EXERCISE 1 A-POSTERIORI ERROR ESTIMATION FOR LAPLACE EQUATION

In the lecture *a posteriori* error estimator for the second order elliptic boundary problem was derived. In this exercise we consider the Laplace equation with Dirichlet boundary conditions:

$$-\Delta u = 0, \quad x \in \Omega$$

 $u(x) = g(x), \quad x \in \partial \Omega$

on a polygon domain $\Omega \subset \mathbb{R}^d$ (not necessary convex). We restrict our estimation to P^1 finite elements. Follow the lecture and derive the *a posteriori* error estimation for the error $e_h = u - u_h$.

EXERCISE 2 RESIDUAL ESTIMATION

In this exercise, we will solve reentrant corner problem using grid adaptation. We consider the Poissson problem in two space dimensions $\Delta u=0$ on domain Ω (see picture) with the exact solution in polar coordinates

$$g(r,\phi) = r^{\frac{2}{3}}\sin(\frac{2}{3}\phi).$$

In uebungen/uebung11 of your dune-npde module you can find a program that solves this problem for conform P_1 elements on the simplex mesh. Your task is to implement the a-posteriori error estimation for P_1 elements and use it to the local mesh adaptation.

- 1. The code is almost complete. You should only complete the implementation of the function computeLocalError() in the file *local_error.hh*, that should compute the residual error indicators η_t from the lecture.
- 2. The function adaptGrid() adapts the mesh dependent on values in vector indicators. You can decide between two strategies which cells to refine. Describe the difference between these two strategies.
- 3. Choose one of the strategies and compare the achieved accuracy (with respect to the number of degrees of freedom) to results using global mesh refinement.

6 points