Vorlesung

Einführung in die Praktische Informatik

Wintersemester 2014/2015

Organisatorisches

Vorlesung

- Dozent
 Peter Bastian, INF 368, Raum 420, Sprechstunde: Do 11-12
- Übungsleiter
 Ole Klein, Adrian Ngo, Dominic Kempf, INF 368, Raum 423
 email: info14@conan.iwr.uni-heidelberg.de
- TutorInnen: Studierende höherer Semester
- Webseite zur Vorlesung http://conan.iwr.uni-heidelberg.de/teaching/info1_ws2014/ Informationen, Unterlagen, Übungsblätter
- Skript
 Basierend auf Bastian (2003,2011), Neuss (2006)

Übungen

- Sinn der Übungsgruppen
 - Vertiefen Stoff der Vorlesung Jede Woche wird ein Blatt mit Aufgaben ausgegeben Besprechen der Aufgaben in den Übungsgruppen Fragen zur Vorlesung und den Übungen stellen
- Derzeit 14 Übungsgruppen, Abgabe in Gruppen je 2-3 Teilnehmer
- Anmeldung über MÜSLI

https://www.mathi.uni-heidelberg.de/muesli/lecture/view/152 Anmeldungszeitraum: bis Do., 16.10., 20 Uhr Einteilung am Freitag vormittag System arbeitet mit Präferenzen und nicht first come first served Ergebnis der Einteilung: Im MÜSLI einloggen!

Ablauf der Übungen

- Ausgabe der Übungsblätter
 Donnerstags, 16 Uhr auf der Webseite der Vorlesung
- Abgabe der Lösungen
 Donnerstags, 14 Uhr ct (vor der Vorlesung)
 Abgabe in Zettelkästen Foyer INF 288 rechts neben HS 6
- Erstes Blatt

Ausgabe: 16.10.11, 16 Uhr (diese Woche!)

Abgabe: 23.10.11, 14 Uhr

• Beginn der Übungsgruppen ab Montag, 20.10. Kennenlernen, Fragen zu den Aufgaben und der Vorlesung

Übungszeiten

	Мо	Di	Mi	Do	Fr
09 – 11		LA1 Vorl.	ANA1 Vorl.	LA1 Vorl.	350/U014
			ProgKurs		368/532
11 – 13	ProgKurs	350/U014	350/U013	Mathe f. Inf. Vorl.	ANA1 Vorl.
		Mathe f. Inf. Vorl.	350/U014		ProgKurs
			368/248		
			TI Vorl.		
14 – 16	350/U013	INFO1 Vorl.		INFO1 Vorl.	
	368/432				
	TI Vorl.				
16 – 18	Pool	350/U013	350/U013	350/U013	
		350/U014	350/U014		
		368/248			

Vorzugsweise BA Informatik Vorzugsweise totale Anfänger

Leistungsnachweis

- Erfolgreiche Übungsteilnahme mindestens 50% der Punkte aus den Übungsaufgaben und mindestens 1 Präsentation einer Lösung sind Voraussetzung zur Teilnahme an der Klausur!
- Klausur voraussichtlich Donnerstag, 5. Februar 2015, 14-17 Uhr
- Wer bereits die erfolgreiche Teilnahme an den Übungen zu dieser Vorlesung aus früheren Semestern nachweisen kann ist zur Klausur zugelassen.
- Für BA Informatik, LA Informatik ist diese Klausur die Orientierungsprüfung

Unterschiedliche Vorkenntnisse

Angebote für totale Anfänger

- Nächste Woche: "Grundlagen der Bedienung von UNIX-Systemen" Mo 20.10. 16-18 Uhr INF 350, CIP-Pool im UG U011/012 Di 21.10. 18-20 Uhr INF 350, CIP-Pool im UG U011/012 Anmeldung jetzt!
- Spezielle Übungsgruppe Mo 14-16, Mi 16-18 Uhr
- Betreutes Programmieren
 Mo 16-18 OMZ INF 350 U011/12 (50 Plätze)

Ich freue mich über Fragen! Es gibt keine dummen Fragen!

Angebot für Fortgeschrittene

- Alternativer Punkteerwerb: Ersetzen ausgewählter Übungsaufgaben durch Kleinprojekte
- Details werden auf Übungsblatt/Webseite erklärt

Programmierkurs

- Einführung in C++ unabhängig von der Vorlesung
- 2 stündige Veranstaltung
- Pflichtveranstaltung für BA Informatik, LA Informatik + Mathe in Semester 1, LA Informatik + X in Semester 3, freiwillige Teilnahme möglich

Praktisches Üben

- Programmieren ist wesentlicher (nicht alleiniger) Inhalt der Vorlesung
- Beim Programmieren gilt: Übung macht den Meister! Programmieren ist eine Kunst. Eines der berühmtesten Bücher der Informatik von Donald E. Knuth heißt "The Art of Computer Programming" Nutzen Sie alle gebotenen Möglichkeiten zum Üben!
- In der Vorlesung/Übung benutzen wir eine UNIX-Programmierumgebung.
 Sie sollten Zugang zu so einem System haben um die Übungen durchführen zu können. Geeignet sind LINUX, Mac oder ein Windows-System mit WUBI

http://wiki.ubuntuusers.de/Wubi

• Falls Sie Schwierigkeiten haben, melden Sie sich bei ihrem Tutor

Dozent

Peter Bastian

```
1989 Diplom Informatik (U Erlangen)
1994 Promotion Mathematik (U Heidelberg)
1999 Habilitation Informatik (U Kiel)
```

2001 Professur Wissenschaftliches Rechnen (IWR, U Heidelberg)

2006 Lehrstuhl Simulation großer Systeme (Informatik, U Stuttgart)

2008 AG Paralleles Rechnen (IWR, U Heidelberg)

Arbeitsgebiete

Wissenschaftliches Rechnen

Höchstleistungsrechnen

Anwendungen: Strömungsmechanik, poröse Medien

Motivation

Was ist Informatik

Wissenschaft von der systematischen Verarbeitung von Information, besonders der automatischen Verarbeitung mit Hilfe von Digitalrechnern

Wikipedia, Duden Informatik

Computer science is no more about computers than astronomy is about telescopes, biology is about microscopes or chemistry is about beakers and test tubes.

Michael R. Fellows and Ian Parberry, Computing Research News, January 1993

Inhalt der Vorlesung

- Grundlegende Konzepte der Informatik kennenlernen
 z. B. Algorithmenbegriff, Komplexität, Abstraktion, . . .
- Algorithmisches Denken schulen Problem \rightarrow Algorithmus \rightarrow Programm
- Programmieren im Kleinen verschiedene Programmierstile (funktional, prozedural, objektorientiert, generisch), Erlernen der Programmiersprache C++ Aber: Vorbereitung für Programmieren im Großen!
- Grundlegende Algorithmen und Datenstrukturen Suchen, sortieren, . . .
 Listen, Felder, Heaps, Stacks, Graphen, Bäume, . . .

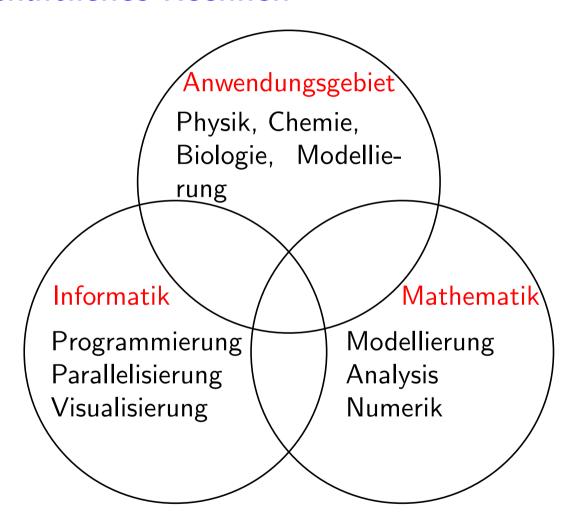
Informatik als Wissenschaft

- Wortschöpfung aus "Information" und "Automatique" erstmals benutzt von Philippe Dreyfus (1962, laut Wikipedia).
- Grundlagen waren
 - Theorie der Berechenbarkeit (Turing, Church, 1937)
 - Entwicklung elektromechanischer/elektronischer Rechenmaschinen (Z3, 1941, ENIAC, 1946)
 - entsprechende Anwendungen (Kryptographie, ballistische Berechnungen, Differentialgleichungen lösen)
- Erster deutscher Informatikstudiengang WS 1968/69 in Karlsruhe

Teilgebiete der Informatik

Theoretische Informatik

Logik und Berechenbarkeit, Automatentheorie und formale Sprachen, Semantik, Komplexitätstheorie


Technische Informatik

Elektrotechnische Grundlagen, Architektur von Rechenanlagen, Chipentwurf, Netzwerkkomponenten, Fehlertoleranz, . . .

• Praktische und Angewandte Informatik

Betriebssysteme, Softwareengineering, Datenbanken, Programmiersprachen, Visualisierung, Mensch-Maschine-Interaktion Anwendungen, z. B. Wissenschaftliches Rechnen

Wissenschaftliches Rechnen

Ableitung

f eine Funktion in einer Variablen:

$$f: \mathbb{R} \to \mathbb{R}$$

Ableitung:

$$\frac{df}{dx}(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Partielle Ableitung

f eine Funktion in mehreren Variablen (x, y, z, t):

$$f: \mathbb{R}^3 \to \mathbb{R}$$

Partielle Ableitung bezüglich der Variablen x:

$$\frac{\partial f}{\partial x}(x, y, z) = \lim_{h \to 0} \frac{f(x + h, y, z) - f(x, y, z)}{h}$$

Differentialoperatoren

Gradient:

$$\nabla f(x, y, z) = \begin{pmatrix} \frac{\partial f}{\partial x}(x, y, z) \\ \frac{\partial f}{\partial y}(x, y, z) \\ \frac{\partial f}{\partial z}(x, y, z) \end{pmatrix}$$

Divergenz einer vektorw. Funktion $f(x, y, z) = (f_x(x, y, z), f_y(x, y, z), f_z(x, y, z))^T$:

$$\nabla \cdot \vec{f}(x, y, z) = \frac{\partial f_x}{\partial x}(x, y, z) + \frac{\partial f_y}{\partial y}(x, y, z) + \frac{\partial f_z}{\partial z}(x, y, z)$$

Laplace einer skalaren Funktion:

$$\Delta f(x,y,z) = \frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z)$$

Differentialgleichungen

Gewöhnliche Differentialgleichung:

$$\frac{df}{dt}(t) = g(t, f(t)) \qquad t \in [a, b], \qquad f(a) = g_0$$

Partielle Differentialgleichung:

$$\frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) = g(x,y,z) \qquad (x,y,z) \in \Omega \subset \mathbb{R}^3$$

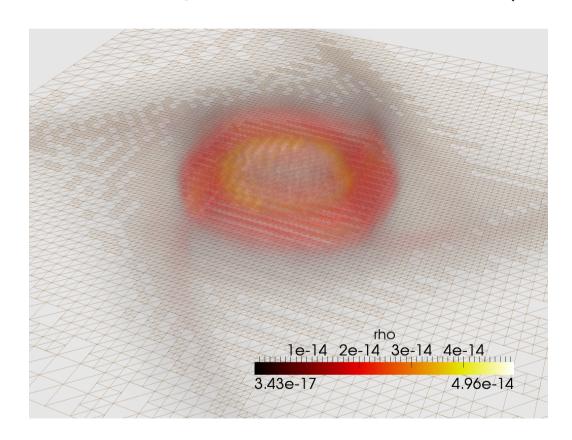
$$f(x, y, z) = \gamma(x, y, z)$$
 $(x, y, z) \in \partial \Omega$

Sternentstehung (Strömungsmechanik)

Cone nebula from http://www.spacetelescope.org/images/heic0206c/

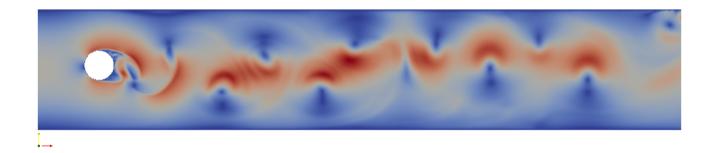
Euler-Gleichungen

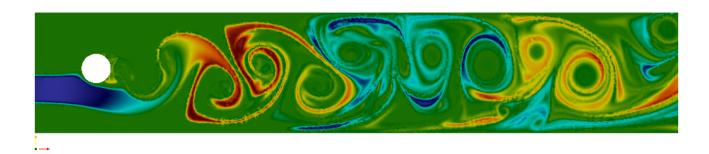
Ein Modell zur Sternentstehung stellen die Euler-Gleichungen (Leonhard Euler, 1707-1783) der Gasdynamik mit Gravitation dar. Diese sind ein nichtlineares System partieller Differentialgleichungen:

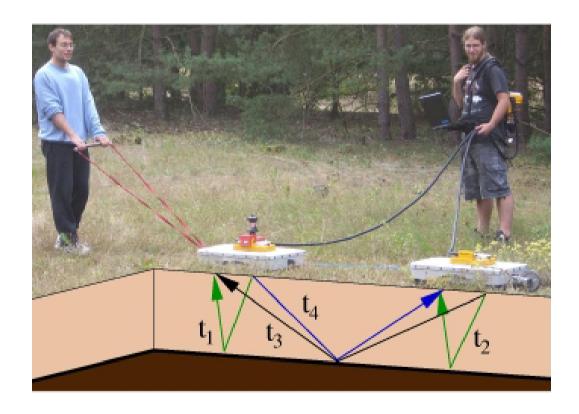

$$\begin{split} \partial_t \rho + \nabla \cdot (\rho v) &= 0 \qquad \qquad \text{(Massenerhaltung)} \\ \partial_t (\rho v) + \nabla \cdot (\rho v v^T + p I) &= -\rho \nabla \Psi \qquad \qquad \text{(Impulserhaltung)} \\ \partial_t e + \nabla \cdot ((e+p)v) &= -\rho \nabla \Psi \cdot v \qquad \qquad \text{(Energieerhaltung)} \\ \Delta \Psi &= 4\pi G \rho \qquad \qquad \text{(Gravitations potential)} \end{split}$$

Bessere Modelle beinhalten innere Reibung (Navier-Stokes Gleichungen), erweiterte Zustandsgleichung und Strahlungstransport.

Existenz und Regularität der inkompressiblen Navier-Stokes-Gleichungen ist eines der sieben Millenium Prize Problems.


Numerische Simulation der Sternentstehung


durchgeführt von Marvin Tegeler in seiner Diplomarbeit (2011).


Von Karmannsche Wirbelstraße @ Re 1500

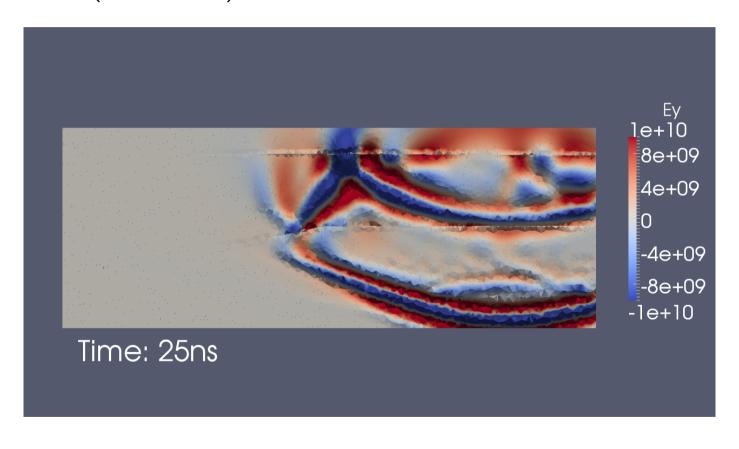
Diplomarbeit Marian Piatkowski

Bodenradar

Bestimme Strukturen im Boden durch Reflexion von Radarwellen

(Makroskopische) Maxwell-Gleichungen

beschreiben die Ausbreitung elektromagnetischer Wellen und wurden von James Clerk Maxwell im Jahr 1861 angegeben.


System linearer partieller Differentialgleichungen erster Ordnung:

$$\nabla \times E = -\partial_t B \qquad \qquad \text{(Faraday)}$$

$$\nabla \times H = j + \partial_t D \qquad \qquad \text{(Ampère)}$$

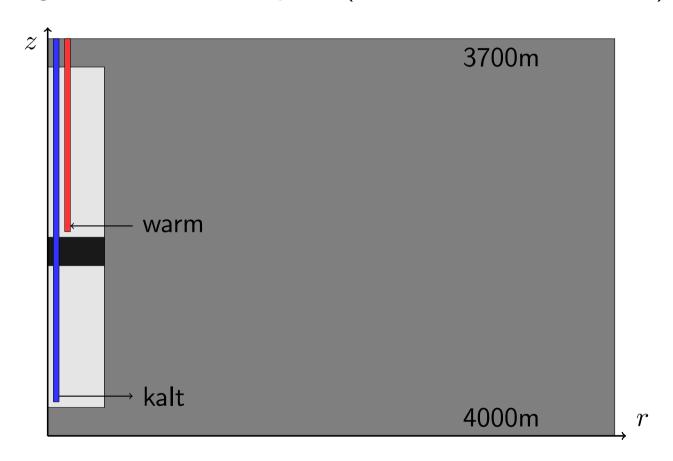
$$\nabla \cdot D = \rho \qquad \qquad \text{(Gauß)}$$

$$\nabla \cdot B = 0 \qquad \qquad \text{(Gauß für Magnetfeld)}$$

$$D = \epsilon_0 E + P \qquad \qquad \text{(elektrische Flussdichte)}$$

$$H = \mu_0^{-1} B - M \qquad \qquad \text{(magnetische Feldstärke)}$$

plus Rand- und Anfangsbedingungen


Simulation des Bodenradars

Jorrit Fahlke (IWR, 2011)

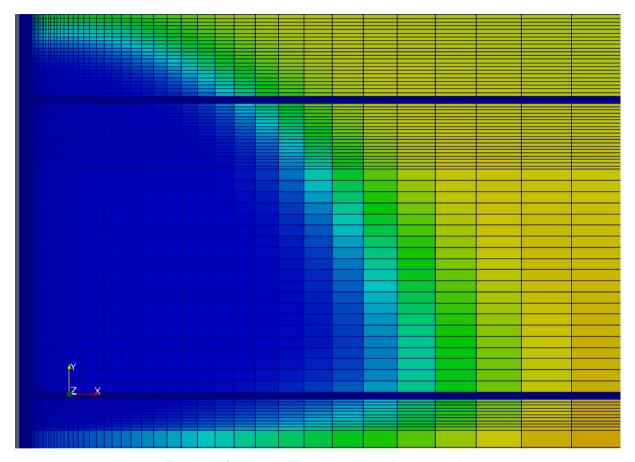
Eine Geothermieanlage

Einlochanlage in einem tiefen Aquifer (Zweidimensionaler Schnitt)

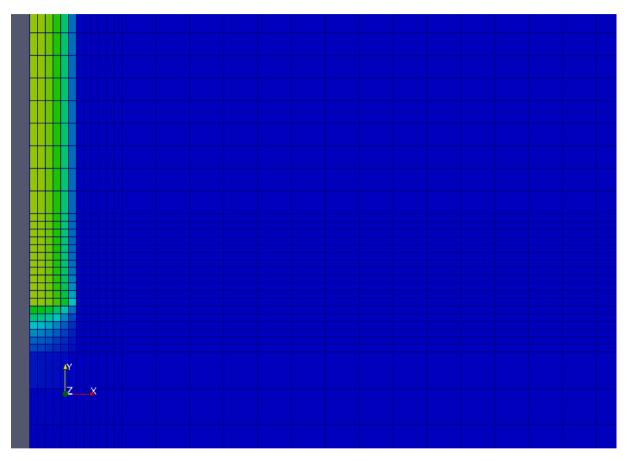
Gekoppelte Wasser- und Wärmeströmung

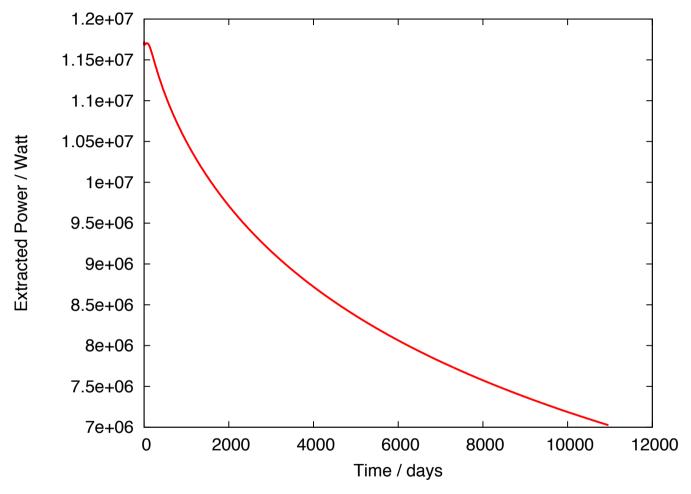
System nichtlinearer partieller DGL für Druck p und Temperatur T:

$$\partial_t(\phi
ho_w) +
abla \cdot \{
ho_w u\} = f$$
 (Massenerhaltung)
$$u = \frac{k}{\mu}(
abla p -
ho_w g)$$
 (Darcy-Gesetz)
$$\partial_t(c_e
ho_e T) +
abla \cdot q = g$$
 (Energieerhaltung)
$$q = c_w
ho_w u T - \lambda
abla T$$
 (Wärmefluss)


Nichtlinearität: $\rho_w(T)$, $\rho_e(T)$, $\mu(T)$

Permeabilität $k(x):10^{-7}$ im kiesgefüllten Bohrloch, 10^{-16} im Verschluss


Raum-/Zeitskalen: R=15 km, r_b =14 cm, Sekunden (0.3 m/s im Bohrloch) bis Jahre


Temperaturverlauf nach 30 Jahren Betrieb

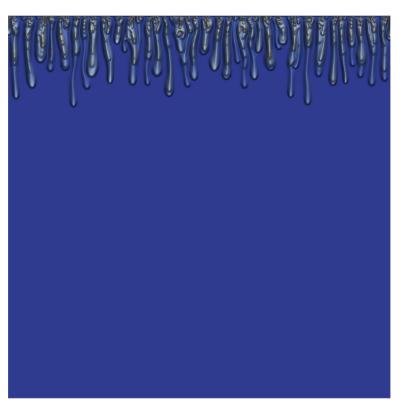
Detail am Einspeisebereich

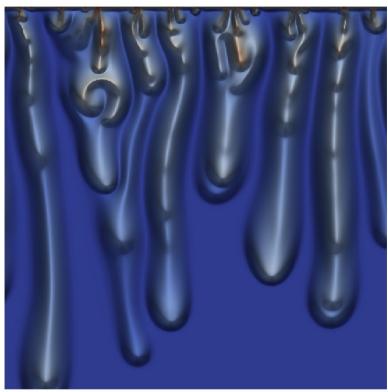
Temperatur im Bohrloch

Entzugsleistung über 30 Jahre

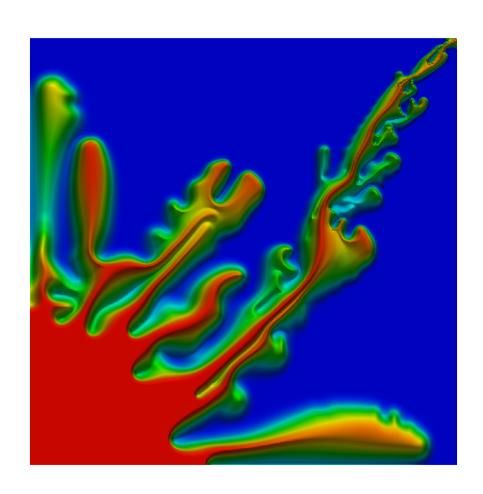
Dichtegetriebene Strömung

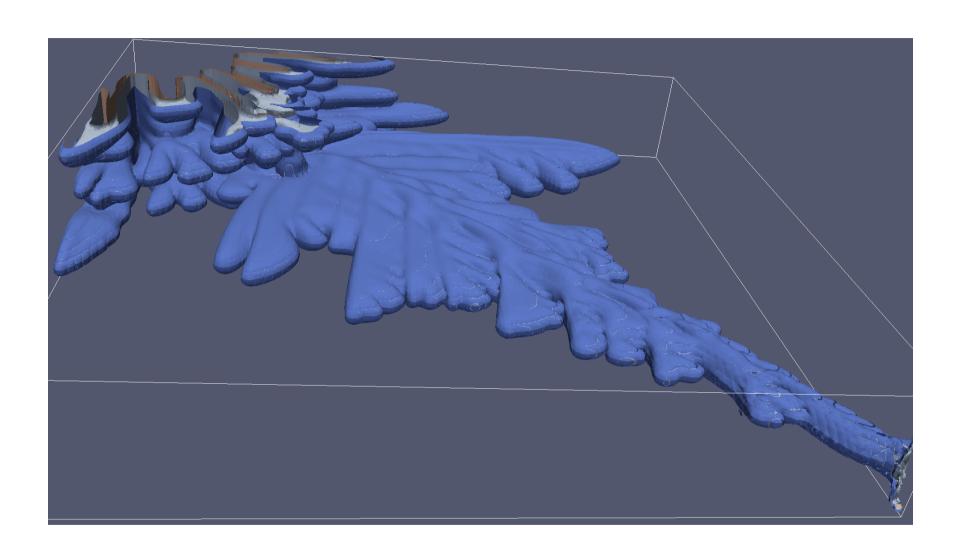
in einem porösen Medium


$$\nabla \cdot v = 0, \qquad v = -(\nabla P - \omega_s \mathbf{1}_z)$$
$$\partial_t \omega_s + \nabla \cdot \left(v \omega_s - \frac{1}{Ra} \nabla \omega_s \right) = 0$$


Dichteres Fluid über weniger dichtem Fluid führt zu instabiler Strömung

Erhöht die Durchmischung, z.B. bei der Sequestrierung von CO₂


Wichtiger Effekt bei geophysikalischen Strömungen (dort: Navier-Stokes Gleichung)


Zweidimensionale Simulation:

Viscous Fingering

Alle Simulationen wurden mit dem Softwarerahmenwerk DUNE durchgeführt

Bei Interesse an Numerik und Informatik können Sie damit mal Ihre Bachelor und/oder Masterarbeit erstellen!

Viele weitere Anwendungen

- Wetter und Klima
- Ölreservoirsimulation, CO₂ Sequestrierung, Lagerung radioaktiver Abfälle
- Geophysikalische Strömungen im Erdinnern
- Tsunamisimulation
- Festigkeit von Materialien
- Brennstoffzellen

• . . .

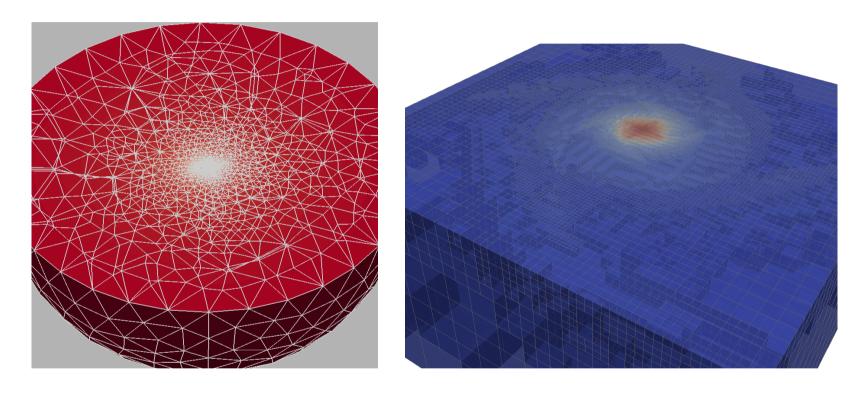
Numerische Lösung partieller Differentialgleichungen

Physik des 19. Jahrhunderts, aber Mathematik und Informatik des 20. Jahrhunderts!

Treibende Kraft bei der Entwicklung des Computers, insbesondere Höchstleistungsrechner:

An automatic computing system is a (usually highly composite) device, which can carry out instructions to perform calculations of a considerable order of complexity — e.g. to solve a non-linear partial differential equation in 2 or 3 independent variables numerically.

John von Neumann, First Draft of a Report on the EDVAC, 30. Juni 1945


Verbindet Informatik, Physik und Mathematik

Etwa Jugene (294.912 Cores, Nummer 2 in Europa im Jahr 2011)

Ermöglicht z.B. die iterative Lösung von (bestimmten) linearen Gleichungssystemen mit 10^{11} Unbekannten in 4 Minuten.

Erfordert komplexe Algorithmen und Datenstrukturen, z.B. zur adaptiven Triangulierung:

Umfangreiches Softwareprojekt: http://www.dune-project.org

Literatur

- H.-J. Appelrath, J. Ludewig: Skriptum Informatik eine konventionelle Einführung. B. G. Teubner Verlag, 5. Auflage, 2000.
- H. Abelson, G. J. Sussman mit J. Sussman: Struktur und Interpretation von Computerprogrammen, Springer Verlag, 1998.
- B. Stroustrup: The C++ Programming Language, Addison-Wesley, 4. Auflage, 2013.
- C++ Programming, freies WikiBook http://en.wikibooks.org/wiki/C%2B%2B_Programming
- U. Schöning: Ideen der Informatik. Oldenburg Verlag, 2002.
- D. R. Hofstatter: Gödel, Escher Bach: Ein Endloses Geflochtenes Band. dtv Taschenbuch, 11. Auflage, 2007.