

Numerik 2 Motivation

P. Bastian

Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 368, D-69120 Heidelberg email: Peter.Bastian@iwr.uni-heidelberg.de

April 15, 2014

Outline

Organizational Stuff

2 Partial Differential Equations are Ubiquitous

3 Preview: The Finite Element Method

Lecture

- Lecturer: Peter Bastian Office: INF 368, room 420 email: peter.bastian@iwr.uni-heidelberg.de
- Room and time (note change of room on Wednesday): Wed 11-13 (INF 329, SR26), Fr 9-11 (INF 350 / OMZ R U014) Enter Otto Meyerhoff Center (building 350) from the east side!
- Lecture homepage: http://conan.iwr.uni-heidelberg.de/teaching/ numerik2_ss2014/
- Lecture notes available from the homepage
- I will extend the lecture notes during the course (>chapter 10)

Excercises

- Excercises designed by Pavel Hron (and myself) Office: INF 368, room 422 email: pavel.hron@iwr.uni-heidelberg.de
- Student tutor: René Hess
- Excercises are managed via the MUESLI system: https://www.mathi.uni-heidelberg.de/muesli/lecture/ view/326

Please register if you have not yet done so!

- Time to be determined via doodle: http://doodle.com/me6s99nufwaeinbd#table Currently available: Mo 14-16, Wed 14-16 (preferred)
- There will be theoretical and practical excercises
- Practical excercises use the software DUNE: www.dune-project.org

2 Partial Differential Equations are Ubiquitous

Gravitational Potential Find function $\Psi(x) : \Omega \to \mathbb{R}$, $\Omega = \mathbb{R}^3$ such that:

 $\partial_{x_1x_1}\Psi(x) + \partial_{x_2x_2}\Psi(x) + \partial_{x_3x_3}\Psi(x) = \nabla \cdot \nabla \Psi(x) = \Delta \Psi(x) = 4\pi G\rho(x)$

G: gravitational constant, ρ : mass density in kg/m³

Force acting on point mass *m* at point *x*: $F(x) = -m\nabla\Psi(x)$

Star Formation

Cone nebula from

http://www.spacetelescope.org/images/heic0206c/

Star Formation: Mathematical Model

Euler equations of gas dynamics plus gravity:

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho v) &= 0 & \text{(mass conservation)} \\ \partial_t (\rho v) + \nabla \cdot (\rho v v^T + \rho I) &= -\rho \nabla \Psi & \text{(momentum conservation)} \\ \partial_t e + \nabla \cdot ((e + \rho) v) &= -\rho \nabla \Psi \cdot v & \text{(energy conservation)} \\ \Delta \Psi &= 4\pi G \rho & \text{(gravitational potential)} \end{aligned}$$

Constitutive relation: $p = (\gamma - 1)(e - \rho \|v\|^2/2)$

More elaborate model requires radiation transfer, better constitutive relations, friction, ...

Nonlinear system of partial differential equations

Star Formation: Numerical Simulation

(Diploma thesis of Marvin Tegeler, 2011).

Flow of an Incompressible Fluid

(Incompressible) Navier-Stokes Equations:

$$abla \cdot \mathbf{v} = \mathbf{0} \quad (\text{mass conservation})$$

 $\partial_t \mathbf{v} + \nabla \cdot (\mathbf{v} \mathbf{v}^T) - \nu \Delta \mathbf{v} + \nabla p = f \quad (\text{momentum conservation})$

- ρ is independent of pressure
- No compression work, isothermal situation
- Pressure is independent variable
- Existence of solutions is Millenium Prize Problem

Von Karman Vortex Street

Re 20 (laminar)

Re 200 (periodic)

Re 1500 (turbulent)

Von Karman Vortex Street

Re 20

Re 200

Re 1500

Propagation of Electromagnetic Waves

(Macroscopic)Maxwell equations:

$ abla imes E = -\partial_t B$	(Faraday)
$\nabla \times H = j + \partial_t D$	(Ampère)
$ abla \cdot D = ho$	(Gauß)
$ abla \cdot B = 0$	(Gauß for magnetic field)

Constitutive relations:

 $D = \epsilon_0 E + P \qquad (D: \text{ electric displacement field, } P: \text{ polarization})$ $B = \mu_0 (H + M) \quad (H: \text{ magnetizing field, } M: \text{ magnetization})$

Linear, first-order hyperbolic system

Application: Geo-radar

Soil physics group Heidelberg

Simulation: Jorrit Fahlke

Geothermal Power Plant

ILR

Geothermal Power Plant: Mathematical Model

Coupled system for water flow and heat transport:

$$\begin{array}{ll} \partial_t(\phi\rho_w) + \nabla \cdot \{\rho_w u\} = f & (\text{mass conservation}) \\ u = \frac{k}{\mu} (\nabla p - \rho_w g) & (\text{Darcy's law}) \\ \partial_t(c_e \rho_e T) + \nabla \cdot q = g & (\text{energy conservation}) \\ q = c_w \rho_w u T - \lambda \nabla T & (\text{heat flux}) \end{array}$$

Nonlinearity: $\rho_w(T)$, $\rho_e(T)$, $\mu(T)$

Permeability k(x) : 10^{-7} in well, 10^{-16} in plug

Space and time scales: R=15 km, $r_b=14$ cm, flow speed 0.3 m/s in well, power extraction: decades

Geothermal Power Plant: Results

Temperature after 30 years of operation

P. Bastian ((IWR)
1. Dustium	

Geothermal Power Plant: Results

Bacterial Growth and Transport in Capillary Fringe

DFG Research Group 831 DyCap, Experiment by C. Haberer, Tübingen

Bacterial Growth and Transport in Capillary Fringe

Experiment by Daniel Jost, KIT, Karlsruhe

Reactive Multiphase Simulation

Unknowns: pressure, saturation, bacteria concentration, carbon concentration, oxygen concentration

Simulation by Pavel Hron

Reactive Multiphase Simulation

Simulation by Pavel Hron

P. Bastian (IWR)	Numerik 2	April 15, 2014	23 / 33

Reactive Multiphase Simulation

Simulation by Pavel Hron

P. Bastian (IWR)	Numerik 2	April 15, 2014	24 / 33

Second Order Model Problems

• Poisson equation: gravity, electrostatics (elliptic type)

$\Delta u = f$	in Ω
u = g	on $\Gamma_D \subseteq \partial \Omega$
$\nabla u \cdot \nu = j$	on $\Gamma_N = \subseteq \partial \Omega \setminus \Gamma_D$

• Heat equation (parabolic type)

$$\partial_t u - \Delta \nabla u = f$$
 in $\Omega \times \Sigma$, $\Sigma = (t_0, t_0 + T)$
 $u = u_0$ at $t = t_0$
 $u = g$ on $\partial \Omega$

• Wave equation (sound propagation) (hyperbolic type)

$$\partial_{tt}u - \Delta u = 0$$
 in Ω

Second Order Model Problems

Solutions have different behavior

(hyperbolic)

P. Bastian (IWR)

Numerik 2

What is a Solution to a PDE?

Strong form: Consider the model problem

$$-\Delta u + u = f \quad \text{in } \Omega, \qquad \qquad \nabla u \cdot \nu = 0 \quad \text{on } \partial \Omega$$

Assume u is a solution and v is an arbitrary (smooth) function, then

$$\int_{\Omega} (-\Delta u + u) v \, dx = \int_{\Omega} fv \, dx$$

$$\Leftrightarrow \qquad -\int_{\Omega} (\nabla \cdot \nabla u) v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$

$$\Leftrightarrow \qquad \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} (\nabla u \cdot v) v \, dx + \int_{\Omega} uv \, dx = \int_{\Omega} fv \, dx$$

$$\Leftrightarrow \qquad \int_{\Omega} \nabla u \cdot \nabla v + uv \, dx = \int_{\Omega} fv \, dx$$

$$\Leftrightarrow \qquad a(u, v) = l(v)$$

Weak form: Find $u \in H^1(\Omega)$ s. t. a(u, v) = l(v) for all $v \in H^1(\Omega)$.

The Finite Element (FE) Method

Idea: Construct finite-dimensional subspace $U \subset H^1(\Omega)$

Partition domain Ω into "elements" t_i :

$$0$$
 t_1 t_2 t_3 1 $\Omega = (0,1), T_h = \{t_1, t_2, t_3\}$

Construct function from piecewise polynomials, e.g. linears:

$$U_h = \{ u \in C^0(\Omega) : u|_{t_i} \text{ is linear } \}$$

Insert in weak form: $U_h = \text{span}\{\phi_1, \dots, \phi_N\}$, $u_h = \sum_{j=1}^N x_j \phi_j$, then

$$u_h \in U_h : a(u_h, \phi_i) = l(\phi_i), \quad i = 1, \dots, N \qquad \Leftrightarrow \qquad \boxed{Ax = b}$$

DUNE

Challenges for PDE Software

- Many different PDE applications
 - Multi-physics
 - Multi-scale
 - Inverse modeling: parameter estimation, optimal control
- Many different numerical solution methods, e.g. FE/FV
 - No single method to solve all equations!
 - Different mesh types: mesh generation, mesh refinement
 - Higher-order approximations (polynomial degree)
 - Error control and adaptive mesh/degree refinement
 - Iterative solution of (non-)linear algebraic equations
- High-performance Computing
 - Single core performance: Often bandwidth limited
 - Parallelization through domain decomposition
 - Robustness w.r.t. to mesh size, model parameters, processors
 - Dynamic load balancing in case of adaptive refinement

DUNE Software Framework

Distributed and Unified Numerics Environment

Domain specific abstractions for the numerical solution of PDEs with grid based methods.

Goals:

- Flexibility: Meshes, discretizations, adaptivity, solvers.
- Efficiency: Pay only for functionality you need.
- Parallelization.
- Reuse of existing code.
- Enable team work through standardized interfaces.

AMG Weak Scaling Results

- AAMG in DUNE is Ph. D. work of Markus Blatt
- BlueGene/P at Jülich Supercomputing Center
- $P \cdot 80^3$ degrees of freedom (5120³ finest mesh), CCFV
- Poisson problem, 10^{-8} reduction
- AMG used as preconditioner in BiCGStab (2 V-Cycles!)

procs	1/h	lev.	ΤB	ΤS	lt	Tlt	TT
1	80	5	19.86	31.91	8	3.989	51.77
8	160	6	27.7	46.4	10	4.64	74.2
64	320	7	74.1	49.3	10	4.93	123
512	640	8	76.91	60.2	12	5.017	137.1
4096	1280	10	81.31	64.45	13	4.958	145.8
32768	2560	11	92.75	65.55	13	5.042	158.3
262144	5120	12	188.5	67.66	13	5.205	256.2