Exercise 1 Operators on Hilbert space

Let H be a Hilbert space and Y a closed subspace of H. Define the map $P: H \rightarrow Y$ for each $v \in H$ as

$$
\forall y \in Y:(P(v), y)=(v, y) .
$$

Let us prove that:

1. Operator P is linear and continuous.
2. For $v \in H$ it holds

$$
\|P(v)-v\|=\min _{y \in Y}\|y-v\|
$$

(apply Lax-Milgram Theorem and Characterization Theorem).

Exercise 2 Projections

Let Y be a subspace of a normed vector space X. An operator $P: X \rightarrow X$ is said to be a projection on Y if

$$
P^{2}=P \quad \text { and } \quad \operatorname{Range}(P)=Y .
$$

Show the following:

1. P is a projection if and only if $P: X \rightarrow Y$ and $P=I$ on Y.
2. If P is a projection, then $X=\operatorname{Ker}(P) \oplus \operatorname{Range}(P)$, where \oplus denotes a direct sum.
3. Operator P defined in exercise 1 is a projection.

5 points

EXercise 3 Unbounded linear operators

The real trigonometrical polynomials have the form

$$
t(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

where $a_{n}, b_{n} \in \mathbb{R}$. Let X be the space of all real trigonometrical polynomials on $\Omega=(-\pi, \pi)$ with a finite norm

$$
\|t\|=\int_{-\pi}^{\pi}|t(x)| d x .
$$

1. Prove, that the derivative $\frac{\partial}{\partial x}$ is a linear operator from X to X.
2. Show, that this operator is not bounded and therefore not continuous.

Let $\Omega=[a, b] \subset \mathbb{R}$. The Hölder-Norm of a real function $f: \Omega \rightarrow \mathbb{R}, m \in \mathbb{N}, \alpha \in(0,1]$ is defined as

$$
\|f\|_{C^{m, \alpha}}:=\sum_{|s| \leqslant m}\left\|\partial^{s} f\right\|_{\infty}+\sum_{|s|=m} \sup \left\{\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} ; x, y \in \Omega, x \neq y\right\}
$$

Moreover, let $1<p \leqslant \infty$ and $\alpha:=1-\frac{1}{p}$.
Prove: Tthere exists a constant $C \in \mathbb{R}$ and $x_{0} \in \Omega$, that for $f \in C^{1}(\Omega)$ it holds:

$$
\|f\|_{C^{0, \alpha}} \leqslant\left|f\left(x_{0}\right)\right|+C\left\|f^{\prime}\right\|_{L^{p}}
$$

Use Hölder-inequality:
Let $f \in L^{p}(\Omega), g \in L^{q}(\Omega)$ and $\frac{1}{p}+\frac{1}{q}=1$, then it holds $f g \in L^{1}(\Omega)$ and

$$
\|f g\|_{L^{1}} \leqslant\|f\|_{L^{p}}\|g\|_{L^{q}}
$$

EXERCISE 5 WEAK DIFFERENTIABILITY

Continuous, piecewise-smooth functions in 1D are weakly differentiable (see example 5.31 in the lecture notes). The continuity of the function is crucial.

Consider the function

$$
f(x)=\left\{\begin{array}{rl}
-1 & x \in(-1,0] \\
1 & x \in(0,1)
\end{array}\right.
$$

and show that the weak derivative of f does not exist.

