesolver uses the exact method as underlying iteration ($I option) and is
instructed to print no messages ($display option).

Lines 53–54 set up a grid transfer object transfer of class transfer. Lines
56–58 set up the linear multigrid cycle. It uses the ilu object for pre- and
postsmoothing and the basesolver object as coarse grid solver ($S option),
the transfer for restriction and prolongation and it executes two presmoothing
steps ($n1), two postsmoothing steps ($n2) and a V-cycle ($g).

Lines 60–62 set up a linear solver with the linear multigrid cycle as iteration
scheme. Note that mgs and basesolver are instances of the same class ls.
Since the execute method of mgs will be invoked to solve the linear system it
needs to know where the linear system is stored ($A $x $b options). Note that
the other objects building up the linear solver need not know where the linear
system is stored since they will get the appropriate information from the calling
object. Also, the objects will allocate additional temporary vectors internally
and pass them as arguments to other objects.

Lines 65–67 finally setup and solve the linear system. Line 65 sets all compo-
nents of vector sol on all grid levels ($a) to zero. Line 66 executes the bf object
which sets up the linear system on all grid levels ($a). Line 67 executes the mgs
object to solve the linear system. The options are in order: execute preprocess



3.4. 2D flow and transport problem 27

member, replace right hand side by defect, compute defect norm, solve system
and execute postprocess member function.

Lines 70–74 open a new window and set up a plot object that draws contour
lines of the solution.

Finally, lines 77–80 shows how subroutines can be realized in a script file.
The instructions to be executed are simple assigned to a string variable. The
interpreter has an “evaluation operator” @ which evaluates the string variable
to the right, i. e. the command @solve is equivalent to executing the program
assigned to the variable solve.

This sample script file hopefully gave some overview of the capabilities of
UG (and this was not all). Most of the rest of this tutorial will explain the
class hierarchy for numerical algorithms in more detail. We will learn how
the C-function interfaces for discretizations of linear and instationary, nonlinear
discretizations look like.

3.4 2D flow and transport problem
Being familiar with the first simple model problem we can try a set of more
complicated examples in two space dimensions which are given in the script
files simpleflow2d.scr, simpletransport2d.scr and coupled2d.scr.

Simply start up tutor2d and type

> ex simpleflow2d

Alternatively you can press the Alt–Key followed by the letter f (do not press
Alt and f together as you might think. We were too dumb to figure out how
to make this work correctly). A graphics window will open with three pictures
in it showing the grid, contour lines of pressure and the velocity field in a vec-
tor plot (bottom to top). This application solves a ground water flow problem
Eq. (3.2) in a horizontal reservoir (i. e. g � 0). From the pressure field we can
see that the reservoir contains a source on the left side and a sink on the right
side (with exactly the same rate) and zero flux boundary condition on the outer
boundary. The domain consists of three subdomins with different permeability
values, which can also be seen from the vector plot of the flow field.

We now want to solve a transport problem of the general form

∂ � ΦρC �
∂t

� ∇ � j � q in Ω � (3.3a)

j � ρuϕ � C � � D � x � u � ∇C � (3.3b)

C � x � 0 �
� C0 � x � (3.3c)

C � Cd � x � t � on Γ1 � ∂Ω � (3.3d)

j � n � φC on Γ2 � ∂Ω � Γ1 � (3.3e)
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for the unknown concentration C where the velocity field u is given from the
first equation. Note that this problem is now nonlinear and time–dependent.

Restart your tutor2d application now and execute the script file
simpletransport2d.scr. In the graphics window you will see the pressure
field at the bottom and the flow field on top. In the middle you will see a
contour plot of the concentration at each time step (this may take a while
depending on the type of computer you are using). In the given example a fixed
concentration is described at the inflow well in the left part of the domain.
The flux function in the hyperbolic part is ϕ � C � as in Burger’s equation, the
diffusion constant (well, hydrodynamic dispersion to be correct) is set to 10 	 6.
If you wait a little you can clearly see the different permeability values in the
two little subdomains.

The final example in this section assumes now that the viscosity in the flow
Eq. (3.2) is now a function of concentration computed in the second equation
µ � µ � C � . This couples the two equations and is called miscible displacement,
a model sometimes used in oil reservoir simulation. With the tools currently
implemented in the tutorial problem class we can solve this problem with a
simple operator splitting technique. For a given time step we first solve the flow
equation for the current concentration field and then advance the concentration
with the new flow field. The we go on to the next time step. Note that there is
no iteration between the two equations within a time–level to solve the coupled
nonlinear problem. Clearly this imposes some restriction on the time step size
but it is a simple procedure. It is also no difficulty to implement a fully coupled
solution procedure but it would require to code a new discretization class in the
tutorial problem class.

In order start the simulation of the coupled problem restart tutor2d and ex-
ecute the coupled2d.scr script. It displays the same plots as before but when
you look carefully you will see that the pressure field changes in each time step
(hint: place the mouse pointer on contour line).

3.5 3D flow and transport problem

The discretization code for the flow and transport problems described above is
written in a dimension and element–independent way. Therefore it is now an
easy task to do similar simulations also in three space dimensions. For that you
need to generate the tutor3d application. The script files simpleflow3d.scr,
simpletransport3d.scr and coupled3d.scr directly correspond to their
two–dimensional counterparts.

Unfortunately it is not so easy to create a complicated three-dimensional do-
main in UG. Therefore we stick with a simple hexahedral domain. Now have
fun with the three-dimensional examples!
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3.6 A parallel example
UG has been designed from the ground up with parallel computing in mind.
Parallelism is supported throughout all levels of the UG library, including grid
managment, numerical procedures and graphics. This section will investigate
some of the steps that are necessary to run an UG application on a parallel com-
puter.

The first step is to compile an executable for your parallel computer. Sec-
tion 2.3.2 on page 10 explains the most important step, setting the MODEL flag
with ugconf. You should also turn on CHACO. Then rebuild the UG libraries,
problem class libraries and finally your application. Don’t forget to clean up
before the rebuild (ugclean).

We will assume here, that your parallel environment is a workstation cluster
with n computing nodes called node1, . . . , noden and you are using MPICH. If
your parallel application is called ptutor3d, then the you can start your appli-
cation on 4 processors by typing

hal9000> mpirun -np 4 ptutor3d

or, if your local installation allows for the explicit selection of computing nodes,
use

hal9000> mpirun -np 4 -machinefile machines ptutor3d

In the latter case, the file machines in your application directory lists the nodes
you want to use.

hal9000> cat machines
node14
node15
node16
node17

After starting the program a UG shell will open just like on a sequential ma-
chine. There is a script file in the scripts directory that has been modified for
parallel machines, parallel3d.scr. Start it by typing

> ex parallel3d.scr

in the UG shell. The script is based on coupled3d.scr, so you will probably
already know the outcome of this computation. However, if you look at the
graphic window that will open, you will notice that the topmost picture shows a
disconnected grid. This is the distributed grid, where each element of the grid
received its colors according to the processor it is stored on. To emphasize the
distribution of the grid, the partitions have been shrunk by a factor of 0 � 9.

The process of partitioning a given grid that is stored on one processor into
several parts that are then distributed to several processors is called load bal-
ancing. The determination of a decent distribution is a very complex task, that
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will not be explained here; for an introduction see (Bastian 1998). We will only
describe, how load balancing is controlled from within the UG shell.

If you compare the script files coupled3d.scr and parallel3d.scr, you
will find that the grid refinement has been changed, from

j = 0;
repeat {

if (j == MAXLEVEL) break;
refine $a;
j = j+1;

}

to

j = 0;
repeat {

if (j==LBLEVEL) {
if (conf:parallel) ex lb4.scr;

}
if (j==MAXLEVEL) break;
refine $a;
j=j+1;

}

The variable LBLEVEL has been set at the top of the script file. It stores the
number of the multigrid level on which load balancing should be performed.
Since the actual load balancing command is rather complex, it is hidden in the
file lb4.scr. The variable conf:parallel stores whether we are running a
parallel program, so no unnecessary execution of the load balancing script is
performed in the sequential case. By using conf:parallel it is possible to
employ the same script for sequential and parallel computations; just enclose the
commands that apply only for parallel computations in if (conf:parallel)�
... � -blocks.
For the tutorial example it is sensible to perform load balancing only on the

level LBLEVEL, because on coarser levels there are so few elements that distribut-
ing them would delegate so few elements to each processor that communication
time would become a noticeable factor, especially if you are using a workstation
cluster. (A grid with 96 elements, distributed onto 16 processors would leave
only six elements on each processor.) On the levels l � LBLEVEL a new load
balancing wouldn’t improve the grid distribution but please bear in mind that
these explanations only hold for the tutorial example with its simple grid and
geometry.

Now we will take a quick look the file lb4.scr. As we have noted above, this
file exists to hide the complexity of the actual load balancing command lb4. lb4
is based on the load balancing toolkit CHACO, which has been integrated into
UG and replaced lb4s predecessors lb1 . . .lb3.

hal9000> head lb4.scr
# set depth of clusters
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StartLevel = @LBLEVEL;
Depth = 2;
MinElem = 1;
LB = 0;

if (LB == 0)
{

# partition with RCB
lb4 @StartLevel @Depth 1 @MinElem 500 10 0 0 0 1 0 0 0;

}

The most important settings for lb4 have been parameterized in the script:

StartLevel This is the level, from which lb4 starts load balancing. If the multi-
grid hierarchy is already five levels deep, calling lb4 with StartLevel=2
will generate a load-balanced multigrid hierarchy from level 2.

MinElem The minimal number of elements that each processor should store.

LB Determines the load balancing strategy that is used. Recursive Coordi-
nate Bisection (RCB) and Recursive Spectral Bisection (RSB) with the
Kernhigan-Lin algorithm (KL) are among the most common choices.

Another difference between the sequential and the parallel example is the
initialization of the multigrid smoother.

npinit ilu $damp 0.92;

The same applies for the t smooth numproc, a symmetric Gauss-Seidel-
Smoother. Damping becomes necessary in the parallel case because the par-
allel smoother isn’t implemented as an exact copy of the sequential smoother.
Apart from the fact that implementing a parallel smoother that yields exactly the
same results as its sequential counterpart is complicated for unstructured grids,
the real reason for using a different approach are the considerably greater com-
munication requirements of such a smoother. The method implemented in UG
performs one smoothing step in each partition of the grid and then performs an
update of the solution (which requires only one communication of each pro-
cessor with its neighbours). The resulting method is a block-Jacobi method in
which the matrix blocks correspond to grid partitions, and the Jacobi-like nature
of the algorithm explains why damping becomes necessary.1

1Another implication of this method is, that if you are using an exact solver on your coarsest
grid, you will have to make sure that it is stored on one processor.
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Basic data types

This chapter provides a short introduction into basic UG data types as far as they
are important to understand the implementation of the tutor problem class. We
will not discuss the implementation of the data types in detail but we will rather
concentrate on what data types there are and how they can be accessed. Most
data types to be discussed here are defined in the file UG/ug/gm/gm.h. Table 4.1
gives the names of the basic data types together with a short description.

4.1 Unstructured mesh data structure
The finite element mesh is represented by the first seven data types in Table 4.1.
We shortly describe each datatype and its most important attributes. Access to
components of the individual data types is usually done via macros defined in
UG/ug/gm/gm.h. We will write these macros here in the form of functions since
this makes clear the types of the parameters and the return value. Typically,
“functions” with all upper case names are macros in UG. Basic data types such
as short, int, float and double are used in UG via the upper case names
SHORT, INT, FLOAT and DOUBLE. These macros are the mapped to appropriate
machine-dependent data types in the file UG/ug/arch/compiler.h.

Table 4.1: Overview of UG basic data types.

data type short description
MULTIGRID mother of all information
GRID access all data on a single grid level
ELEMENT generic element type, provides local access
NODE level-dependent part of a mesh node
VERTEX level-independent part of a mesh node
LINK makes a list of all neighboring nodes
EDGE bidirectional connection of two nodes
BNDP point located on a boundary segment
BNDS element face located on a boundary segment
VECTOR data associated with a geometric object
MATRIX a (block) matrix entry
VECDATA DESC describes layout of a vector
MATDATA DESC describes layout of a matrix

33
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4.1.1 MULTIGRID

The MULTIGRID data type is a container type representing a complete hierarchi-
cal mesh structure. It provides access to the data objects on each mesh level and
some general statistics such as number of elements, number of nodes, etc..

GRID *GRID ON LEVEL (MULTIGRID *mg, int l);

This macro provides access to individual levels of the mesh. It returns a pointer
to a GRID structure which is defined below. The highest level available and the
“current” level maintained by the user interface are accessible via

INT TOPLEVEL (MULTIGRID *mg);

INT CURRENTLEVEL (MULTIGRID *mg);

4.1.2 GRID

The GRID data type provides access to all data objects on a mesh level. All
ELEMENT, NODE, VERTEX and VECTOR objects on a mesh level are connected in a
double linked list structures (each type in a different list). The first elements of
these lists are accessible via

ELEMENT *FIRSTELEMENT (GRID *g);

NODE *FIRSTNODE (GRID *g);

VERTEX *FIRSTVERTEX (GRID *g);

VECTOR *FIRSTVECTOR (GRID *g);

4.1.3 ELEMENT

The ELEMENT is an abstract data type. It can represent a triangle or a quadrilateral
in 2D or a tetrahedron, a pyramid, a prism or a hexahedron in 3D. The size of
each element is determined individually by the UG grid manager. The size also
depends on whether the element is at the boundary of the domain and where
degrees of freedom are required. It is therefore mandatory to access an element
only via the macros explained in the following.

INT TAG (ELEMENT *e);

Returns the element tag indicating the element type. Tag values are defined in
UG/ug/gm/gm.h.

INT SUBDOMAIN (ELEMENT *e);

A domain can be subdivided into subdomains by defining internal boundaries.
Each element can only be part of exactly one subdomain.

ELEMENT *SUCCE (ELEMENT *e);

Returns a pointer to the next element in the list of elements on a grid level.
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INT CORNERS OF ELEM (ELEMENT *e);

Returns the number of corners of the element.

INT EDGES OF ELEM (ELEMENT *e);

Returns the number of edges of the element.

INT SIDES OF ELEM (ELEMENT *e);

Returns the number of sides (faces) of the element.

NODE *CORNER (ELEMENT *e, INT i);

Returns a pointer to the i’th corner node of the element.

ELEMENT *NBELEM (ELEMENT *e, INT i);

Returns a pointer to the neighboring element over face i. A NULL pointer indi-
cates that this face is a boundary face.

INT NSONS (ELEMENT *e);

Returns the number of son elements on the next higher element that originated
from refinement of the given element.

ELEMENT *SON (ELEMENT *e, INT i);

Returns a pointer to the i’th son element.

ELEMENT *EFATHER (ELEMENT *e);

Returns a pointer to the element on the next coarser level from which the given
element originated during refinement.

VECTOR *EVECTOR (ELEMENT *e);

Returns a pointer to the VECTOR structure attached to the element.

BNDS *ELEM BNDS (ELEMENT *e, INT i);

Returns a pointer to a BNDS structure containing information where face i is
located on the boundary.

4.1.4 NODE

The node data type represents a mesh node. Nodes on a fine grid level that
already existed in the coarser level are represented by seperate NODE objects but
share a common VERTEX object.

VERTEX *MYVERTEX (NODE *n);

provides access to this corresponding VERTEX object.
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NODE *SUCCN (NODE *n);

Returns a pointer to the next node in the double linked list of nodes on each
mesh level.

VECTOR *NVECTOR (NODE *n);

Returns a pointer to the VECTOR structure attached to the node.

4.1.5 VERTEX

The VERTEX data type provides common information shared by nodes at the
same position but on different grid levels.

VERTEX *SUCCV (VERTEX *v);

Returns a pointer to the next vertex in the double linked list of vertices on each
mesh level.

INT OBJT (VERTEX *v);

Returns BVOBJ if the vertex is at the boundary of the domain and IVOBJ else.

DOUBLE XC (VERTEX *v);

DOUBLE YC (VERTEX *v);

DOUBLE ZC (VERTEX *v);

These macros return the x, y and z coordinate of the position of the vertex. The
position of the vertex can also be accessed as an array of length DIM via

DOUBLE *CVECT (VERTEX *v);

BNDP *V BNDP (VERTEX *v);

Returns a pointer to a data structure holding information about the position on
the domain boundary.

4.1.6 LINK AND EDGE

These data types provide a list of neighboring nodes for each NODE object. Nodes
are neighbors if they are connected by an edge in the mesh. Degrees of freedom
(in the form of a VECTOR object) can be attached to an EDGE object.

These data structures are not explained here since they will not be needed in
the tutorial problem class.
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4.2 Geometry data structure
A domain Ω in UG is described by its boundary ∂Ω and possibly by internal
boundaries which divide the domain into subdomains. The boundary is sup-
posed to be piecewise smooth and is therefore described by a collection of
boundary segments. Each boundary segment is given by a function mapping
a parameter interval to a d � 1-dimensional manifold, d � 2 � 3. The topology
of the domain (number of boundary segments, connectivity of boundary sege-
ments) cannot be changed during the computation.

The representation of domains is handled by a domain module in UG and is
seperated from the representation and management of the mesh data structure.
Two different domain modules are available and can be selected at compilation
time: The “standard domain” and the “linear grid model” domain. In the stan-
dard domain the user has to code a C-function for each boundary segment. This
is appropriate for simple piecewise smooth objects such as a circle, a cylinder or
a torus. In the linear grid model a boundary segment is given by a simplex mesh
(a polygon in 2D, a triangular surface mesh in 3D).

The mesh data structure is independent of the domain representation and ac-
cesses the domain definition via the domain interface. If a VERTEX object or a
face (edge in 2D) of an ELEMENT object is at the boundary of the domain, the
correspnding position is maintained in a corresponding BNDP or BNDS structure
which is filled by the domain module.

Boundary conditions are provided by the user seperately for each boundary
segment. The parametrization can be used to change the type and value of the
boundary condition accordingly.

In the discretization code it is necessary to access this boundary condition
data. This is done via the following functions exported by each domain module.
In this way discretization code is independent of the domain module used.

BNDP BndCond(BNDP *p, INT *n, INT i, DOUBLE *in,
DOUBLE *v, INT *t);

Evaluates user boundary condition function for boundary position given by p.
Since a boundary node can be located on several boundary segments simultane-
ously, this number of segments is returned in the parameter n. One then usually
calls the function with i set to all values from 0 to *n-1 and checks whether all
boundary conditions matches or prefers Dirichlet over Neumann boundary con-
ditions. The array in contains additional parameters to be passed to the users
function and results are returned in v and t.

BNDS BndCond(BNDS *s, DOUBLE *local, DOUBLE*in,
DOUBLE *v, INT *t);

Evaluates user boundary condition function for the boundary face s. Position
with this face is given by local in the local coordinate system of the boundary
face. Parameters in, v and t are the same as above.
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4.3 Sparse matrix vector data structure
Numerical data can be associated with nodes, edges, faces and elements of the
mesh. Numerical data for each such object is stored in the VECTOR data type
as small array. The size of this array depends on the type of geometrical object
the VECTOR object is associated with. In 3D there can be four different sizes of
the VECTOR objects. The sizes are determined by the format associated with the
multigrid (see the format command in the introductory example).

Sparse matrices are stored in a list based block compressed row storage
scheme. A VECTOR object has a list of MATRIX objects. Each MATRIX object
stores the matrix entries coupling the degrees of freedom in two corresponding
VECTOR objects. A MATRIX object may itself contain a sparse matrix which is
handy in high-dimensional PDE systems.

4.3.1 VECTOR

These are the most important aspects of the VECTOR data type:

DOUBLE VVALUE (VECTOR *v, INT i);

Accesses the i’th value stored in the VECTOR object. This macro can also be
used as an lvalue in order to assign new values.

VECTOR *SUCCV (VECTOR *v);

All VECTOR objects on a grid level are connected in a double linked list structure.
This macro returns a pointer to the next element in the list.

void SET SKIP BIT (VECTOR *v, INT eq, INT val);

Each VECTOR object maintains a list of so-called “skip bits”. These are used
to inform the solver about dirichlet boundary conditions and are necessary for
proper operation of the multigrid transfer operators. Parameter eq corresponds
to the component in case of a system of PDEs and val is either 0 or 1.

INT VECSKIPBIT (VECTOR *v, INT eq);

Reads the skip bits.

MATRIX *VSTART (VECTOR *v);

Returns first element of the matrix list for this vector. This list contains the row
of the matrix for all degrees of freedom stored in v.

MATRIX *GetMatrix (VECTOR *v1, VECTOR *v2);

Returns the MATRIX object in the list of v1 the contains the coupling with v2.

4.3.2 MATRIX

MATRIX objects are only accessible via the list head in the VECTOR objects.
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DOUBLE MVALUE (MATRIX *m, INT i);

Provides access to the matrix entries. Can be used for reading and writing.

MATRIX *MNEXT (MATRIX *m);

Returns the next MATRIX object or a NULL pointer if the end of the list is reached.

INT MDIAG (MATRIX *m);

Returns 1 if the given MATRIX object is a diagonal entry.

VECTOR *MDEST (MATRIX *m);

If the given MATRIX object m is in the list of VECTOR object v1 and v2=MDEST(m)
then m contains all the matrix entries coupling degrees of freedom in v1 with
those in v2. In a standard compressed row storage scheme this is equivalent to
the column index.

4.3.3 VECDATA DESC

The VECTOR data type contains all numerical data at a geometrical object that
is ever needed during a computation. E. g. in case of a PDE system with two
components it might contain two values for the solution, two values for the right
hand sides and any other quantities needed in the linear/nonlinear solvers. When
a solver is called we need to specify exactly where the right hand side and the
solution is stored in each VECTOR object. This is the job of the VECDATA DESC
structure (“vector data descriptor”).

We only describe one macro here to access a VECDATA DESC structure.

SHORT *VD ncmp cmpptr of otype(VECDATA DESC *vd,
INT loc, INT *n);

Given a VECDATA DESC and a geometric location, e. g. NODEVEC this macro re-
turns the number of double values used by the given VECDATA DESC in the pa-
rameter n. The indices of the individual components are given in the return value
of type SHORT *.

4.3.4 MATDATA DESC

A MATRIX object may contain the entries of more than one matrix, e. g. a stiff-
ness matrix and an incomplete decomposition. The MATDATA DESC (“matrix data
descriptor”) describes the layout of a matrix, i. e. which values in the MATRIX
objects are used for the matrix.
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SHORT *MD nr nc mcmpptr of ro co(MATDATA DESC *md,
INT sloc, INT dloc, INT *nr, INT *nc);

Given a MATDATA DESC and a source and destination location this function re-
turns the size of the block matrix coupling deegrees of freedom in these two
locations and the individual positions of these entries in the MATRIX data struc-
ture. E. g. sloc and dloc may both be specified as NODEVEC.
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The tutorial application

5.1 Overview
The tutorial code custumizes the UG framework to solve a certain set of partial
differential equations – a groundwater flow equation and a solute transport equa-
tion. It is structured into two parts: the problem class containing the discretiza-
tion scheme and the application containig the description of domains, boundary
conditions and coefficient functions. Together they make up a complete simula-
tion model.

In this section we will look at the application part, the next section will
treat the proplem class implementation. The tutorial code can be found in the
UG/tutor directory. The subdirectories appl and pclib contain the application
and problem class part, respectively.

5.2 The main() function
Every C (and C++) program starts execution at the function called main(). This
function is contained in tutor.c in the application directory and is shown in
Fig. 5.2.

The main() function is quite short. Its purpose is to initialize the UG frame-
work (line 6 in the figure), the tutorial problem class (line 9) and setup the appli-
cation specific parts (lines 17 to 26). The application customizes the framework
by adding descriptions of domains, boundary condition functions and provid-
ing application specific parts of the simulation model (like a viscosity value, for
example).

After that is done main() passes control to UG by calling the function
CommandLoop() in line 29. This brings up the shell and your application is
ready to receive commands.

In the following we will look into how a domin is set up and how the applia-
tion specific part of a simulation model is set up.

5.3 Setting up a domain
Consider the two–dimensional domain in the left part of Fig. 5.2. It is multi-
ply connected and consists of three different subdomains with an interface be-
tween them. Such a (complicated) domain is represented in UG by specifying its
boundary which is supposed to consist of piecewise smooth parts called “bound-
ary segments”. Each boundary segment is given by a mapping from a parameter

41
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1 int main (int argc, char **argv)
2 {
3 INT err;
4

5 /* init ug library */
6 if (InitUg(&argc,&argv)!=0) return(1);
7

8 /* init problem class library next */
9 if ((err=InitTutor())!=0)

10 {
11 printf("ERROR in main while: called routine line %d\n",
12 (int) HiWrd(err), (int) LoWrd(err));
13 printf ("aborting ug\n");
14 return (1);
15 }
16

17 /* domains */
18 #ifdef __TWODIM__
19 if (InitDomains2d()!=0) return(1);
20 #endif
21 #ifdef __THREEDIM__
22 if (InitDomains3d()!=0) return(1);
23 #endif
24

25 /* problems */
26 if (InitProblems()!=0) return(1);
27

28 /* execute commands till quit */
29 CommandLoop(argc,argv);
30

31 return(0);
32 }

Figure 5.1: The main() routine of the tutorial application
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Figure 5.2: A two–dimensional domain.

space (in 2D a line segment) to a d � 1–dimansional manifold (a curve or a sur-
face). In addition we have to specify how the individual boundary segments
are connected to make up the subdomains. The points in space where two or
more boundary segments meet are called “corners”. Typically this is where the
boundary is non–smooth and where you want to have a node in your mesh.

We consider the process of describing a two–dimensional domain by looking
at a simple unit circle (right part of Fig. 5.2). The code for this domain is given
in the file domains2d.c in the application directory.

The domain description in UG requires that the two corners associated with a
(two–dimensional) boundary segment are different. Therefore we must split up
the boundary of the circle into two segments. In our implementation we use the
upper and the lower part, i. e. the corners will be � 1 � 0 � and � � 1 � 0 � .

For each segment we have to write a C–function with a specific format that

1 static INT circleBoundaryUpper (void *data, DOUBLE *param, DOUBLE *result)
2 {
3 DOUBLE lambda;
4

5 /* retrieve parameter value */
6 lambda = param[0];
7

8 /* check range */
9 if ((lambda<0.0)||(lambda>1.0)) return(1);

10

11 /* fill result */
12 result[0] = cos(PI*lambda); /* x */ /* PI defined in misc.h */
13 result[1] = sin(PI*lambda); /* y */
14

15 /* return ok */
16 return(0);
17 }

Figure 5.3: Function definig upper part of the unit circle
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implements the mapping. For the upper half this function is shown in Fig. 5.3.
This function is called with a parameter value given in param and returns the cor-
responding point in 2D–space in result. The parameter range can be choosen
arbitrarily and is � 0 � 1 � here.

The main() function shown above calls the function InitDomains2d(),
this in turn calls the function InitUnitCircle() which is shown in
Fig. Fig:UnitCircleFunction. As its name implies this function creates a
description of the unit circle domain within the UG framework. There it is
stored in the (standard) domain module in a certain data structure which is not
of interest to us. Note that the creation of a domain does not mean that the
application will use the unit circle domain for the simulation. You can create an
arbitrary number of different domains within your application at initialization
time. The domain to be used for a simualtion is selected later by the new
command in your script file.

A domain description is created by first calling the (dimension–independent)
function CreateDomain(). For the case of the unit circle, see Fig. 5.3. As pa-
rameters one has to specify the name, a ball containing the domain, the number
of boundary segments and the number of corners the domain consists of. Then
the function CreateBoundarySegment2Dmust be called for each boundary seg-
ment to be defined. Parameters are: the name of the boundary segement, the left
and right subdomain (the segment has an orientation by walking on it in the
direction of increasing parameter values), the number of the segment (starting
with 0), The corner where the segment starts (i. e. the point corresponding to
the smallest parameter value) and where it ends (i. e. the point corresponding to
the largest parameter value), the resolution to be used for drawing the boundary
segment, the range of the parameter, a pointer to the function doing the param-
eter mapping and finally a user definable pointer. This user definable pointer is
given to the mapping function as its first argument (see Fig. 5.3).

Going back to Fig. 3.3 you can see how this domain is used for a simula-
tion in a script file (line 8) and how an initial mesh is created (lines 11–16).
The shell–command bn inserts boundary nodes on a given segment (by spec-
ifying its number) and the parameter value. As you can see six points are
inserted at the boundary at positions ��� 2 � 2 ��� 2 � 2 � , � 0 � 1 � , � � � 2 � 2 ��� 2 � 2 � ,
� � � 2 � 2 � � � 2 � 2 � , � 0 � � 1 � and ��� 2 � 2 � � � 2 � 2 � . The nodes at corner points
� 1 � 0 � and � � 1 � 0 � are not defined in the script file, they are already inserted by
the new command by default. This feature can not be switched off. This is
because a side (edge or face) of an element must always correspond to exactly
one boundary segment. Therefore you always need to have nodes at the corner
points of a domain.

As you might suspect, this description of a domain gets quite tedious for
complicated domains. Especially in three dimensions where it is sometimes
not so easy to find the mapping functions. For that reason we also omit the
description of the three–dimensional case here, maybe I add it later.
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1 static INT InitUnitCircle (void)
2 {
3 DOUBLE radius,MidPoint[2];
4

5 /* allocate new domain structure */
6 MidPoint[0] = MidPoint[1] = 0.0;
7 radius = 1.05;
8 if (CreateDomain(
9 "circle", /* name of the new domain */

10 MidPoint,radius, /* circle containing the domain */
11 2, /* number of boundary segments */
12 2, /* number of corners */
13 YES /* true if domain is convex */
14 )==NULL) return(1);
15

16 /* allocate the boundary segments, segment allocation must */
17 /* immediately follow the domain definition. */
18 if (CreateBoundarySegment2D(
19 "circle bnd upper", /* name of the boundary segment */
20 1, /* number of left subdomain */
21 0, /* number of right subdomain */
22 0, /* number of segment, startng with 0*/
23 0, /* number of corner where segm start*/
24 1, /* number of corner where segm ends */
25 40, /* resolution, use 1 for straight li*/
26 0.0, /* begin of parameter interval */
27 1.0, /* end of parameter interval */
28 circleBoundaryUpper, /* function mapping parameter to wor*/
29 NULL /* user defined pointer to be suppli*/
30 )==NULL) return(1);
31 if (CreateBoundarySegment2D(
32 "circle bnd lower", /* name of the boundary segment */
33 1, /* number of left subdomain */
34 0, /* number of right subdomain */
35 1, /* number of segment, starting with0*/
36 1, /* number of corner where segment st*/
37 0, /* number of corner where segment en*/
38 40, /* resolution, use 1 for straight li*/
39 0.0, /* begin of parameter interval */
40 1.0, /* end of parameter interval */
41 circleBoundaryLower, /* function mapping parameter to wor*/
42 NULL /* user defined pointer to be suppli*/
43 )==NULL) return(1);
44

45 /* return ok */
46 return(0);
47 }

Figure 5.4: Function making the unit circle domain know to the UG framework.
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5.4 Setting up a problem

5.4.1 NUMPROCS

The tutorial problem class solves the general problem given in Eqs. (3.2) and
(3.3). We want the different coefficient functions (like viscosity, density, per-
meability, source terms etc.) in these equations not to be hardcoded into the
discretization scheme but rather to be supplied by the application. The same
also applies for boundary and initial conditions. From the point of view of the
UG framework it is arbitrary how the discretization scheme gets this informa-
tion from the application: It involves only communication between the problem
class and the application. Nevertheless UG provides (at least two) different ways
to ease this communication. Boundary conditions are treated differently since
they involve the geometry representation. The way how to prescribe boundary
conditions depends on the domain module that is used (in our case standard
domain).

Let us first consider the flow equation (3.2) now. Besides boundary conditions
there are five parameters for the flow problem: Permeability, viscosity, density,
gravity vector and source term. Using an object–oriented approach we design an
abstract class containing these methods and then provide different realizations
in the application code. In C we mimick a class definition by a structure with
function pointers. This C structure is given in Fig. 5.4.1 and can be found in
the file flow.h in UG/tutor/pclib. Historically these “class definitions” have
been known as “numerical procedures”, “numprocs” for short, in UG.

Looking closely, we find a sixth method in this class definition: the Darcy
velocity u. This function is not used in the discretization of the flow problem
but it is used in the discretization of the transport problem where it is one of the
parameters.

Another thing to mention about the methods defined in NP FLOW PARAM is
that every method receives a pointer to the object as its first argument. This
corresponds to the this pointer in C++.

Class NP FLOW PARAM shown in Fig. 5.4.1 is derived from a more general
class called NP BASE shown in Fig. 5.4.1. In fact all numprocs are derived from
this abstract base class. NP BASE adds three more methods to our class: setting
of parameters with Init(), display of status with Display() and execution of
some action with Execute. These methods are very general since they apply to
all numprocs, e. g. all numerical algorithms in UG are derived from this class.
The Init(), Display() and Execute functions will never be called by the
discretization scheme, rather these methods are called by the shell commands
npinit, npdisplay and npexecute which we already encountered in our first
script file in Chapter 3.

Now how are objects of class NP FLOW PARAM instantiated? They are instan-
tiated by the UG framework when the command npcreate is issued on the UG
shell. Since objects are created by the UG framework it needs to know the class
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1 struct np_flow_param {
2

3 NP_BASE base; /* inherits base class */
4

5 /* functions */
6 INT (*Permeability)
7 (struct np_flow_param *, /* pointer to (derived) object */
8 DOUBLE *, /* position vector */
9 INT , /* subdomain id */

10 DOUBLE *); /* result tensor */
11 DOUBLE (*Viscosity)
12 (struct np_flow_param *, /* pointer to (derived) object */
13 VECTOR *); /* may depend on any nodal quantity*/
14 DOUBLE (*Density)
15 (struct np_flow_param *); /* is constant */
16 INT (*Gravity)
17 (struct np_flow_param *, /* pointer to (derived) object */
18 DOUBLE *); /* result vector */
19 DOUBLE (*Source)
20 (struct np_flow_param *, /* pointer to (derived) object */
21 DOUBLE *, /* position vector */
22 INT); /* subdomain id */
23 INT (*DarcyVelocity)
24 (struct np_flow_param *, /* pointer to (derived) object */
25 const ELEMENT *, /* element */
26 DOUBLE *, /* position in local coordinates */
27 DOUBLE *); /* result vector */
28 };
29 typedef struct np_flow_param NP_FLOW_PARAM;

Figure 5.5: A “class definition” providing parameters for the flow problem.

1 struct np_base {
2

3 /* data */
4 ENVVAR v; /* is an environment variable */
5 MULTIGRID *mg; /* associated multigrid */
6 INT status; /* has a status, NO type and size...*/
7

8 /* functions */
9 INT (*Init) (struct np_base *, INT, char **); /* initializing routine */

10 INT (*Display) (struct np_base *); /* Display routine */
11 INT (*Execute) (struct np_base *, INT, char **); /* Execute routine */
12 };
13 typedef struct np_base NP_BASE;

Figure 5.6: The NP BASE class.
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1 typedef struct {
2

3 NP_FLOW_PARAM fp; /* extend this class */
4

5 /* variables */
6 VECDATA_DESC *p; /* we need pressure field */
7 INT p_comp; /* for fast access */
8

9 } NP_SIMPLE_FLOW;

Figure 5.7: The NP SIMPLE FLOW class (to be found in problems.c in
UG/tutor/appl.

definitions. A numproc class definition is made known to the framework via the
CreateClass() function call (see the example below).

5.4.2 AN EXAMPLE

We are now in a position to do a complete example how a flow problem is de-
scribed using class NP FLOW PARAM. The code to be described in this subsection
is contained in the file problems.c in UG/tutor/appl. In order to be able to
compute the Darcy velocity we will need to know the pressure field. In Fig. 5.4.2
a new class is derived from NP FLOW PARAM where we added a vector data de-
scriptor variable of type VECDATA DESC, see Chapter 4. This essentially contains
information where the pressure field is stored in memory.

Now we have to give concrete implementations of all the abstract meth-
ods in NP SIMPLE FLOW. These are the functions from NP BASE and from
NP FLOW PARAM.

Let us start with the Init()method from NP BASE. It is shown in Fig. 5.4.2. It
gets a pointer to the object it has to initialize as first argument. Since it is a base
class method this object is of type NP BASE. The other arguments contain the
command line given after the npinit command on the shell. Like the arguments
to the C main() function this is the number of options and an array of strings
containing each option. The body of the function then looks for an option of
the form $p name, where name is then interpreted as the name of a vector data
descriptor. This is done by the function ReadArgvVecDesc(). If no such vector
data descriptor is found the status NP NOT ACTIVE is returned, indicating that
initialization is not complete. If one is found the component number is stored in
the p comp attribute for later use.

There is no room here to discuss all functions in detail. Let us look at one
more function, SimpleFlowPerm(), which is shown in Fig. 5.4.2. It returns the
permeability tensor in the out array. As arguments it gets the position in array x
and the subdomain number sd. As you can see, we assign different permeability
values according to the subdomain number. The flow model allows for a full
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1 static INT NPSimpleFlowInit (NP_BASE *theNP, INT argc , char **argv)
2 {
3 NP_SIMPLE_FLOW *np;
4 INT n;
5

6 np = (NP_SIMPLE_FLOW *) theNP;
7 np->p = ReadArgvVecDesc(theNP->mg,"p",argc,argv);
8

9 if (np->p == NULL)
10 return(NP_NOT_ACTIVE);
11

12 np->p_comp = VD_ncmp_cmpptr_of_otype(np->p,NODEVEC,&n)[0];
13 if (n!=1) return(NP_NOT_ACTIVE);
14

15 return(NP_ACTIVE);
16 }

Figure 5.8: The Init() method.

permeability tensor but we return only a diagonal matrix with identical values
on the diagonal.

Imagine an object of type NP SIMPLE FLOW in memory. How do the function
pointers in this structure get assigned their values. This is done by the con-
structor function SimpleFlowConstruct shown in Fig. 5.4.2. As discussed,
Creation of objects is done by the UG framework. The code segment

if (CreateClass(FLOW_CLASS_NAME ".sf",sizeof(NP_SIMPLE_FLOW),
SimpleFlowConstruct))

return (__LINE__);

makes a class definition known to the UG framework. It tells UG the name of
the class, in this case sf for “simple flow”, the size of an object of this class and
a pointer to the constructor function. When the command

> npcreate sfobj $c sf;

is issued on the shell an object of type NP SIMPLE FLOW is created in memory
and the creator function is called for it, i. e. the proper function pointers are
assigned. This object is known in the UG framework under the name sfobj.
In that way it can be passed to other objects as parameters. E. g. consider the
following sequence of script commands:

npcreate sfobj $c sf;
npinit sfobj $p sol;

npcreate bfobj $c bf;
npinit bfobj $A MAT $x sol $b rhs $P sfobj;

The first line creates the object sfobj of class sf which is NP SIMPLE FLOW.
The second line sets the parameters of sfobj. In that case it tells that the location
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1 static INT SimpleFlowPerm (NP_FLOW_PARAM *fp, DOUBLE *x, INT sd, DOUBLE *out)
2 {
3 DOUBLE k;
4

5 switch (sd) {
6 case 1: k = 1.0E-10; break;
7 case 2: k = 1.0E-14; break;
8 case 3: k = 1.0E-8; break;
9 default:

10 k = 1.0E-10; break;
11 }
12

13 #ifdef __TWODIM__
14 out[0] = k; out[1] = 0.0;
15 out[2] = 0.0; out[3] = k;
16 #endif
17

18 #ifdef __THREEDIM__
19 out[0] = k ; out[1] = 0.0; out[2] = 0.0;
20 out[3] = 0.0; out[4] = k ; out[5] = 0.0;
21 out[6] = 0.0; out[7] = 0.0; out[8] = k ;
22 #endif
23

24 return(0);
25 }

Figure 5.9: The SimpleFlowPerm() method.
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1 static INT SimpleFlowConstruct (NP_BASE *theNP)
2 {
3 NP_FLOW_PARAM *np;
4

5 np = (NP_FLOW_PARAM *) theNP;
6

7 /* base functions */
8 theNP->Init = NPSimpleFlowInit;
9 theNP->Display = NPSimpleFlowDisplay;

10 theNP->Execute = NPSimpleFlowExecute;
11

12 /* flow problem functions */
13 np->Permeability = SimpleFlowPerm;
14 np->Viscosity = SimpleFlowViscosity;
15 np->Density = SimpleFlowDensity;
16 np->Gravity = SimpleFlowGravity;
17 np->DarcyVelocity = SimpleFlowDarcyVelocity;
18 np->Source = SimpleFlowSource;
19

20 return(0);
21 }

Figure 5.10: The constructor function SimpleFlowConstruct.

of the pressure field in memory is stored in a vector data descriptor named sol.
In the third line an object bfobj is created which is of class bf which is the
discretization scheme. Finally the discretization object is initialized with the
descriptors for the matrix, solution, which is the pressure field sol, and the right
hand side. With the $P sfobj option we tell the discretization object that it
should use sfobj to get its coefficient functions.

File problem.c contains four different class definitions. In order to find out
what they do it is best to first look at the CreateClass() calls and then look at
the corresponding constructor function to see what function pointers it assigns.

The coefficent functions for the transport problem are contained in class
NP TRANSPORT PARAM shown in Fig. 5.4.2. It contains methods for the non-
linearity of the flux function, ϕ � C � , porosity, density, dispersion tensor, source
term and initial conditions.

5.4.3 BOUNDARY CONDITIONS

Boundary conditions are set up similar to a domain defintion. For each bound-
ary segment a corresponding boundary condition function has to be written that
uses the same parametrization and returns type and value of the boundary con-
dition for a given parameter value.

Fig. 5.4.3 shows such a function for the upper half circle and corresponds to
the boundary segment function in Fig. 5.3. The in argument contains the param-
eter value, value and type of the boundary condition are returned in outValues
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1 struct np_transport_param {
2

3 NP_BASE base; /* inherits base class */
4

5 /* functions */
6 DOUBLE (*Phi)
7 (struct np_transport_param *, /* pointer to (derived) object */
8 DOUBLE); /* Concentration */
9 DOUBLE (*Porosity)

10 (struct np_transport_param *, /* pointer to (derived) object */
11 DOUBLE *, /* position vector */
12 INT); /* subdomain id */
13 DOUBLE (*TDensity)
14 (struct np_transport_param *); /* is constant */
15 INT (*Dispersion)
16 (struct np_transport_param *, /* pointer to (derived) object */
17 DOUBLE *, /* position vector */
18 INT , /* subdomain id */
19 DOUBLE *, /* velocity */
20 DOUBLE *); /* result tensor */
21 DOUBLE (*TSource)
22 (struct np_transport_param *, /* pointer to (derived) object */
23 DOUBLE *, /* position vector */
24 INT); /* subdomain id */
25 DOUBLE (*Initial)
26 (struct np_transport_param *, /* pointer to (derived) object */
27 DOUBLE *); /* position vector */
28 };
29 typedef struct np_transport_param NP_TRANSPORT_PARAM;

Figure 5.11: Interface class for the transport problem.

1 static INT CircleProblemBoundaryUpper (void *segdata, void *conddata,
2 DOUBLE *in, DOUBLE *outValues, INT *bndType)
3 {
4 DOUBLE lambda,x,y;
5

6 /* retrieve parameter value */
7 lambda = in[0];
8

9 /* return type of boundary condition in bndType array */
10 bndType[0] = DIRICHLET;
11

12 /* return value on outValues array, here exact solution */
13 x = cos(PI*lambda); y = sin(PI*lambda);
14 outValues[0] = x*x*x+y*y;
15

16 /* everything ok */
17 return(0);
18 }

Figure 5.12: Boundary condition definition for the upper half of the unit circle.
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1 static INT InitCircleProblem (void)
2 {
3 /* allocate new problem structure */
4 if (CreateProblem(
5 "circle", /* name of domain where problem lives */
6 "circle problem", /* name of the problem */
7 FLOW_PROBLEMID, /* problem ID exported by problem class */
8 NULL, /* the configuration function (or NULL) */
9 0, /* number of coeff. functions supplied */

10 NULL, /* array with coefficient function ptrs */
11 0, /* number of user functions supplied */
12 NULL /* array with user function ptrs */
13 )==NULL) return(1);
14

15 /* allocate the boundary conditions, boundary condition allocation must */
16 /* immediately follow the problem definition. */
17 if (CreateBoundaryCondition(
18 "circle bnd cond upper", /* name of boundary condition segmen*/
19 0, /* number of corresponding bnd segme*/
20 CircleProblemBoundaryUpper, /* the function giving type and valu*/
21 NULL /* user supplied conddata pointer */
22 )==NULL) return(1);
23 if (CreateBoundaryCondition(
24 "circle bnd cond lower", /* name of boundary condition segmen*/
25 1, /* number of corresponding bnd segme*/
26 CircleProblemBoundaryLower, /* the function giving type and valu*/
27 NULL /* user supplied conddata pointer */
28 )==NULL) return(1);
29

30 /* make bvp, still old style */
31 if (CreateBVP("circle problem","circle","circle problem")==NULL) return (1);
32

33 return(0);
34 }

Figure 5.13: Setting up a boundary value problem.
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and bndType respectively. The identifier DIRICHLET is exported by the prob-
lem class in flow.h and indicates Dirichlet boundary conditions. You can also
specify Neumann (or flux) boundary conditions by specifying NEUMANN.

As with domains and numprocs, the boundary condition function
must be published to the UG framework. This is done in function
InitCircleProblem() shown in Fig. 5.4.3. First a call to CreateProblem()
starts a new problem definition. This problem will be called “circle problem”
and will use the domain named “circle” which has been defined above.
Next we have to give the boundary condition function corrsponding to each
boundary segment with a call to CreateBoundaryCondition. Finally, a call to
CreateBVP() combines the domain “circle” and the problem “circle problem”
into a boundary value problem which is also called “circle problem”. This
actually is the name supplied to the new command when asimulation is started.
For example in first.scr we typed:

new circle $b circle problem $f FlowFormat $h 20M;

to make a multigrid structure called circle using solving the boundary value
problem ($b option) “circle problem”.
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Graphics

In this chapter we give an introduction to the basic understanding of the graphi-
cal subsystem and its usage. At the end you will be able to handle the graphical
facilities. In section 7.1 we will explain the basic data structures (plotobject,
viewedobject, picture, window). It will be explained how to define and initialize
them. In a seperate section we describe the high-level methods available for pic-
tures (section 7.2). Finally a list of the basic objects (plotobjects) implemented
in UG is given in section 7.3. Here the various options of these objects are de-
scribed in detail. One the one hand this section serves as an overview which
objects are available. Beyond that it should be consulted to figure out the exact
options to initialize the opbject.

7.1 Data structures
The data structures follow, apart of some odd features, the human intuition of
how a picture (of whatever) is made. The basic data structure is the plotobject.
The corresponding data structure, defined in wpm.h is PLOTOBJ. It is a represen-
tation of an object. The aim of the graphics subsystem is display some of the
features of these objects. The objects can have geometrical properties but they
don’t have to. The features of the plotobject will be displayed graphically, so
they have to have geometric representations. Let us consider the scalar solution
of a partial differential equation on a two-dimensional grid. There are many
ways to give a geometrical representation of such a solution or of parts of it. We
like to mention a few of them.

Rep. 1: Graph of the solution along a line (2-dimensional),

Rep. 2: Graph of the solution (3-dimensional),

Rep. 3: Contour lines of some fixed values,

Rep. 4: coding the values of the scalar as colors.

Each of these can be thought of being configurable. Representation 1 depends
on the position of the line. Representation 2 depends on the view one has to the
3-dimensional graph (of course only a projection to a plane can be displayed)
and on the scaling factor mapping the value of the scalar into space. For repre-
sentation 3 the values of the contours may be configurable etc. We have chosen
a object (the scalar solution) which has some geometric parts (it is the solution
on a 2-dimensional domain) and some abstract parts (its values). One can think
of objects, which are purely abstract, like matrices or purely geometrical, like
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a single grid. Lets consider again the four representations of a scalar solution.
It is a matter of choice what to consider a plotobject having in mind something
like this scalar solution. One could keep every of these representations within
one plotobject or one can create four (or even more) seperate ones. In the first
case an appropriate name would be

Rep. 1/2/3/4: Scalar solution,

having four different solutions appropriate names would be

Rep. 1: Line,

Rep. 2: Graph,

Rep. 3: Contours,

Rep. 4: Colors.

Often the choice is clear from technical problems involved. Sometime it is just a
matter of taste or of history. The choice we took in UG w.r.t. the scalar solution
is

Rep. 1: Line,

Rep. 3/4: Scalar.

The idea of representation 2 has no realization in UG. In the sequel we will
speak about a Line-plotobject, a Scalar-plotobject etc. Of course every plo-
tobject has a number of configuration parameters. The name Line-plotobject
is chosen to explain well, what the plotobject represents, whereas the name
Scalar-plotobject is historical. In the past it was the only way to display a
scalar field. One general guide line is that every plotobject has a well-defined
dimension. It is 2 in the cases of the Line-plotobject and the Scalar-plotobject.
This dimension, called the dimesion of the plotobject, does not coincide the the
so-called application-dimension, i.e. the dimension of space of the underlying
partial differential equation.

We now discuss the functionality of the plotobjects. The graphical subsys-
tem is written in C-language following loosely object-oriented concepts. The
reader familar with those concepts will notice a lot of differences to a strict re-
alization. The plotobjects are the basic classes of the graphics. Whereas the
creation and distruction is done for higher level objects inheriting the plotob-
jects, two methods are applicable to each plotobject. It can be initialized using
the UG-command

> setplotobject <class> [$clearOn|$clearOff] [$option1 $option2 ...].

The class of the plotobject is specified at initialization time, not at creation time!
Once created an plotobject can change its class. There is only on option com-
mon to all plotobjects. If ’$clearOn’ is specified (with is default) a previous plot
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on the same picture is erased before the new content is displayed. The options
differ from class to class and will be described below. In section 7.3 we give a
complete list of the plotobjects together with its configuration parameters. The
command refers to a ”current” plotobject, which is related to the ”current” pic-
ture. It links the ”current” picture to the ”current” multigrid. A sample may
serve as an illustration:

> setplotobject Matrix $M A
picture ’pic_0’ and multigrid ’test’ coupled

The second method displays the initialization. It is accessable via the UG-
command

> polist.

Again this command acts on the ”current” plotobject. Common to all plotobjects
a header is printed. As a sample may serve a fully initialized Matrix-plotobject:

> polist
-----------------------
Display of PlotObject
-----------------------
PO-NAME = Matrix
MG-NAME = test
STATUS = ACTIVE:2D
CLEAR FIRST = YES
MIDPOINT = 144.5 144.5
RADIUS = 144.5

range = -4 4
regular conn = YES
extra conn = NO
use log = NO
rel values = NO
Thresh = 0
BV blocks = NO
ind to vec = NO
Matrix = A

The first (significant) line gives the name of the plotobject. The second tells that
the corresponding picture is linked to the multigrid ’test’. The third line reports
the status. It is ACTIVE, i.e. fully initialized and has the plotobject dimension 2
(if it is not fully initialized the status reads ’NOT ACTIVE:2D). Line four reports
the [$clearOn � $clearOff]-option. Finally the midpoint and the radius of the
bounding sphere of the plotobject is displayed. What follows is specific to the
Matrix-plotobject. Have a look to section 7.3 to identify the output and the
options.

The plotobject is inherited by the viewedobject (data structure VIEWEDOBJ
in wpm.h). It adds a view to plotobject, i.e. a plane is defined where to the
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Figure 7.1: Projection of a 3d-plotobject.

plotobject is projected. The plane is a regtanglular surface with well-defined
position and orientation in � 2 or � 3 , according to the plotobject-dimension. It
is specified by its midpoint and the direction of its x- and y-axis. In the 2d-
case the projection is the restriction of the plotobject to that plane. Here and in
the sequel we identify the plotobject with its geometric representation. In the
3d-case additionaly a observer viewpoint has to be specified. Two modi of pro-
jection are available. The parallel projection maps the plotobject parallel to the
perpendicular line onto the plane passing through the observer viewpoint. The
central projection maps the plotobject onto the plane using the central perspec-
tive of the observer. Only in the latter case the distance observer-plotobject is of
importance. The position of the plane (3D: and of the observer) fixes the view-
reference-system (VRS). The VRS is an orthonormal coordinate system with
the x- and yaxis parallel to x- and yaxis of the plane. Its z-axis points from the
observer perpendicular to the plane. Figure 7.1 may illustrate the situation in the
3d-case. The methods available for viewedobjects initialize, modify and display
the view to the plotobject. Table 7.1 and table refTab:Graphics:VO:cmd3 give a
list of the commands related to these methods together with a short description
for 2d- and 3d-plotobjects. First we discuss the command setview in detail.
For 2d-plotobjects the syntax of the command is

> setview [$i]
[$t <x> <y>]
[$s <x> <y>]
[$x <x> <y>];

The setview-command provides for every option resonable default-values. The
t-option sets the target-point, i.e. the midpoint of the projection plane. The
deafult is the midpoint of the domain’s bounding sphere. The s-option allows
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Table 7.1: Commands related to the viewedobject (2d-plotobject)

COMMAND OPTIONS, DESCRIPTION

setview Vaious options, see below.
Initialization/modification.

vdisplay
Displays the setting of the view, see below.

walk � x ��� y � ;
Move the observer in VRS.

zoom � factor � ;
Scaling of the plane by � factor � .

drag � x ��� y � ;
Drags the plane in VRS by � x ��� y � .

rotate � angle � ;
Rotates the plane by � angle � (mathematicaly positive)

to set scaling-factors for each of the spatial directions (e.g. using ’setview $s
1 0.5’ leads to a in y-direction flattended display of the plotobject). The x-
option allows to specify the x-direction of the VRS. This fixes the orientation
as well as the size of the projection-plane. The default is a vector parallel to
the x-direction and a length large enough to display the hole plotobject. The
y-direction is chosen according to that choice. The i-option reinitializes the
view.

For 3d-plotobject the syntax of the setview-command is

> setview [$i]
[$o <x> <y> <z>]
[$t <x> <y> <z>]
[$s <x> <y> <z>]
[$x <x> <y> <z>]
[$p =|<]
[$C]
[$R]
[$P <x> <y> <z>]
[$N <x> <y> <z>];

The options i,t,s,x are like the one for the 2d-plotobjects. The o-option spec-
ifies the observer viewpoint. The default is an intelligent choice acoording to
the main axis of inertia of the plotobject. The p-option sets the projection-mode
(’$p � ’ for central perspective, ’$p � ’ for parallel perspective). The central
perspective is default. The last four options are related to plotobjects which
allow a cut-specification. A cut-plane is defined by one point in space and a
plane-normal, specified by the P- and N-option. If specified only the part of the
plotobject behind the cut-plane is kept (e.g. for displaying it). To make life eas-
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Table 7.2: Commands related to the viewedobject (3d-plotobject)

COMMAND OPTIONS, DESCRIPTION

setview Vaious options, see below.
Initialization/modification.

vdisplay
Displays the setting of the view, see below.

walk � x ��� y ��� z � ;
Move the observer in VRS.

walkaround � α ��� β � ;
Walk around the target point on a sphere. The direction in
the VRS is determined by α (mathematical positive form
x-axis). Walks around by an angle of β.

zoom � factor � ;
Scaling of the plane by � factor � .

drag � x ��� y � ;
Drags the plane in VRS by � x ��� y � . No z-component in
VRS.

rotate � angle � ;
Rotates the plane by � angle � (mathematicaly positive)
around an vector perpendicular to the plane.

ier, the C-option sets an intelligent default. The R-option removes the cut-plane.
Default is no specification of a cut-plane.

The vdisplay-command displays the configuration of the view. A typical
example of a view for a 3d-plotobject is

> vdisplay
-----------------------
Display of View of VO
-----------------------
VO_STATUS = ACTIVE
Dim = TYPE_3D
Observer = 0.3544 0.526 0.9473
Target = 0.1414 0.1 0.09526
PlaneXDir = 0.2079 -0.02079 -0.04158
WinWidth = 0.426

The VO STATUS � ACTIVE tells that the view is specified correcly. A status
NOT ACTIVE means the observer has a non-valid position w.r.t. the plotobject
(within its bounding sphere or behin the object). NOT INIT obviously means the
view is not initialized. The output for Observer,Target,PlaneXDir should
be clear. WinWidth gives the total extension of the projection-plane in VRS’
x-direction. The second way to use the command is
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> vdisplay $s
setview $i

$o 0.354435 0.526028 0.947319
$t 0.141421 0.1 0.0952628
$x 0.206859 -0.00182105 -0.0508042
$p <;

leading to an output which can be used to initialize the view. Ths is usefull since
UG provides interactive graphical facilities to adjust the view.

All commands discussed so far refer to a ”current” plotobject or viewedobject.
The commands related to pictures and UG-windows (data structure PICTURE
and UGWINDOW in wpm.h) can be accessed using unique names. Since explaining
the commands related to pictures take arguments related to UG-windows both
structures are best explained together. An UG-window can be thought beeing a
canvas where one or more pictures can be placed on. UG can handle one or more
UG-windows at a time. Both UG-windows and pictures have unique names
and every picture is related to exactly one UG-window. Both UG-windows and
pictures can be opened and closed at runtime. If a UG-window is closed, all
associated pictures will be closed too. The picture inherits the viewedobject, so
everytime a picture is created/disposed, the inherited structures (viewedobject,
plotobject) is created/disposed too. UG-windows are opened for a specified
outputdevice. The devices available are

1.screen, 2.meta, 3.ps,

4.psbw, 5.ppm.

The screen-outputdevice opens a window on the screen (i.e. X11 on unix-type
systems, ...) and is the only device with interactive facilities. All other outputde-
vices map the openening of a window to opening of a file and are therefore not
interactive. They differ in the file format they they use for writing the graphical
information. The meta-device is related to a UG-specific binary graphics format
for which postprocessing tools are available. The ps- and psbw-outputdevices
write a file in postscript-format, the latter converts all colors to greyscale. Fi-
nally the ppm-outputdevice writes in the portable-pixmap format.

The UG-command to open a UG-window is

openwindow <x> <y> <width> <height>
[$n <window name>]
[$d <outputdevice>]
[$r [0|1]].

The parameters � x � , � y � fix position the lower left corner of the window.
For the screen outputdevice this is a position on the screen’s pixelspace having
the origin on the lower left corner of the screen and having increasing values
in the right and upward direction. � width � and � height � fixes the size of the
window. After creation UG-window is current. UG-windows are closed using
the UG-command
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closewindow [$n <window name> | $a];

This command closes the current UG-window (no option), the named UG-
window (n-option) or all UG-windows (a-option). A UG-window is made cur-
rent using the command

setcurrwindow <window name>.

On the well-defined pixel space of an UG-window an arbitrary number of pic-
tures can be opened by

openpicture [$n <picture name>] [$s <x> <y> <width> <hight>]
[$w <window name>].

If specified it is named � picture name � otherwise a defaultname is chosen.
The s-option specifies size and position relative to the pixel space of the UG-
window ( � x � , � y � is the lower left corner of the picture). Pictures do not
have to lie (entirely) within the UG-window and are allowed to overlap. If the s-
option is not specified the picture takes the size of the UG-window. The picture
is opened in the current UG-window or in � window name � if specified. After
creation a picture is current. Pictures can be close via the command

closepicture [$a | {$w <window name> {<picture name> | $a}}].

It closes the current picture (no options), all pictures of the current UG-window
(only a-option specified), all pictures of � window name � (a-option and w-
option specified) or a specified picture in a specified UG-window (both names
specified). A picture can be made current by

setcurrpicture <picture name> [$w <window name>].

This command can access pictures in the current UG-window or in the specified
one. As a sample we consider the sequence of commands

openwindow 0 0 300 300 $n w1 $d screen;
openpicture $s 10 10 50 50 $n p1;
openpicture $s 50 50 70 70 $n p2;

openwindow 0 0 800 800 $n w2 $d meta;
openpicture $n m1;

openwindow 0 0 800 800 $n w3 $d ps;
openpicture $s 0 0 800 400 $n ps1;
openpicture $s 0 400 800 400 $n ps2;

openwindow 0 0 1000 1000 $n w4 $d psbw;
openpicture $s 0 0 1000 500 $n psbw1;
openpicture $s 0 0 500 1000 $n psbw2;
openpicture $s 100 100 500 500 $n psbw3;

openwindow 0 0 200 200 $n w5 $d ppm;
openpicture $n ppm1;
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creating 9 pictures on 5 UG-windows, each on a different outputdevice. A list
of the currently open pictures is given by the command

> wplist
UgWindow Device Picture VO_Status PlotObjType PO_Status Multigrid
-------- ------ ------- --------- ----------- --------- ---------
w1 screen
w1 screen p1 NOT_INIT --- NOT_INIT ---
w1 screen p2 NOT_INIT --- NOT_INIT ---
w2 meta
w2 meta m1 NOT_INIT --- NOT_INIT ---
w3 ps
w3 ps ps1 NOT_INIT --- NOT_INIT ---
w3 ps ps2 NOT_INIT --- NOT_INIT ---
w4 psbw
w4 psbw psbw1 NOT_INIT --- NOT_INIT ---
w4 psbw psbw2 NOT_INIT --- NOT_INIT ---
w4 psbw psbw3 NOT_INIT --- NOT_INIT ---

# w5 ppm
* w5 ppm ppm1 NOT_INIT --- NOT_INIT ---

giving the names of the UG-windows, used outputdevices and pictures. The
stati of the viewobject and plotobject etc. is shown. The current UG-window
is marked by a hash, the current picture by an asterisk. Remember that the the
methods for the viewedobject and the plotobject refer to the objects inherited by
the current picture.

Other commands related to UG-windows and pictures are given with a short
description in table 7.3

Table 7.3: Commands related to UG-windows and pictures

COMMAND OPTIONS, DESCRIPTION

screensize ;
Prints the size of the screen. The values are
stored in the variables :screensize:width and
:screensize:height.

drawtext � x ��� y ��� text � ;
Draws the text � text � at the pixelcoordinates � x ��� y � .

clearpicture ;
Erases the current picture.

picframe 0 � 1;
Switches Off/On display of the frame for every picture.
The border of a picture is called frame.

picwin ;
Create a new UG-window and move the current picture
there.
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7.2 High-level methods for pictures
In this section we give an overview over the high-level methods available for
pictures. The methods available depend on the class of the inherited plotobject.
The method draw is available for all plotobjects. The method findrange is
available to all plotobjects representing (at least in parts) a numerical solution.
It evaluates the range of numerical values the numerical solution takes. The rest
of the methods are interactive methods which can be used only by an interactive
device as explained in section 7.1.

Before we explain the mothods we briefly introduce the underlying concept.
All high-level methods are implemented in the file wop.c. The main functional-
ity is exported by the c-function

INT WorkOnPicture (PICTURE *thePicture, WORK *theWork).

The first argument refers to a (fully initialized) picture as described in the pre-
vious section. Depending on the initialization a picture can represent a view to
any of the plotobjects available in UG. The data structure WORK defined in wop.h
can be initialized to be any kind of method available for pictures. In that way the
function WorkOnPicture can be considered a matrix. Every matrix entry repre-
sents a method for a (view to a) plotobject. These matrix entries are mapped to
UG-commands or interactive facilities of UG. In table 7.4 the available methods
are marked by an asterisk. Only the first two methods (draw and findrange)
are non-interactive and are accessable via an UG-command. The latter ones are
interactive and accessable only via graphical tools.

Table 7.4: High-level methods for plotobjects
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Matrix � �
Line(2/3d) � �
Grid(2d) � � � � � � �
Grid(3d) � �
HGrid(2d) �
EScalar(2/3d) � �
EVector(2/3d) � �
VecMat(2d) � �

The method draw is mapped to the UG-command

> plot [$o 0|1|2] [$b [<bullet value>]].
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The command displays the plotobject using the associated view of the current
picture. The graphics uses hidden lines/hidden surfaces requiring an odering of
the elements (if option $b is not specified). In that case the option $o offers the
choice of different ordering strategies for the coarse grid elements. In case of 0
(default) an extended datastructure resulting in an ordering of optimal complex-
ity is used. $o 1 results in an algorithm from Newell & Sancha whereas $o 2
uses an modified insertion sort of horrible complexity. The latter one we kept
for historical reasons. If the $b option is specified, a z-buffer is used (optimal
complex).

The method findrange is mapped to the ugcommand

> findrange [$s] [$p] [$z <factor>]

The command finds the range of the values associated with the plotobject. In the
case of the plotobjects Matrix, Line and EScalar the minimal and maximal
values are detected. The output looks like

> findrange
FR_min = 1.2
FR_max = 0.8.

In the case of the plotobject EVector only the maximal value is detected. The
minimal is set to 0. The values are stored in the variables

:findrange:min
:findrange:max.

If the option $p is specified, the values are used to specify the range of the
plotobject. The option $s symetrizes the result. The above example again serves
to explain the behaviour

> findrange
FR_min = 1.2
FR_max = -1.2 .

The option $z � value � zooms the resulting range w.r.t. its midpoint. For the
example above we get

> findrange $z 0.4
FR_min = 1.08
FR_max = 0.92,

> findrange $s $z 0.4
FR_min = 0.48
FR_max = -0.48.

The rest of the methods are interactive. At the bottom of each UG-window
opened on the screen a tool-chest offers the interactive tools. Entering the mouse
in the appropriate region, the functionality of the corresponding tool is shown.

7.3 Plotobjects
The plotobjects fall into three cathegories. The ones independent of the applica-
tion dimension, the ones available for application dimension 2 and the ones for
the application dimension 3. Table 7.5 show the plotobjects available and gives
a reference to the table explaining its usage.
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Table 7.5: The plotobjects available in UG depending on the application dimen-
sion

PLOTOBJECT INDEPENDENT 2D 3D

Matrix Table 7.6 – –
Line – Table 7.7 Table 7.7
Grid – Table 7.8 Table 7.9
HGrid – Table 7.10 –
Escalar – Table 7.11 Table 7.12
EVector – Table 7.13 Table 7.14
VecMat – Table 7.15 –
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Table 7.6: The Matrix plotobject - options for setplotobject

DESCRIPTION The PO represents a matrix corresponding to the sparse ma-
trix in the UG data structure.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: arbitrary.
OPTIONS

$f � from � $t � to �
Specifies the color of matrix entries, values smaller than
� from � are mapped to UG-blue, values higher than � to �
are mapped to UG-red.

Default: -4 4.
$T � tresh � If the absolute value is smaller than � tresh � , the value is

ommitted, a space indicates its existence.
Default: 0.
$l � 0 � 1 � Use the natural logarithm of absolute values to determine

range and color of matrix-entries, if 1.
Default: 0.
$BV � 0 � 1 ��� dash ��� space �

Display UG-blockvectors by dashed lines. The dashes have
the length of � dash � pixels, the space inbetween the length
of � space � pixels.

Default: 0 0 0.
$rel � 0 � 1 � Scale each row of the matrix by the inverse of its diagonal,

if 1.
Default: 0.
$C � 0 � 1 � Include the regular matrix entries,if 1.
Default: 1.
$E � 0 � 1 � Include the extra matrix entries, if 1.
Default: 0.
$M � A � Include the matrix corresponding to the symbol � A � .
Default: none.
$e � MatrixEvalProc �

Use matrix evaluation callback function to specify the value
of the matrix.

Default: none.
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Table 7.7: The Line plotobject - options for setplotobject

DESCRIPTION The PO represents the graph of a scalar field evaluated on a
line within the domain.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: arbitrary.
OPTIONS

2d: $l � lx ��� ly � , 3d: $l � lx ��� ly ��� lz �
Position of the first point of the line, mapped on the left
point of the graph.

Default: 0 0 (0).
2d: $r � rx ��� ry � , 3d: $l � rx ��� ry ��� rz �

Position of the second point of the line, mapped on the right
point of the graph.

Default: 0 0 (0).
$c � color � Sets the color of the graph, 0 means UG-blue, 1 means UG-

red.
Default: 0.
$Ly [0 � 1] If 1 take the logarithm (base 10) of the absolute value of the

scalar field.
Default: 0.
$d � depth � Depth of the recursiv halfening of each line intersection with

an element.
Default: 0.
$e � eval proc �

Name of the element evalution procedure providing the
scalar field.

Default: none.
$s � symbol � Alternative to $e: specification of a scalar vector symbol.
Default: none.
$G � filename �

Gnuplot-option: writes graphical information to
� filename � in gnuplot-format if set.

Default: none.
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Table 7.8: The Grid plotobject - options for setplotobject

DESCRIPTION The PO represents a 2d multigrid hierarchy.
PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: 2.
OPTIONS

$w [c � i � r � a] Including all elements on TOPLEVEL (c), red and green
elements on TOPLEVEL (i), red elements on TOPLEVEL
(r) or all elements (a).

Default: a.
$s � shrink � Shrinks each element by a factor of � shrink � .
Default: 1.
$c [0 � 1 � 2] Color of the elements: No color (0), color according to the

regularity (1) or color according to the MG NPROPERTY
of the multigrid.

Default: 1.
$b [0 � 1] Sets boundary to a distinct color if 1.
Default: 1.
$r [0 � 1] Shows refinement marks on the grid if 1.
Default: 0.
$e [0 � 1] Shows element id’s if 1.
Default: 0.
$S [0 � 1] Shows subdomain of the elements if 1.
Default: 0.
$n [0 � 1] Shows node id’s if 1.
Default: 0.
$m [0 � 1] Includes marks for nodes.
Default: 0.
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Table 7.9: The Grid plotobject - options for setplotobject

DESCRIPTION The PO represents a 3d multigrid hierarchy. Allows the
specification of a cut plane.

PLOTOBJECT-DIMENSION: 3, APPLICATION-DIMENSION: 3.
OPTIONS

$w [c � i � r � a] Including all elements on TOPLEVEL (c), red and green
elements on TOPLEVEL (i), red elements on TOPLEVEL
(r) or all elements (a).

Default: a.
$s � shrink � Shrinks each element by a factor of � shrink � .
Default: 1.
$c [0 � 1 � 2] Color of the elements: No color (0), color according to the

regularity (1) or color according to the MG NPROPERTY
of the multigrid.

Default: 1.
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Table 7.10: The HGrid plotobject - options for setplotobject

DESCRIPTION The PO represents a 2d multigrid hierarchy in 3d view to all
levels.

PLOTOBJECT-DIMENSION: 3, APPLICATION-DIMENSION: 2.
OPTIONS

$w [c � i � r � a] Including all elements on TOPLEVEL (c), red and green
elements on TOPLEVEL (i), red elements on TOPLEVEL
(r) or all elements (a).

Default: a.
$s � shrink � Shrinks each element by a factor of � shrink � .
Default: 1.
$c [0 � 1 � 2] Color of the elements: No color (0), color according to the

regularity (1) or color according to the MG NPROPERTY
of the multigrid.

Default: 1.
$e [0 � 1] Shows element id’s if 1.
Default: 0.
$S [0 � 1] Shows subdomain of the elements if 1.
Default: 0.
$z � z max � The maximum value of z-component to which the CUR-

RENTLEVEL of the multigrid is scaled.
Default: Radius of the BVP.
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Table 7.11: The EScalar plotobject - options for setplotobject

DESCRIPTION The PO represents the scalar field on a 2d multigrid hierar-
chie.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: 2.
OPTIONS

$f � from � $t � to �
Range. Specifies the coloring of the scalar field, values
smaller than � from � are mapped to UG-blue, values higher
than � to � are mapped to UG-red.

Default: 0 1.
$m [COLOR � CONTOUR EQ]

Mode of the coloring. COLOR takes one color for every
part of an element. The parts result from a � depth � -times
recursive subdivision of one element into four pieces (see $d
option). CONTOUR EQ species contourlines. Additionally
the number (option $n) or values (option $v) has to be spec-
ified. The intersection of each contour with an element is
subdiveded recursively � depth � -times (see $d option) into
two part. The coloring is according to the value and range.

Default: COLOR.
$d � depth � Depth.
Default: 0.
$n � nb � Number of contour lines if $m CONTOUR EQ is specified.

The values of the contour lines are equally spaced, starting
from the lower bound of the range (option $f) and ending at
the upper bound (option $t). At least two have to be speci-
fied.

Default: 10.
$v � v1 � , � �!� , � vn � , 1 " n " 10

Alternative way to specify the values of the contour lines.
Has higher priority than option $n.

Default: none.
$g [0 � 1] Includes the grid if specified.
Default: 0.
$e � eval proc �

Name of the element evalution procedure providing the
scalar field.

Default: none.
$s � symbol � Alternative to $e: specification of a scalar vector symbol.
Default: none.
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Table 7.12: The EScalar plotobject - options for setplotobject

DESCRIPTION The PO represents the scalar field on a 2d cut plane inter-
secting a 3d multigrid hierarchie. The part of the grid be-
hind the cut is included. The intersection of an element with
the cut plane is referred to as a cutted element.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: 3.
OPTIONS

$f � from � $t � to �
Range. Specifies the coloring of the scalar field, values
smaller than � from � are mapped to UG-blue, values higher
than � to � are mapped to UG-red.

Default: 0 1.
$m [COLOR � CONTOUR EQ]

Mode of the coloring. COLOR takes one color for every part
of a cutted element. The parts result from a � depth � -times
recursive subdivision of one cutted element into four pieces
(see $d option). CONTOUR EQ species contourlines. Ad-
ditionally the number (option $n) or values (option $v) has
to be specified. The intersection of each contour with an cut-
ted element is subdiveded recursively � depth � -times (see
$d option) into two part. The coloring is according to the
value and range.

Default: COLOR.
$d � depth � Depth.
Default: 0.
$n � nb � Number of contour lines if $m CONTOUR EQ is specified.

The values of the contour lines are equally spaced, starting
from the lower bound of the range (option $f) and ending at
the upper bound (option $t). At least two have to be speci-
fied.

Default: 10.
$e � eval proc �

Name of the element evalution procedure providing the
scalar field.

Default: none.
$s � symbol � Alternative to $e: specification of a scalar vector symbol.
Default: none.
$a � ambient � Control of the ambient shading of the grid behind the cut

plane. 1 leads to no shading, 0 to full shading.
Default: 1.
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Table 7.13: The EVector plotobject - options for setplotobject

DESCRIPTION The PO represents 2d vector field on a 2d hierarchie of grids.
The field is evaluated on a quadratic raster. The values of the
field are displayed by arrows having the direction and length
of the vector.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: 2.
OPTIONS

$t � to � Upper bound of the range. Lower bound is 0.
Default: 1.
$g [0 � 1] Include grid if 1.
Default: 0.
$r � raster � Raster size in pixels.
Default: 20.
$c [0 � 1] If set: Cut vector if it exeeds � length � -times the � raster � .

In the case of cutting the vector is displayed red, otherwise
black.

$l � length � see option $c.
Default: 1.
$e � eval proc �

Name of the element evalution procedure providing the vec-
tor field.

Default: none.
$s � symbol � Alternative to $e: specification of a vector-valued vector

symbol.



7.3. Plotobjects 77

Table 7.14: The EVector plotobject - options for setplotobject

DESCRIPTION The PO represents the 3d vector field on a 2d cut plane in-
tersecting a 3d multigrid hierarchie. The field is evaluated
on a quadratic raster on the cut plane. It is displayed using
arrows having the direction and length of the vector. The
color depends on the angle of the vector with the cut plane.
A vector parallel to the cut plane is displayed in UG-green, a
vector pointing out in UG-red and a vector pointing into the
plane in UG-blue. The vectors are displayed as 3d objects
or its projection onto the cut plane (see option $p below).
The part of the grid behind the cut is included.

PLOTOBJECT-DIMENSION: 3, APPLICATION-DIMENSION: 3.
OPTIONS

$t � to � Upper bound of the range. Lower bound is 0.
Default: 1.
$r � raster � Raster size in pixels.
Default: 20.
$c [0 � 1] If set: Cut vector if it exeeds � length � -times the � raster � .

In the case of cutting the vector is displayed black.
$l � length � see option $c.
Default: 0.9.
$p [0 � 1] Project the vectors onto the cut plane if 1.
Default: 1.
$a � ambient � Control of the ambient shading of the grid behind the cut

plane. 1 leads to no shading, 0 to full shading.
Default: 1.
$e � eval proc �

Name of the element evalution procedure providing the vec-
tor field.

Default: none.
$s � symbol � Alternative to $e: specification of a vector-valued vector

symbol.
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Table 7.15: The VecMat plotobject - options for setplotobject

DESCRIPTION The PO represents the graph structure of the VECTORs and
MATRIXs of UG.

PLOTOBJECT-DIMENSION: 2, APPLICATION-DIMENSION: 2.
OPTIONS

$m [0 � 1] Place a square marker at the position of each vector.
Default: 0.
$c [0 � 1] Include connections if 1.
Default: 1.
$C [0 � 1] Shows the 1d ordering of the vectors. Specification of 1

resets option $c.
Default: 0.
$e [0 � 1] Include extra connections if 1.
Default: 0.
$i [0 � 1] Include the index of the vectors.
Default: 0.
$p [0 � 1] Shows part information of the vectors. Has higher priority

than option $i.
Default: 0.
$d [0 � 1] Shows dependencies of the MATRIXs, indicated by an ar-

row. Non-dependent connections are not displayed.
Default: 0.
$o [0 � 1 � 2 � 3] Display ordering w.r.t. UG-blockvectors. Consult your local

UG-specialist for usage.
Default: 0.
$b [0 � 1] Show boundary if 1.
Default: 1.
$f [0 � 1] Consider only VCFLAGged vectors.
Default: 0.
$V � vec sym �

Vector symbol used to evaluate data for vectors in selection
list. Displays vector entries for selected vectors.

Default: none.
$M � mat sym �

Matrix symbol used to evaluate data for vectors in selection
list. Displays matrix entries for all connections associated
with the selected vectors.

Default: none.
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